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ABSTRACT 
 

Previous work (Perron et al., 2001) on 
emergency brake application concluded that driver 
population diversity and “the overlap of braking 
parameter distributions between normal conditions 
and emergency situations” is such, that triggering 
criteria cannot both detect all emergency braking 
actions and never activate the assistance in 
situations where it is not necessary.  The objective 
of this study was to investigate driver-braking 
characteristics, in order that future systems might 
achieve greater effectiveness.   

48 drivers drove an instrumented vehicle on a 
public road section before arriving at a test track, 
where they were instructed to follow at their 
preferred distance another vehicle towing a trailer. 
They were told the aim was to measure their 
preferred car-following distance. They were naïve 
to the fact that 0.2 miles down the track the trailer 
would be released and rapidly decelerate to a stop. 
The main variables analysed included “throttle-off” 
rate, brake pedal pressure/force, and clutch pedal 
pressure/operation.  
The results indicate a series of relationships 
exploitable by an intelligent brake assist system. 
An intelligent brake assist system could take 
advantage of those characteristics and adapt its 
performance to individuals’ braking style.  

Limitations of the study include resource 
constraints (use of a single instrumented vehicle, 
time-limited access to the test track)and  the 
contrived nature of the emergency braking scenario 
(need for surprise element, practically a one-off 
study, limitation of speed to 30mph/48kmph).   
The study provides evidence of a background for a 
customisable brake assist system that learns from 
the driver and adjusts its full-brake trigger 
accordingly.  
 
INTRODUCTION 
 

The huge potential of active safety systems can 
only be realised if driver input in the system is 
taken into account. Systems such as emergency 
brake assist, stability control and collision 
avoidance must be reliably triggered when drivers 
actually need assistance, but should not intervene 
in normal conditions. False alarms/interventions 

could have detrimental effects on driver acceptance 
of the system.  

One problem with research on specific active 
safety systems is that because of its commercially 
sensitive nature, it often remains confidential to a 
large extent. Detailed research on ergonomic 
aspects of active safety systems often remains in 
the private domain and rarely is published. In one 
of the few exceptions, researchers working in the 
Laboratoire d' Accidentologique, Biomécanique et 
étude de facteur humain (LAB) published results of 
driver studies for the specification of active safety 
systems, and brake assist in particular (Perron, 
Kassaagi, & Brissart, 2001). Perron et al (2001) 
were the first to publish results of microscopic 
studies on driver braking in emergency conditions. 
They utilised both a driving simulator and an 
instrumented vehicle on a test truck to achieve their 
goal. In the simulator, four longitudinal accident 
configurations were examined: a vehicle coming 
out of a parking area into the subject's path, a 
vehicle stopped after a crest on a roadway, a 
vehicle moving at reduced speed after a crest, and a 
vehicle decelerating before braking strongly after 
being followed for 500m in an urban area. In the 
test track study, participants had to follow a vehicle 
with a trailer which was eventually released from a 
relative distance of 17m at a speed of 70km/h. 
Results indicated that while everybody braked, 
only 50% braked hard enough to activate ABS and 
only 80% of these exploited ABS function by 
swerving to avoid the obstacle. Authors concluded 
that if emergency brake assist was fitted to the 
vehicles, up to 40% of collisions would have been 
avoided and in another 30% of cases the impact 
speed would have been reduced by more than 
15km/h. More than 70% of crashes would have 
been avoided if the brakes were activated at the 
throttle-off instant (approx 0.3 s in advance of 
actual braking). However, all these figures rely on 
“the hypothesis that the assistance is actually 
always triggered in emergency situations, which is 
an ideal case. Actually, due to the significant 
overlap of braking parameters distributions 
between normal conditions and emergency 
situations, triggering criteria based on a single 
braking parameter cannot both detect all 
emergency braking actions and never activate the 
assistance in situations in which it is not absolutely 
necessary”... 
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In an attempt to overcome this problem, 
researchers in LAB employed hybrid neural 
networks + genetic algorithm methodology in order 
to find parameters that could be used in 
combination to distinguish emergency situations 
from normal braking (Bouslimi, Kassaagi, 
Lourdeaux, & Fuchs, 2005). The result was a 
model that was quite successful in its purpose, 
however it relied on some parameters that were 
related to post-incident events – such as the result 
of the emergency manoeuvre, a fact that rendered it 
inapplicable in an intelligent brake assist system. 
Contemporarily, Schmitt and Färber (Schmitt & 
Färber, 2005) used Fuzzy-Logic to create a model 
that could distinguish successfully between normal 
and emergency braking. The model is based on 
three parameters of throttle-pedal operation: change 
of radius, jerk, and foot displacement time (from 
throttle to brake pedal). Data for this study was 
collected through the CAN bus of the vehicle 54 
participants drove in a test-track study. Speed was 
restricted to 60km/h and the obstacle appeared en-
route about 35m ahead of the vehicle. The authors 
claimed that their model predicts correctly 85% of 
emergency braking and 97% of braking before a 
corner, against 77% emergency braking and 99% 
braking before a bend correctly predicted by a 
system with a fixed trigger-level. 

