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ABSTRACT 

The last decade has witnessed the introduction of 
several driver assistance and active safety systems in 
modern vehicles. Considering only systems that depend 
on computer vision, several independent applications 
have emerged such as lane tracking, road/traffic sign 
recognition, and pedestrian/vehicle detection. Although 
these methods can assist the driver for lane keeping, 
navigation, and collision avoidance with 
vehicles/pedestrians, conflict warnings of individual 
systems may expose the driver to greater risk due to 
information overload, especially in cluttered city 
driving conditions. As a solution to this problem, these 
individual systems can be combined to form an overall 
higher level of knowledge on traffic scenarios in real 
time. The integration of these computer vision modules 
for a ‘context-aware’ vehicle is desired to resolve 
conflicts between sub-systems as well as simplifying 
in-vehicle computer vision system design with a low 
cost approach. In this study, the video database is a 
subset of the UTDrive Corpus, which contains driver 
monitoring video, road scene video, driver audio 
capture and CAN-Bus modalities for vehicle dynamics. 
The corpus includes at present 77 drivers’ realistic 
driving data under neutral and distracted conditions.  In 
this study, a monocular color camera output is used to 
serve as a single sensor for lane tracking and road sign 
recognition. Finally, higher level traffic scene analysis 
will be demonstrated, reporting on the integrated 
system in terms of reliability and accuracy.  

INTRODUCTION 

It has been reported that the fatality rate is 40,000-
45,000 per year with annual cost of 6M [1] in USA. 
Although each year the number and the scope of 
vehicle safety systems (ABS, brake assist, traction 
control, EPS) are increased, these figures have reached 
a plateau, and further reduction in the number of 
accidents and associated costs require a pro-active 

approach. It is known that 90% of the accidents have 
drivers as a contributing factor while 57% are solely 
caused by human errors [2]. These figures reveal 
another explanation for the constant level of accident 
rates despite the increased efforts for safety systems: 
However well equipped the vehicles, and however well-
designed the infrastructure, accidents generally happen 
due to human error. This does not necessarily mean that 
most accidents are inevitable. On the contrary, if all 
available road scene analysis, lane tracking, collision 
avoidance and driver monitoring technologies are 
applied, it is estimated that at least 30% of the fatal 
accidents (including several accident types) can be 
averted [3]. The obstacle preventing these systems from 
being applied is primarily cost-related. Therefore, 
resolving this problem lies in system integration to 
reduce the cost in order to obtain more compact and 
reliable active safety systems. In this study, a proposed 
integration is studied in the scope of in-vehicle 
computer vision systems. Video streams, whether 
processed on-line or off-line contains rich information 
content regarding road scene. It is possible to detect and 
track vehicle, lane markings, and pedestrians and 
recognize the road signs using a frontal camera and 
some additional sensors such as radar. It is of crucial 
importance to be able to detect, recognize and track 
road objects for effective collision avoidance. However, 
we believe that higher level context information can be 
extracted as well from the video stream for better 
integration of these individual computer vision systems. 
By interpreting the traffic scene for the driver, these 
systems can be employed for driver assistance systems 
as well as providing input for collision systems. In the 
scope of the work presented here, a lane tracking and 
road sign recognition algorithm is combined for future 
context-aware active vehicle safety applications. This 
paper first presents the proposed system, and then 
provides details on each individual computer vision 
algorithm. Next, the individual algorithms are 
combined to (1) extract higher level context 
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information on traffic scene, (2) lower the 
computational cost of road sign recognition using lane 
position cues from lane tracking algorithm. 
Experimental results and performance evaluation of the 
system is proposed in the following section. Finally, 
prospective applications for active safety and driver 
assistance are discussed together with conclusions.  

