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ABSTRACT 

Modern safety systems are transforming vehicles from 
human-controlled passive devices into human-centric 
intelligent/ active systems. There is a wide range of 
systems from fully autonomous vehicles to human-
augmented control devices which have emerged in this 
field. In current trends, co-operative active systems 
have the driver in the decision and control processes are 
favored for their ‘human-centric’ approach. However, 
these systems pose a challenge in the design process 
since obtaining reliable human behavior models are 
difficult due to the complex nature of driving task in a 
dynamic traffic environment. From a control theory 
perspective, driving can be seen as a combination of 
continuous control segments combined with a discrete 
decision process. In this study, we will model driver 
behavior utilizing Hybrid Dynamic Systems (HDS) 
combining stochastic modeling tools (such as Hidden 
Markov Models) with control theoretic models. A 
subset of CAN-Bus and video channels from a 
demographically balanced UTDrive Corpus containing 
video (2 channels: driver and road scene), audio, and 
CAN-Bus signals of realistic driving sessions for 77 
drivers are used to verify HDS models of lateral and 
longitudinal control behaviour. The model is used to 
suggest ‘driver-aware’ active safety system capable of 
assisting the driver in several lateral control tasks; lane-
keeping, curve-negotiation and lane changing.  
 
INTRODUCTION 

Understanding, analyzing and modeling human driver 
behaviour in a realistic way is extremely important in 
enhancing the safety of the vehicles.  In a study 
supported by NHTSA, it was found that driver error 
was the major contributor in more than 90% of the 
crashes examined [1]. Cooperative driver assisting 
systems (DAS) or human-centric active vehicle safety 
(AVS) presents an opportunity to prevent/avoid some 
of these accidents. These promising technologies can 

be realized with an associated cost in research and 
implementation trials. The difficulty arises because of 
the co-operation requirement with human and the 
human driving behavior is a poorly understood 
subject. The dynamics of driving come from three 
sources: driver, vehicle and the environment. 
Although, several systems exist to improve the 
vehicle dynamics and handling, the driver behaviour 
and the role of the environment remained the 
overlooked components of the safety problem until 
now. The vehicle component was the first one to be 
examined and improved thanks to precise non-linear, 
continuous vehicle models and numerical 
simulations. The uncertain, non-stationary, highly 
dynamic, stochastic or discrete event-driven 
characteristics of driving comes mainly from human 
driver and traffic context imposing on the driver to 
react in a certain way. These characteristics of driving 
are more difficult to model, understand and control 
and they conceal the underlying cause of most of the 
accidents.  Therefore, future active safety systems 
need to take driver behaviour and traffic context into 
account for efficient accident avoidance/ prevention. 
In other words, AVS or DAS should be ‘driver-
aware’ and ‘context-aware’. The context awareness 
can be achieved by monitoring and analyzing the 
micro-traffic environment around the host-vehicle. 
The sub-systems of such a system may include a 
computer vision system for lane mark, vehicle and 
pedestrian detection and tracking together with road 
sign recognition. In recent years, such systems are 
designed and reported with great prospects of being 
beneficial [2, 3]. For an example in context-aware 
systems, one can refer to [4].  In this paper, the focus 
is driver-awareness to be able to design human-
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centric AVS and adaptive DAS with particular 
interest in lateral control.  

The paper is organized in the following way. 
First, a critical survey of driver behaviour modeling 
approaches is given identifying the need for a hybrid 
realistic model specifically designed for the use of 
DAS or AVS development. In this section, also the 
driver models are categorized to give more insight 
into the problem of which model is more appropriate 
for what type of applications. Next the main frame of 
the proposed driver model is presented together with 
the theoretical methods and implications from human 
factors engineering studies. It is extremely important 
that the model delivers both a theoretical framework 
which is mathematically tractable and an explanation 
of physical and cognitive processes involved in 
control strategy of human driver. The proposed 
model is divided into lateral and longitudinal parts; 
however, these two models are coupled and the full 
model is given next. After construction of the 
theoretical framework supported with experimental 
observations from previous studies the model is 
validated using driving data which is collected in real 
traffic environment. Finally, the advantages and 
limitations of the proposed model are presented in the 
conclusion section.  