Recently, McCall and Trivedi (McCall & 
Trivedi, 2007) utilised Bayesian networks to fuse 
driver behavioural information with 
vehicle/environment information to predict an 
emergency or non-emergency situation. Inputs to 
the system include time-headway (from a LIDAR 
sensor), wheel speed, brake pressure, accelerator 
position, steering angle, vehicle longitudinal and 
lateral acceleration, yaw rate, steering angle and 
gaze and face expressions recorded using video-
cameras. The authors provided supportive data of 
the effectiveness of the system in predicting critical 
situations; however they admitted that a significant 
problem was the number of false positives 
(undesired system activations). This was the case 
particularly when drivers covered the brake pedal 
but eventually decided not to brake.  Although 
titled “brake support” by its authors the model aims 
more towards “brake automation” - automatic 
braking rather than augmented braking. It looks 
more towards vehicle-automation than towards 
driver-support. 

A number of years has passed since the 
original introduction of (Emergency) Brake Assist 
systems in road vehicles and there is no published 
evidence that the challenge of accommodating the 
individual differences in driver braking has been 
achieved. The present paper provides an alternative 
approach towards the fulfilment of this goal. To 
achieve this, a human-centred approach is adopted. 
Individual differences are now seen as an 
exploitable opportunity rather than an obstacle 

towards successful human-machine interaction. 
The present study examines the relationships 
among basic parameters of driver longitudinal 
control and suggests how they could be exploited 
in an intelligent brake system to accommodate 
driver variability.  
 
 
METHOD 
 

To achieve the aims of the study, 48 
participants drove an instrumented vehicle on 
public roads and on a closed test-track. Each 
session allowed a combination of normal braking 
responses and an emergency braking episode to be 
recorded for each participant. The details of the 
study are presented below. 
 
Apparatus 
 

A Ford Fiesta (2000 model year) was fitted 
with a camera in the footwell to record foot/pedal 
movements, an on-board camera provided view of 
the road ahead, two  Tekscan Flexiforce® sensors 
were fixed on the brake pedal surface, one 
Flexiforce® on the clutch pedal surface, and a 
potentiometer was attached to the centre of the 
throttle-axis rotation.  Sensors were calibrated 
according to Tekscan’s guidelines (Tekscan, 2008). 
A Labjack® U12 data acquisition module was 
connected to a Toshiba® Tecra 3 laptop using 
Azeotech® DAQFactory® Express software for 
data logging. Power was provided through the 
vehicle’s battery when the engine was on and 
through the laptop’s battery when it was off.  
 