Proposed system 

The proposed system offers the ability to extract high-
level context information using a video stream of the 
road scene. The videos considered form a sub-database 
of multi-media naturalistic driving corpus UTDrive. In 
fact, CAN-Bus information from OBD-II port is used to 
improve the performance of the designed lane tracker. 
The system distinguishes itself from existing in-vehicle 
computer vision approaches in two ways: (1) the lane 
tracking algorithm is used to feed the road sign 
recognition algorithm with spatial cues providing a top-
down search strategy which improves process speed, 
(2) detected lane and road signs are combined using a 
rule-base interpretation to represent the traffic scene 
ahead at a higher level. The signal flow of the final 
system is presented in Fig.1. Three main blocks in this 
diagram (i.e. lane tracking, road sign recognition and 
rule base) are addressed in the next sections. 

 

Figure 1. Signal flow in computer vision system  

Lane Tracking Algorithm 
There has been extensive work in developing lane 
tracking systems in the area of computer vision.  
These systems can be potentially utilized in driver 
assistance systems related to lane keeping and lane 

change. In [4], a comprehensive comparison of 
various lane-position detection and tracking 
techniques is presented. From that comparison, it is 
clearly seen that most lane tracking algorithms do not 
perform adequately to be employed in actual safety-
related systems, however, there are encouraging 
advancements towards obtaining a robust lane 
tracker. A generic lane tracking algorithm has the 
following modules: a road model, feature extraction, 
post-processing (verification), and tracking. The road 
model can be implicitly incorporated as in [5] using 
features such as starting position, direction and gray 
level intensity. Model based approaches are found  to 
be more robust compared to feature-based methods, 
for example in [6] B-snake is used to represent the 
road. Tracking lanes in real traffic environment is an 
extremely difficult problem due to moving vehicles, 
unclear/degraded lane markings, and variation of lane 
marks, illumination changes, and weather conditions. 
In [7] a probabilistic framework and particle filtering 
was suggested to track the lane candidates selected 
from a group of lane hypotheses. A color based 
scheme is used in [8]; shape and motion cues are 
employed to deal with moving vehicles in the traffic 
scene. Based on this previous research, we propose a 
lane tracking algorithm as presented in Fig. 2 to 
operate robustly in real traffic environment.  

The lane tracking algorithm presented here 
uses conventional methods seen in the literature; 
however, the advancement here is the combination of 
a number of them in a unique way to obtain robust 
tracking performance. It utilizes a geometric road 
model represented by two lines. These lines represent 
the road edges and are updated by a combination of 
road color probability and road spatial coordinate 
probability distributions which are built using road 
pixels from 9 videos each at least containing 200 
frames. The detection module of the algorithm 
employs three different operators, namely, steerable 
filters [9] to detect line-type lane markers, yellow 
color filter, and circle detectors. These three operators 
are chosen to capture three different lane-marker 
types existing in Dallas, TX where data collection 
took place. After application of the operators, the 
resultant images are combined since it is bow 
believed to have all the lane-mark features that could 
be extracted. This combined image is shown as the 
‘lane mark image’ block in Fig.2. Next, Hough 
transform is applied to extract the lines together with 
their angles and sizes in the image. The extracted 
lines go through a post-processing step name as ‘lane 
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verification’ in Fig.2. Verification involves 
elimination of lane candidates which do not comply 
with the angle restrictions imposed by the geometric 
road model. From the lane tracking algorithm, 5 
individual outputs are obtained: (i) lane mark type, 
(ii)lane positions and (iii)number of lanes in the 
image plane, (iv) relative vehicle position within its 
lane, and (v) road coordinates.  

 

Figure2. Lane Tracking Algorithm 

Two different types of updates are needed in the lane 
tracking algorithm. First, the road probability image 
updates the geometric road model for each frame and 
runs simultaneously with lane detection. Some of the 
false lane candidates are eliminated by the imposed 
angle limits of the geometrical road model; however, 
it is not adequate for robustness. The prominent lane 
candidates which exist in each n consecutive frame 
are held in a track-list, supplying the system with a 
time coherency or memory. A lateral vehicle 
dynamics model is applied together with Kalman 
filter to smooth the lane position measurement given 
by the lane candidates in the tracking list.  
A sample output of the lane detection algorithm is 
given in Fig. 3(a).  To observe the performance of the 
lane detection part the raw lane position measurement 
is compared with the lane position calculated by the 
vehicle model (see Fig.3(b)). In Fig.3 (c), the road 
area and possible lane candidates are marked by the 
algorithm.  
 The full evaluation will be presented in section 
‘Results and Performance Analysis’.  
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Figure3(a) .Sample output from lane detection 
algorithm  