Critical Survey of Driver Modeling Approaches 
 

Driver models are needed for different purposes 
from assessing vehicle dynamics to monitoring driver 
status or just simply to better understand the underlying 
dynamics in driver behaviour. In addition to several 
types of need for driver models, each related research 
field emphasizes a different aspect of the driver (i.e. 
cognition, perception, processing reaction, control). 
Driver modeling approaches can be roughly divided 
into following groups: human factors, control theoretic, 
stochastic/ non-linear and hybrid models. A schematic 
of driver modeling approaches is given in Fig.1.  

It is noticeable that especially lateral control has 
been modeled by control theoretic approach due to its 
continuous characteristics. An example of this type of 
driver model can be found in [5] employing control 
theoretic approaches for lateral control behaviour.  This 
model includes driver’s delays, feedback in form of 
lateral position error, and neuro-muscular response 

taken from an earlier work on flight-pilot modeling 
studies [6].   

 

 
Figure1. A schematic grouping of driver modeling 
approaches 
 
Other noticeable and widely known control theoretic 
models for lateral control can be listed as McRuer’s 
model [7] containing anticipatory, compensatory and 
precognitive control for better representation, and 
MacAdam’s optimal preview control model [8]. The 
common property of these models is that all of them 
agree with cross-over model [9] which can explain 
single loop manual tasks performed by humans. The 
advantage of control theoretic models is that they 
give a physical/causal relationship between the input 
and output variables. In this aspect, the control 
theoretic models may give insight into driver 
behaviour. Although some of them ignore the non-
linearity, they provide a sound mathematical 
framework in analyzing driver behaviour in control 
level. However useful they may be, it should be noted 
though that most of the control theoretic models are 
designed to be used in improving vehicle dynamics 
and handling quality, but not for explaining driver 
behaviour or design of co-operative systems. These 
driver models have low fidelity in reproducing driver 
control commands that have similar characteristics to 
a real driver in time-domain. The main reason of this 
infidelity is that these models are designed for 
tracking the center of the lane or road-median almost 
perfectly, whereas a real driver would deviate from 
the median more as demonstrated by [10]. The 
human driver allows the lateral position error to build 
up until it reaches a threshold that driver perceives it 
as a deviation and makes correction. This is known as 
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complacency, and it is also related to the fact that 
most of the sensory input that driver uses is not 
instant measurement of the lateral position but visual 
cues and vestibular feedback. In order to perceive and 
process this feedback takes time and it is not instantly 
used by the driver but delayed. A similar behaviour is 
observed also in longitudinal control while car-
following and was taken into account in 
Lubashewsky’s rational driver model [11].  Since the 
existing control theoretic models cannot account for 
complacency, [10] used driver simulator data to 
identify lateral control model of the driver using 
system identification tools and ARX models. In [12] 
driver steering model was identified with particular 
interest in structured and unstructured model 
uncertainty. Their work is important as they imply 
that the structured uncertainty can be used to monitor 
driver and use adaptive control framework to address 
the risk from driver performance deterioration 
whereas the unstructured certainty coming from 
unmodelled nonlinearity can be addressed by robust 
control. The non-stationary, uncertain and non-linear 
nature of driver behaviour was understood by other 
researchers too. In [13] cascaded Neural Networks 
(NN) are used with some flexibility employing 
Extended Kalman Filters (EKF) for update and 
variable activation in newly added neuron layers. 
HMM is used to measure the stochastic similarity 
[14] between the model output and real driver data. 
This measure is reported to be better than mean 
square error since the nature of driving is stochastic 
and we should be looking for main trends in the data 
not the exact match in numerical sense. In fact, 
Markov Chains were used to sequence a bank of 
Kalman Filters for predicting driver actions using 
preparatory input actions [15]. Hidden Markov 
Models (HMM) were used to learn human action and 
transfer human skills for tele-robotics applications 
[16]. HMMs has later proved to be a very convenient 
tool in modeling driving control inputs or observed 
vehicle dynamics and it is widely used to model 
driver behaviour in several frameworks. In [17] 
HMM framework is used to recognize different 
driver maneuvers and [18] used a similar framework 
for a top to bottom approach in search for 
‘drivermes’, the meaningful smallest unit of driving 
signals. In our previous studies, HMMs were used to 
recognize maneuvers and detect the driver distraction 
or driver faults using a hierarchical approach [19, 20]. 
Although HMMs are very powerful and can 
reproduce the driver behaviour with high stochastic 