 

 
 
Figure 1: View from the on-board camera 
during the closed-track study 
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Figure 2: The trailer during built-up 
 

A lightweight (m<30kg) trailer was built for 
the purpose of simulating a lead vehicle’s sudden 
braking (a<-5m/s2) on the test track. The trailer’s 
stopping properties were representative of average 
emergency decelerations of real vehicles in 
experimental (Vangi & Virga, 2007) and field 
studies (van der Horst, 1990). The trailer (figure 2) 
was three-wheeled for extra straight line stability; 
dimensions were 2.2m length, 1.25m rear width, 
0.3m front width, and 0.4m height at the back. 
Wheels were 20inch standard road bicycle wheels. 
The structure comprised a sheet of waterproof 
wood reinforced with an aluminium skeleton. Two 
0.75mx0.5mx0.5m cardboard boxes were filled 
with closed empty plastic bottles and wrapped with 
white plastic bags before they were attached at the 
rear of the trailer to create a “bulkiness” illusion 
(figure 1). Standard bicycle “V-brakes” were 
installed and were activated by the rotation of a 
lever which was activated by two springs upon 
release from the car. During testing average 
acceleration of the trailer after release was -
6.81m/s2 with an instantaneous minimum of -
17.24m/s2 achieved. 
  
The participants 
 

Participants were recruited through advertising 
in local press and local companies. Forty-eight 
drivers (26 male and 22 female) participated in the 
study. Age ranged from 21 to 84 (average 31.3) 
years, average driving experience was 12 years 
(min 1, max 48), and the average mileage was 9653 
miles/year (min 2000, max 30000). They all held a 
full driving license (UK/EU or equivalent 
international) and had 3 or fewer penalty points. 
 
The route  
 

The public road section of the route driven by 
the participants included an urban and a rural 
section (11km in total) that led them from the start 
(Loughborough University Business Park) to the 

test track (Wymeswold Airfield). A section of the 
track was isolated and marked out with cones to 
provide a single lane for the emergency brake test. 
Sessions took place between 5 and 8pm on 
weekdays in daylight (Spring-Summer).  
 
The test protocol 
 

Participants provided personal details for 
insurance purposes before the experiment, as well 
as demographic data and a general health 
questionnaire. Just before the start of the driving 
session, they indicated their stress level on a 7-
point Likert scale. They were told that the purpose 
of the study was to measure their preferred driving 
distance from other vehicles and for that purpose 
they would have to follow an instrumented trailer 
that would record this distance on the test track. 
Upon arrival to the test track they would stop at the 
entrance before an experimenter would check the 
site and give permission to proceed to the track. 
There, they were asked to follow another vehicle 
towing a trailer around the track at their preferred 
distance.  They were told that this was the target 
variable of the experiment. Post-trial questioning 
confirmed that they were naïve to the fact that the 
trailer would be released after 0.2 miles (321.86 m). 
In each trial the lead vehicle accelerated to 30mph 
(speed measured using GPS) and kept a constant 
speed until the release of the trailer.  
 
Data analysis 
 

Participants’ stress index before the study was 
compared to their stress rating immediately after 
the test-track study. Because of the non-parametric 
nature of the data, a Wilcoxon test was used. In 
order to examine the appropriateness of using brake 
force and/or “throttle-off” rate as single triggering 
criteria, mean values for the public road section 
were compared to the peak values during the 
emergency response. Paired Student’s T-test and 
Wilcoxon test was employed for that purpose. Then, 
in order to examine the relationship between 
normal and emergency braking, each variable in 
the public road driving condition was plotted 
against the same variable in the emergency braking 
condition. Various regression models were tested in 
order to find the model with the best fit to the 
observed data. All the analyses were carried out 
using the Statistics Package for Social Sciences 
(SPSS) ver. 15.  
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RESULTS 
 

Table 1. 
Wilcoxon signed ranks test results for stress 

before and after test-track study 
 

 a  stress_after < stress_before 
 b  stress_after > stress_before 
 c  stress_after = stress_before 
 d  Based on negative ranks. 
 

Analysis of the drivers’ self-rated stress-level 
before and after the emergency event on the test 
track indicated an increase in participants’ stress-
level (table 1). The resulted difference is 
statistically significant at p<0.0001 level.  

