
PREDICTIVE TIME-TO-LANE-CROSSING ESTIMATION FOR LANE DEPARTURE WARNING
SYSTEMS

Gianni Cario
Alessandro Casavola
Giuseppe Franzè
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ABSTRACT

This paper presents a data fusion algorithm which is
able to robustly estimate the Time-to-Lane-Crossing
(TLC) of a vehicle traveling along a lane on the basis
of road images, collected by an on-board videocamera,
and kinematic data coming from car sensors. This algo-
rithm is instrumental to built Lane Departure Warning
Systems (LDWS) with enhanced predictive capabilities
which allow the generation of earlier warnings able to
better prevent dangerous driving situations coming from
unintentional vehicle lane crossing occurrences. Com-
parisons with no predictive strategies are carried out and
discussed in order to verify the effectiveness of the pro-
posed approach in some critical driving scenarios simu-
lated within the Carsim simulation framework.

INTRODUCTION

Traffic safety is a key problem in nowadays automotive
industry, having relevant social and economic impacts.
The European Road Safety Observatory (ERSO) doc-
ument [1] reports over than 1, 000, 000 accidents, with
around 40, 000 fatalities, only in 2006. In Italy, more
than 15% [2] of this amount is due to driver fatigue and
negligence: in many cases the driver falls asleep, mak-
ing the vehicle to leave its designated lane and possibly
causing an accident.
During the last two decades much effort has been de-
voted to the development of Advanced Driving Assis-
tance Systems (ADAS). AntiLock Braking (ABS) or
Electronic Stability Program (ESP) apparatuses are well
known examples of such systems, the latter being now
standard equipments in all commercial cars where they
contribute to the overall vehicle stability and safety.
Many new ideas and concepts for enriching existing
ADAS systems with new functionalities are currently
under development or have been recently introduced
into the market. Amongst many, we focus here on
the development of Lane Departure Warning Systems

(LWDS) which, according to a recent report of the EU
Intelligent Car Initiative [3], are supposed to have the
potentiality to save 1, 500 accidents in 2010, given a
0.6% of penetration rate, and 14, 000 in 2020 for a pen-
etration rate of 7%.

LWDS refer to systems that try to help the driver to stay
into the lane. A DSP equipped with an on-board camera
is typically used to identify the lane strips, computing
the position and the heading with respect to the lane and
the TLC by exploiting data, such as wheel speeds and
yaw and steering angles, taken from the car ECUs, via
the CAN bus, or provided by additional sensors. Some
interesting contributions to LDWS development can be
found in [4]-[10]. An interesting approach is the so-
called TLC-based method, first proposed by Godthelp
et al. [11], where an alarm is triggered when the TLC
is below a specified threshold. Such systems typically
use acoustic or vibration warnings, the latter applied to
the driving seat or the steering wheel. In general, TLC-
based methods provide earlier warnings than roadside
rumble strips (RRS), because alarms are triggered with
sufficient advance before the driver being really in dan-
ger.

Here, the development of a TLC-based LDWS system
is described. A single calibrated camera has been used
for capturing road images and a data fusion algorithm
has been implemented and used for determining the lane
markings and estimating the TLC time. Details on the
data fusion algorithm are also reported.

The outline of the paper is as follows. First, the TLC
estimation problem is defined and two strategies for its
computation described. Hence, the mathematical model
of the vehicle is described and used, along with an Ex-
tended Kalman Filter, for data fusion. Computer simu-
lations and comparisons with no-predictive approaches
are presented. Finally, some conclusions end the paper.
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SYSTEM OVERVIEW

In this section we will give an overview of the LDWS
system under development. Figure 1 depicts the set of
devices used for estimating the vehicle dynamics and
detecting the road stripes. In particular, it is assumed
that the vehicle is equipped with a camera mounted be-
hind the windshield, an absolute angle sensor is used
for measuring the steering angle and an angular speed
sensor is mounted on a rear wheel.

Figure 1. System Overview.

In figure 2, the overall functional and computational
scheme for the proposed LDWS system is reported.
The ingredients can be summarized as follows. Based
on a mathematical description of the vehicle, that will
be discussed later, the LDWS consists of two functional
blocks: the Data Acquisition and Elaboration and the
Warning Generation modules.
In the Data Acquisition and Elaboration module, the
lane geometry and the vehicle position relative to the
lane are estimated from the camera frames: such a task
is of course crucial to detect a lane departure because it
provides unique information for that purpose, no deriv-
able by other on-board sensors.
Because all driver assistance systems share the need
of knowing the driving surroundings, the information
coming from the Video Frame Elaboration and from the
Sensor Data Elaboration, i.e. elaboration of kinemat-
ics data coming from the on-board sensors, are com-
bined into a model of the vehicle surroundings by using
a suitable Data Fusion algorithm. Typically, a data fu-
sion algorithm operates in discrete time cycles. At each
step, a measurement update includes new sensor mea-
surements into the model, while a time update predicts
the model behavior from the current state towards the
next fusion cycle.
In this paper, such a phase will be performed by means
of an Extended Kalman Filter [12]. The Warning Gen-
eration module is in charge to generate an alarm when-
ever necessary on the basis of information coming from
the Data Acquisition and Elaboration module. The
latter consists of a Lane Departure Detection scheme
which is mainly based on the computation of an esti-
mate of the TLC time.
Finally, the LDWS could be connected to some Hu-

man Machine Interface (HMI), e.g. acoustic alarms or
LCDs, in order to advise the driver of the forthcoming
lane departure.