fidelity, we lack the capability of explaining the 
physical/causal meaning of the resulting models.  
  In addition to mathematical approaches a 
large group of driver models are derived in human 
factor engineering. These models consider cognitive, 
perceptual, and neuro-muscular limitations of human. 
These models provide very important insight into 
driver behaviour especially explaining some of the 
uncertainty, delay and non-linear characteristics. In 
addition to this, the control theoretic and stochastic 
models tend to use measured (i.e. observable) data 
and they often stay in the control level modeling. The 
tactical and strategic levels in Michon’s hierarchical 
model [21] cannot be modeled with control theoretic 
or stochastic approaches. [22] proposed ACT-R 
cognitive model of the driver modeling the 
information processing and inherent delays of the 
human cognitive system. As it can be seen, the 
models derived from human factor engineering are 
very useful; however, they do not represent a full 
driver model. Therefore, combined model structures 
including control aspects, stochastic processes and 
cognitive capabilities are proposed. These models can 
be described as ‘hybrid’ models.  This approach is 
relatively new and very promising for obtaining 
comprehensive models. For example, [23] described 
human perception process by a discrete event 
technique the execution part is modeled by general 
predictive controllers and the velocity control is 
represented by a finite state machine to reveal its 
discontinuous control dynamics. In [24], researchers 
used a controller switching model for modeling 
collision avoidance maneuver employing piecewise 
polynomials. Furthermore [25] used similar approach 
for modeling vehicle following task dividing the car 
following control into four different modes. Another 
model using switching control is used by [26] 
employing simple control laws and defining the 
switching rule by a knowledge base.  
 
In this paper, a hybrid driver model combining 
stochastic, control theoretic and human factor 
approaches is proposed. The main aim is to obtain a 
comprehensive driver model including all available 
knowledge and state-of-art methods in driver 
modeling for development of human-centric active 
safety.  
Proposed Driver Model  
The proposed driver model includes a stochastic 
longitudinal velocity control model coupled with a 
realistic control theoretic lateral model based on [5]. 
Although the lateral model is based on a limited 
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control theoretic model the complacency phenomena 
is represented by delaying the position feedback to 
represent the human limitation. The vehicle model 
used in Hess model is updated by the velocity 
supplied by longitudinal model therefore coupling the 
control strategies. This approach is more realistic 
than assuming the vehicle longitudinal velocity 
constant in the lateral model. The main aim of the 
model is to obtain a driver-adaptable (tunable) and 
realistic lateral control model coupled with 
longitudinal dynamics to use in DAS and AVS 
development. In next sections longitudinal, lateral 
control strategies are given and finally the full driver 
model is explained. 
 
Longitudinal Control Strategy 
 

Longitudinal control strategy of driver is inherently 
discontinuous since the control is achieved by 
changing between gas and brake at discrete times. In 
addition to this, the underlying control rule cannot be 
easily revealed without including the micro-traffic 
context (i.e. car following, congestion or free 
driving). For this reason a stochastic modeling 
approach such as HMM can help us learn the velocity 
control of driver from observations. 