Quantitative analysis of brake response 
indicated that about 50% of participants did not use 
the brake significantly, either because they swerved 
enough to avoid the obstacle, and/or they were 
following with long enough time-headway to gear-
down and stop gradually. These data had to be 
cleaned because participants did not engage brakes 
to stop the vehicle. Figure 3 presents the resultant 
distribution of brake-force response of participants 
that used brakes (force on sensor>5N). To further 
improve the normality, three more outliers on the 
upper end of the distribution were removed from 
further analysis. Then, the relationship between the 
peak force during emergency and the typical force 
during normal driving (public roads) was explored.  

 

Table 2.  
Paired T-test comparison of force between 

normal and emergency braking (in Newtons, 
measured on each sensor) 

 
 Force on sensors, public road 

driving – Force on sensors, 
emergency event 

Mean 
difference 

-14.24443 

Std. Deviation 11.50758 
t -6.189 
df 24 
Sig. .000 

 
Table 2 displays the results of a paired 

comparison between each participant’s typical 
normal and peak emergency brake force. The 
difference is statistically significant at level 
p<0.0001. There seems to be a relatively constant 
difference between the two conditions per 
individual.  Further, scatter-plot of typical normal 
braking against the respective emergency response 
(force) can be found in figure 4. 

Linear and non-linear models were tested and 
the three best fitted ones are shown in figure 4 
(linear, quadratic and cubic). Analysis of Variance 
(ANOVA) for each model indicated that the cubic 
model is yields the highest correlation value 
(R=0.51) but the worst statistic significance 
(p=0.09) of the three. The linear model explains 
less variance (R=0.45) but is more statistically 
significant (p=0.02). The quadratic model on the 
other hand is in between; Pearson R for this model 
is 0.50 and statistic significance is p=0.03.  

Then, throttle-off characteristics for the whole 
dataset were examined. Figure 5 displays 
comparative values of throttle-off rate for each 
driver between normal and emergency conditions. 
In only 7 out of 58 cases are the respective values 
similar. A Wilcoxon test indicated a statistically 
significant difference between the two variables 
(p<0.0001).   
 

Stress 
after –  
stress 
before 

Negative 
ranks 

Positi
ve 

ranks 
Ties Total 

N 3(a) 33(b) 11(c) 47 
Mean 
Rank 20.00 18.36   

Sum of 
Ranks 

60.00 
606.0

0 
  

Z -4.384(d)    
Asymp. 

Sig.  
(2-tailed) 

.000    
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Figure 3: Histogram of forces measured during emergency brake test after cleaning of data (force in 
Newtons, measured per sensor) 
 
 

 

 

 
 
Figure 4: Scatter-plot and best fit models of participants' normal and emergency braking in terms of 
force (measured in Newtons per sensor) 
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DISCUSSION 
 

It is impressive how different the two 
conditions look through the paired-comparison for 
each participant. Both throttle-off and brake force 
distinguished very well (p<0.0001) between normal 
and emergency conditions per individual.  However, 
as was the case in a previous study (Perron et al., 
2001), this is not the case when drivers are mixed 
in a group. Some drivers’ emergency response is 
quantitatively similar to somebody else’s typical 
braking. There is a difference though between 
throttle-off and brake force. 

Throttle-off distributions are much skewed 
(figure 5). Although the low resolution of the data 
acquisition equipment (8bit) plus the limited range 
of throttle-pedal movement in the vehicle’s 
footwell could be partly blamed for this, the 
concentration of data in two groups is quite 
apparent. Thus, if a constant trigger-parameter is 
used, throttle-off has an advantage over brake-force. 
Actually if in our case the trigger was set to 0.6 
degrees/sampling (figure 5) then it would have 
been correctly activated in 88% of cases and would 
have missed only 12%. Despite the reservation 
because of equipment limitations (data acquisition 
and vehicle properties), it should be mentioned that 
this is a much more effective intervention of a 
single/constant-trigger than the 77% quoted by 
Schmitt and Färber (2005). 