 
Figure3(b). Comparison of lane position 
measurement from raw lane detection (top) and 
vehicle model calculation (bottom) before outlier 
removal and tracking 

 
Figure3(c). Road area and prominent lane 
candidates are projected on image (top), detected 
lanes after outlier & false candidate removal  



 

  Boyraz 4 

The performance of the lane tracker algorithm 
depends heavily on feature (i.e. lane mark) detection; 
and feature detection based vision systems are 
vulnerable since they are affected by illumination 
change, occlusion, imperfect representations (i.e. 
degraded lane marks) plane distortion and vibration 
in our case since the road surface is not flat. Some of 
these disadvantages of feature based lane detection 
are overcome by employing a vehicle model for 
correcting the measurements in time domain and road 
model helps removing the outliers in spatial domain 
in the image. Since vehicle and road model are 
crucial for reliability and accuracy of the resultant 
system, they are briefly presented here.  
Vehicle Model 
The vehicle model used is known as ‘bicycle model’ 
[10] for calculating the lateral dynamics of the 
vehicle and linearized at a constant longitudinal 
velocity. In order to obtain more realistic behaviour 
from this model, it is updated by changing 
longitudinal velocity at discrete time steps. Therefore 
the resulting vehicle model is a hybrid system 
containing a set of continuous time LTI vehicle 
models switched by a discrete update driven by 
longitudinal speed changes. As a consequence the 
resultant model is non-linear and closer to realistic 
vehicle response. The model inputs are steering 
wheel angle, longitudinal vehicle velocity and 
outputs are lateral acceleration and side slip angle. 
The lateral acceleration output of this model is used 
to calculate the lateral speed and finally lateral 
position of the vehicle employing numerical 
integration by trapezoids. The variables of model are 
given in Table 1.  
 
Table1. Variables of vehicle model 

Symbol Meaning 

cf or cr cornering stiffness coefficients for front and back tire 

J Yaw moment of inertia about z-axis passing at CG 

m Mass of the vehicle 

r Yaw rate of  vehicle at CG 

U Vehicle speed at CG 

yc Lateral offset or deviation at CG 

τ Wheel steering angle of the front tyre 

αf or αr Slip angle of front or rear tyre 

β Vehicle side slip angle at CG 

ρref Reference road curvature 

ψ Yaw/ heading angle 

ψd Desired yaw angle 

ω Angular frequency of  the vehicle 

The equations of motion using the variables given in 
Table 1 are presented in equations (1-2).  
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Road Model 
The road area is the main region of interest (ROI) in 
the image since it contains important cues on where 
the lane marks and road signs might be located.  In 
other words, it allows performing a top-down search 
for the road objects that needs to be segmented. The 
color of the road is an important cue for detecting the 
road area, however it is affected by illumination and 
the surface does not always have the same 
reflection/color properties on all roads. Therefore, 
road and non-road color histograms using R, G and B 
channels are formed using 9 videos. The color 
histogram is normalized to obtain road color 
probability which is a joint measure in 3-D color 
space. The probability surface is shown in 2D R-B 
space in Figure 4. Also, probability image and the 
extracted road area is shown together with updated 
road model.  
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(a) 2-D color probability surface in R-B space 

 
(b) Road area extraction and update process: updated 
road model(top), probability image (bottom left), 
extracted road area (bottom right) 
Figure4. Road color probability model and its 
implementation 
 
In addition to color probability, spatial coordinates of 
the road area is also used to obtain a location 
probability surface.  