HMM is a naturally suitable tool to model driver 
behavior for the following reasons: 
�  HMMs can model the stochastic nature of the 

driving behavior, providing sufficient statistical 
smoothing while offering effective temporal 
modeling, 

� The variations in the driving signals across the 
drivers can be modeled (driver identification) or 
suppressed (driver-independent route models) 
according to the requirements of the desired task.  
HMMs can be characterised by: 

(1) A set of distinct states S={Si} with qt denoting a 
state at time t, with number N 
(2) The initial state distribution П={ Пi} 
(3) The state transition probability distribution 
A={aij} 
(4) Each state can produce one of M distinct 
observation symbols from the set V={Vi} 
(5)The observation probability distribution function 

in state j, Bj 
Therefore, HMMs can be written in the form of a 
vector λ={N,M,A,B, Π}. For further information, 
readers should refer to [27].  
In modelling velocity control behaviour of human 
driver by HMM we used a topology seen in Figure 2. 
This model represents three states in velocity control: 

constant, increasing and decreasing. The transitions 
between any of the two the states out of three are 
possible and a dynamic variable indicated as d can be 
retrieved as the model stays at one state in certain 
time. These waiting times can account for certain 
control strategy in speed control adopted and the state 
transition probabilities give insight into how several 
control strategies are switched to obtain a plausible 
speed control. The emission output of each state is 
represented by a continuous function to model the 
speed profile with parameters of a line.  
 

 
Figure 2. HMM topology for velocity control 
 
Lateral Control Strategy 
 
The lateral control strategy of driver is modeled using 
a modified control theoretic model based on Hess’s 
work [5]. Two improvements to this model are: 
 

(1) introduction of a dead zone which filters out 
the lateral position errors below a certain 
threshold band accounting for complacency 
of drivers 

(2) replacement of the constant velocity LTI 
model of lateral vehicle dynamics model 
with LTV model updating the speed and 
recalculating the model with the inputs from 
longitudinal velocity model. 

 
The modified lateral driver model and complacency 
term is shown in Figure 3.  Some of the constants 
seen in the block diagram of lateral driver model are 
taken from [5], however, the tuning parameters of ωc 
(cross over frequency) and time constants T1, T2 and 
T3 are explored in a range to better fit the model to 
real driver steering signals. In addition to this, the 
complacency term dead-zone band changes from one 
driver to another. Some drivers are more sensitive 
and correct the errors more often while others let the 
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lateral position error to accumulate. This band can be 
related to experience and one’s confidence in their 
driving skills.  

 

 
Figure 3. Driver model for lateral control 
 
The vehicle model used is known as ‘bicycle model’ 
[28] for calculating the lateral dynamics of the 
vehicle and linearized at a constant longitudinal 
velocity. In order to obtain more realistic behaviour 
from this model, it is updated by changing 
longitudinal velocity at discrete time steps. Therefore 
the resulting vehicle model is a hybrid system 
containing a set of linear-continuous time, time-
invariant models of vehicle switched by a discrete 
update driven by longitudinal speed changes. As a 
consequence the resultant model is non-linear and 
closer to realistic vehicle response. The model inputs 
are steering wheel angle, longitudinal vehicle 
velocity and outputs are lateral acceleration and side 
slip angle. The lateral acceleration output of this 
model is used to calculate the lateral speed and 
finally lateral position of the vehicle employing 
numerical integration by trapezoids. The variables of 
model are given in Table 1.  
 
 
 
 

 
 
Table1. Variables of vehicle model 

Symbol Meaning 

cf or cr cornering stiffness coefficients for front and back tire 

J Yaw moment of inertia about z-axis passing at CG 

m Mass of the vehicle 

r Yaw rate of  vehicle at CG 

U Vehicle speed at CG 

yc Lateral offset or deviation at CG 

τ Wheel steering angle of the front tyre 

αf or αr Slip angle of front or rear tyre 

β Vehicle side slip angle at CG 

ρref Reference road curvature 

ψ Yaw/ heading angle 

ψd Desired yaw angle 

ω Angular frequency of  the vehicle 

The equations of motion using the variables given in 
Table 1 are presented in equations (1-2).  
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Combined Full Driver Model 
 
As mentioned before, the lateral and longitudinal 
models are coupled via the update of vehicle model 
using the velocity outputs of HMM model for driver 
velocity control. HMM model uses 1-2 sec history of 
velocity from CAN-Bus to predict the future 
sequence. Therefore the vehicle model in lateral 
driver model is updated before the driver input to this 
model reaches for new calculation of lateral position. 
The longitudinal and lateral control strategies are 
closely related in a two-way relationship: 
 

(1) In higher speeds, the driver is expected to 
correct the steering wheel with smaller 
magnitudes.  