The answer to the overlap between normal and 
emergency braking among drivers could be in 
relationships like the one portrayed in figure 4. 
This is because if there is a relationship that 
explains the variance between them in normal and 
emergency conditions, then the “normal” value 
could be used to predict the “emergency” value. 
For example the quadratic fit model on figure 4 
could be used to predict the emergency brake value 
for participant X, if his/her typical (average) 
normal value is known (see example in next 
section). Now, when it comes to deciding which 
model to use for this purpose, each one of the three 
pictured in figure 4 has its merit. The linear model 
has more academic than practical value; it is 
conceptually best as a model representing the 
dataset (p=0.02), however it is worst in explaining 

the variance and predicting exact data points 
(R=0.45). The cubic model is best explaining 
variance and predicts most exact data points 
(R=0.51), however its representation of the whole 
dataset is problematic (p=0.09). The quadratic 
model is almost as good as the best aspect of both 
models (R=0.50, p=0.03) and seems to combine 
both merits. It remains though to be tested in 
practice. 

Other points that need mentioning are the 
external validity of the study and the unusual 
presentation of quantitative results. The study was 
designed to represent real drivers in conditions that 
were as realistic as possible. Participants were 
recruited from the local population   and were not 
restricted to university students, test drivers, 
customers of a specific brand or recruited through a 
“participants’ list”. Of course, the absence of active 
involvement by a manufacturer, made data 
acquisition a lot more laborious task than it would 
have been otherwise. As for the emergency test 
itself, allowing the drivers to follow at their 
preferred distances effectively sacrificed half the 
sample, however this sacrifice enhances validity as 
it replicates the “insignificant” braking found in 
50% of rear-end collisions/longitudinal critical 
events (Gkikas, Richardson, & Hill, 2008; Perron 
et al., 2001). Furthermore, subjective stress ratings 
by the participants themselves (table 1) support the 
validity of the emergency test. Most importantly, 
all participants reported surprise. Objectively, the 
average deceleration of the trailer is below the 
maximum achievable by modern vehicles, however 
it is comparable to actual decelerations observed in 
the field (van der Horst, 1990) and measured in 
tests with real drivers (Vangi & Virga, 2007). 

Most of the numerical values quoted here are 
hard to embed in any type of system as they are. 
We could have quoted the values in SI units or use 
force values for the whole brake pedal instead of 
just one area on it. However, the major findings are 
the relationships that emerge from the results and 
which can be exploited in a vehicle system to 
improve safety. In the next section an example is 
presented of how to exploit these. 
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Figure 5: Throttle-off rate in normal and emergency conditions (degree/sampling) 
 
 
APPLICATION 
 

In the last section of the paper, an example will 
be provided of how the relationship between 
normal and emergency braking can be exploited to 
accommodate driver variability. Figure 6 presents a 
system specification that could exploit this 
relationship, by incorporating the quadratic model 
to predict the appropriate trigger level for full-
brake activation.  

At the start of the drive the trigger is set to the 
average emergency brake level as measured in the 
study (Tr in figure 6). Then every time force is 
applied on the brake pedal, the system calculates 
based on the input a new trigger-level [Tr(1) in 
figure 6], which fuses the new [Tr(1)] with the 
previous (Tr) to give out the new trigger [Tr(n)]. If 
this value is exceeded during braking, then full-
brakes are applied. 

As an example, figure 7 is a simulation of how 
this system would work based on the drive of one 
participant. It is quite interesting that the system 

within a few seconds is below the participant’s 
actual emergency brake force (last high-wave in the 
graph). In this simulation full brakes would have 
been engaged twice on the way to the test track. 
Cross-check with the video of the drive indicates 
that those two would happen at two urgent stops 
before traffic lights in yellow-phase.  Of course, the 
system would be activated during the emergency 
test (far-right section of figure 7).  

The above is one example of how the results 
from this study can be exploited by an adaptive 
brake assist system. Cubic or linear models can be 
used as well, or even different layouts of the agents 
in the system in figure 6. These remain to be tested 
on their relative merits in practical terms. It was not 
the purpose of this article to provide a ready 
solution to be implemented in brake assist systems; 
however it was an objective of this study to present 
the characteristics of driver braking that engineers 
can exploit when specifying the function of their 
systems. The authors are satisfied that this first step 
is achieved. 
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Figure 6: Example adaptive function of the system 
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Figure 7: The function of the system according to a participant's driving 
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