Road Sign Recognition Algorithm 
The methods used for automatic road sign 
recognition can be classified into three groups: color 
based, shape based and others. The challenges in 
recognition of road signs from real traffic scenes 
using a camera in a moving vehicle has been listed as 
lighting condition, blurring effect, sign distortion, 
occlusion by other objects, sensor limitations. In [11] 
a nonlinear correlation scheme using filter banks is 
proposed to tolerate in/out of plane distortion, 
illumination variance, background noise and partial 
occlusions. However, the method has not been tested 
on different signs in a moving vehicle. [12] has 

addressed real time road signs recognition in three 
steps: color segmentation, shape detection and 
classification via neural networks, however, vehicle 
motion problem is not explicitly addressed. [13] used 
FFT signatures of the road sign shapes and SVM 
based classifier. The algorithm is claimed to be 
robust in adverse conditions such as scaling, 
rotations, and projection deformations and 
occlusions.  
The road sign recognition algorithm employed in this 
paper (see Fig.5) uses a spatial coordinate cue from 
the lane tracking algorithm to achieve a top-down 
processing of the image; therefore, it does not need 
the whole frame but particular regions of interest, 
which are sides of the road area. This provides faster 
processing of the image and reduces the 
computational cost as well as eliminating the number 
of false candidates that might exist after color 
filtering.  

 

 
Figure 5. Road Sign Recognition Algorithm 

 
After ROI cutting, color filters (designed for red, 
yellow and white) are used to perform the initial 
segmentation. Since they are critical for safety 
applications, we include only stop, pedestrian 
crossing and speed limit signs in our analysis for this 
stage. These signs have distinctive features related to 
color and shapes that are not shared, therefore 
classification becomes an easier problem since 
determining color and the shape is enough for 
recognizing the particular sign. Most of the time the 
speed limit sign segmentation ends with multiple sign 
candidates from the scene since the road scene might 
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contain road objects in that color range. Furthermore, 
the challenges exist due to moving vehicle vibrations, 
illumination change, scaling and distortion. An 
example of color segmentation for speed sign is 
presented in Fig.6.  

 

 
Figure 6. Sample output for white color filter 
segmenting the speed limit sign 
Since the road sign shape edges are not clear, 
morphological operators (dilation and erosion) are 
used to correct this with a structural element of line 
or disk; an example of resultant image is given in 
Fig.7 for a road scene containing stop signs.  

 
 

 
Figure7. Color segmented stop signs after dilation 

The next step involves FFT correlation of the 
predetermined road sign shape templates (octagon, 
rectangle and triangle) with the ROIs in the image. 
The resultant image can be interpreted as location 
map of prospective sign. After application of a 
threshold the peak value of correlation image yields 
the location of the searched template. An example 
FFT correlation between the original frame seen in 
Figure 5 and rectangle template is given in Fig. 8. 
The speed limit sign gives a peak in this image and 
the location of the sign can be extracted easily by a 
threshold. 

 
Figure8. FFT Correlation result with a 
rectangular template showing a peak in the 
location of speed limit sign 
 
Although rare, false sign candidates may exist in the 
image after the threshold operation or multiple 
versions of the same sign may require distinguishing 
(i.e., speed limit signs are the same although the 
limits written on them are different) therefore an 
subsequent verification step/classification is needed. 
This is achieved via Artificial Neural Networks. For 
each sign a separate ANN is trained for negative and 
positive examples using at least 50 real world images 
of the aforementioned road signs and 50 negative 
candidates. The candidate sign images are obtained 
by cutting the image area around the row and column 
suggested by threshold image attained after FFT 
correlation. In order to obtain false candidates the 
threshold is lowered, therefore obtaining more 
candidates from FFT correlation image. The output of 
the initial sign classification and verification by ANN 
is a sign code (1, 2, 3) corresponding to speed limit, 
stop and pedestrian crossing signs in order. If there is 
no sign in the scene or if ANN verifies the sign is a 
false candidate the output is 0.  
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Integration of Algorithms for Context-aware 
Computer Vision  

Previous studies such as [14] has combined different 
computer vision algorithms for a vehicle guidance 
system using road detection, obstacle detection and 
sign recognition at the same time. However, to the 
best knowledge of the authors very few studies if any 
focused on the traffic scene interpretation for 
extracting driving-related context information in real-
time. This study proposes a framework for the fusion 
of outputs from individual computer vision 
algorithms to obtain higher level information on the 
context. The awareness of the context can pave the 
way in design of truly adaptive and intelligent 
vehicles. The fusion of information can be realized 
using a rule based expert system as a first step. We 
present a set of rules combining the outputs of vision 
algorithms with output options of warning, 
information message, and activation of safety 
features.  