(2) In sharp turns, the driver might prefer to 
reduce the longitudinal speed and during the 
lane change towards a faster lane the speed 
should be increased to avoid interference 
with the upcoming traffic.  

The combined model has non-linear and stochastic 
properties together and accounts for the complacency 
of human driver. The next session reports on model 
verification using real CAN-Bus data.  
 
Selected Model Verification Results 
 
In model verification, CAN-Bus data is used to assess 
the model in its fidelity to reproduce steering wheel 
angle and vehicle speed commands. The model was 
able to reproduce the expected signals with some 
drawbacks and advantages: 
 

(1) The steering wheel angle contained a high 
frequency term  

(2) The identification ok K and T parameters in 
lateral control require several iterations. 
However, once it is set, these parameters 
can represent driver characteristics or status.  

The model is capable of reproducing steering wheel 
angle commands in lane keeping, curve negotiation 
and lane change profiles. The application of 
complacency zone in the model was found very 
useful since it gives the safety margin of the driver in 
the lateral control task and it is a driver-specific 
characteristic. In addition to this internal delay due to 
processing and the gain of feedback from 
proprioreceptive system are explored. It was 
observed that increasing the internal delay from 0.15 
(nominal) to 1-15 sec interval representing driver 
distraction caused the error building in lateral 

position and the vehicle drifted. It was also observed 
that increasing the gain from proprioreceptive 
feedback reduces the errors in lateral position 
tracking. This is also observed during the 
experiments; the novice drivers relying on only visual 
feedback have larger errors while the expert drivers 
depend on the feedback from neuro-muscular system 
(i.e. thus their gain is higher in that component) and 
have less lateral positioning errors. The effect of 
vestibular/proprioreceptive feedback gain is 
represented from validation experiments performed 
in Simulink (Figure 4 and 5).  
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Figure 4. Drift in lane keeping task (max 2 m) 
with internal delay of 1 sec and proprioreceptive 
gain of 2. 

0 500 1000 1500 2000 2500
-2

-1

0

1

2
x 10

-4

st
ee

rin
g 

an
gl

e 
[r

ad
]

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

simulated time

la
te

ra
l p

os
iti

on
 [m

]

 
Figure 5. Drift in lane keeping task with an 
internal delay of 1 sec and proprioreceptive gain 
of 20.  
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CONCLUSIONS 
 
In this paper, a hybrid model using a stochastic model 
for velocity control and a continuous control theoretic 
model for lateral control are combined. The lateral 
model is modified in order to represent driver 
complacency. In addition to that internal processing 
time is represented by a delay term which can 
account for distraction since it blocks the processing 
sources of the driver. Finally the importance of 
vestibular feedback is shown by observing the drift in 
using the feedback from this system less (Fig..4) or 
more (Fig.5). This type of change can represent the 
difference between novice and expert driver, since 
the expert driver would trust more on muscle 
system/learned skills than visual input.  
In summary, the proposed driver model can account 
for human deficiencies or bottlenecks in information 
processing, complacency. Also, the model can 
explain the effects of the distraction in a tracking task 
(i.e. lane keeping) and the experience level (i.e. 
changing gains in different feedback channels). For 
these reasons, the model is very convenient to be 
used in developing human-centric lane assistance/ 
control systems.  
In our future work, the proposed model will be 
improved and several driver behaviour, performance 
and characteristics will be linked and added using 
Hybrid Dynamic Systems and stochastic modeling 
tools.  
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