Case 1: If road sign is 0, standard deviation of lane 
position< 10 pixels, standard deviation of vehicle 
speed <10 km/h, context: normal cruise.  

Case 2: If road sign is 0, standard deviation of lane 
position<10 pixels, standard deviation of vehicle 
speed >10 km/h, context: stop-go traffic, likely 
congestion, and output: send information to traffic 
control center. 

Case 2: If road sign is 1, vehicle speed >20 km/h, 
context: speed limit is approaching, output: 
warning.  

Case 3: If road sign is 2, vehicle speed >20 km/h, 
context: stop sign is approaching and the driver 
did not reduce the vehicle speed yet, output: 
warning and activation of speed control and brake 
assist.  

Case 4: If road sign is 3, vehicle speed >20 km/h, 
context: pedestrian sign is approaching, output: 
warning and activation of brake assist.  

The cases represented here are only a subset of the 
rule-base and it can be possible to use more advanced 
rule-base construction methods such as fuzzy logic. 
An inference engine acting as a co-pilot monitoring 
the context and driver status continuously can be 
designed with more inputs from other vision systems 

and in-vehicle sensors such as pedestrian and vehicle 
tracking, CAN-Bus analyzer, audio signals.  

Results and Performance Analysis 

Lane tracker and road sign recognition algorithms are 
tested on 9 videos each having at least 200 frames. 
The lane tracker with the help of probabilistic road 
model can overcome difficult situations such as 
passing cars as demonstrated in Fig.8. A similar 
recovery is observed when there is shadow on the 
road surface. 

 

Figure8. Road model overcoming the occlusion  

In order to assess the accuracy of the lane tracking 
algorithm the error between the lane position 
measured by the algorithm and the ground truth lane 
position marked manually on the videos is calculated. 
As an error measurement the angle of the lanes is 
taken. Table 2 shows the mean square error and 
standard deviation of the error in lane position 
measurement.  
 

Table 2. Mean square error and standard deviation 
of the error in lane measurement 

  MSE STD 
Left Lanes 15.24 3.86 
Right Lanes 28.02 4.67 

 
The algorithm runs close to real-time and the speed is 
increased by using lane position measurement as a 
cue for top-down search for road signs. The 
improvement in speed can go up to 3-fold based on 
the processed image area. The road sign recognition 
algorithm is capable of detecting the signs in 5-30 m 
range without failure. If the road sign occupies less 
than 10x20 pixel area, the recognition is not possible.  
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CONCLUSIONS 

A context-aware computer vision system for active 
safety applications is proposed. The system is able to 
detect and track the lane marks and road area with 
acceptable accuracy. The system is observed to be 
highly robust to shadows, occlusion and illumination 
change thanks to road and vehicle model based 
feedback and correction. Road sign algorithm uses 
multiple cues such as color, shape and location cues. 
Although it can recognize the signs after the 
correlation result, a verification step is added to 
eliminate false candidates that might exist due to 
existence of similar road objects. Lastly, two 
algorithms are combined under a rule-based system 
to interpret the current traffic/driving context. This 
system has at least three possible end uses: driver 
assistance, adaptive active safety applications and 
lastly it can be used as mobile probes reporting back 
to the centre responsible for traffic management.  

In our future work, more modules are planned to be 
added to detect and track more road objects and fuse 
additional in-vehicle signals (audio, CAN-Bus) to 
obtain a fully developed cyber co-pilot system to 
monitor the context and driver status.  
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