Figure 2. System Overview.

TIME TO LINE CROSSING

Roughly speaking, TLC can be defined as the available
time interval before a vehicle crosses any lane boundary
following a pre-specified path direction. An important
application of TLC in driver warning systems is to de-
tect instances when the vehicle actually moves out of
the lane and to warn the driver in order to avoid an im-
mediate accident. As a consequence, it could be consid-
ered a further indicator to support the driver assistance
in case of severe impairments caused by drowsiness.
In the last decade, many researchers have studied the
problem of an exact TLC computation (see [13],[14]
and references therein). Unfortunately, exact real-time
TLC computation is not an easy task due to several lim-
itations concerning an a priori knowledge of both the
vehicle trajectory and the lane geometry. Beside this,
another major restriction factor is the complexity of its
computation in real-time. In the sequel, we will discuss
two methods that allow a quite effective TLC evalua-
tion.

The trigonometric computation

This first method has been proposed in [13] and the key
idea is that the vehicle is rarely driving on a straight
path, therefore it has been assumed that the vehicle tra-
jectory alternates between curves to left and to the right.
A mathematical description of the TLC is as follows

TLC =
DLC

u
, ∀ u > 0 (1).

where DLC [m] is the distance to lane crossing along
the vehicle path and u [m/s] the vehicle speed. Note
that the parameter DLC is directly computable via the
cosine rule (see Figures 3, 4):

DLC = α Rv (2).

where the radius of the vehicle path Rv is computed as
Rv = u/r, with r [rad/s] the yaw rate. As far as the
parameter α is concerned, it represents the angle be-
tween the line from the centre point (Xv, Yv) of the ve-
hicle trajectory to the lane departure point d and the line
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from the front wheel to the centre point (see Figures 3,
4). Differently from Rv, its computation depends on
the road geometry. First, let us consider the straight
road scenario (Figure 3). In this case, α is computed

Xv,Yv

d

Figure 3. DLC calculation for a straight road.

by using the cosine rule

α = arccos
(

A2 + R2
v − C2

2 AC

)
(3).

where

- A = Rv − A′ and A′ = Y/cos(α1), with Y
the distance between the front wheel and the lane
boundary (along a perpendicular line to the road)
and α1 the angle between such a perpendicular line
and the line from the front wheel to the centre point
(Xv, Yv)

- C = 2·A·cos(β)+
√

(2·A·cos(β))2−4(A2−R2
v)

2

Conversely, Figure 4 depicts the road curve scenario. In

Xv,Yv
Xr,Yr

Rv

Rv

A

d

DLC

α

β

α1

Figure 4. DLC calculation for curved road.

this other case, α is differently computed as

α = β − α1 (4).

where

- β is the angle between the line passing from the
centre point (Xv, Yv) of the vehicle curve to the
centre point of the road curve (Xr, Yr) and the line
passing from (Xv, Yv) and the left front wheel (if
the vehicle turns towards the inner lane boundary);

- α1 = arccos
(

(A2+R2
v−R2

r)
(2·A·Rv)

)
, with A the distance

between (Xr, Yr) and (Xv, Yv), and Rr the radius
of the curved road segment.

The approximate computation

In practice, the computation of the TLC is performed by
using an approximation procedure because the trigono-
metric method is based on the knowledge of relevant
parameters , e.g. the distance to line crossing, the radii
of the vehicle path and of the curved road segment, that
in real scenarios are not available. Even if an approxi-
mate computation of the TLC is of interest, its calcula-
tion depends on the following assumptions

a) the lateral vehicle position Y is a priori known or
can easily be measured

b) the lateral vehicle velocity Ẏ is constant, which
imposes that the vehicle preserves a constant ve-
locity while approaching to lane boundaries

It is well recognized that the computation of the lateral
vehicle position Y is a more simpler task than the com-
putation of the vehicle radii and curved road segment
paths [14].
Then, the TLC can be easily computed as the ratio be-
tween the lateral position and the rate of change of the
lateral position [13]

TLC =
Y

Ẏ
(5).

It is worth to note that, even if the assumption b) is
not realistic, in [13] the expression (5) has been proved
to be a tight overestimation of the minimum TLC (1),
whose accuracy increases as the time to cross the lane
decreases. Finally, it is interesting to recall that the use
of this approximation has provided good simulation re-
sults as testified in [13].

LATERAL SPEED ESTIMATION

This section is devoted to describe a Kalman-based filter
for lateral speed estimation purposes. In the sequel, we
will first discuss the mathematical vehicle model, then
the extended Kalman filter will be outlined and applied
to the vehicle model under consideration.

Vehicle Model

A vast variety of mathematical models able to describe
the vehicle dynamics during driving have been proposed
in the literature (see [15], [16] for a detailed survey). In
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most cases, even if many models are very accurate, they
usually require a good knowledge of many vehicle pa-
rameters (stiffness, yaw moment of inertia, etc.) and
this precludes their practical use [17], [18]. Therefore,
it is necessary to look for mathematical models that are
sufficiently accurate and simple to be used in practical
contexts. A well-known vehicle description that satis-
fies these requirements is the kinematic model proposed
in [19].
Such a model is based on a three state description, that
comprises the Cartesian coordinates (x, y) of the vehi-
cle CoG, mid-way centered between the rear wheels,
and the vehicle orientation angle φ. Following the no-
tation of Figure 5, VRW hereafter denotes the longitu-
dinal velocity of the rear wheels, VFW the longitudinal
velocity of the front wheels (taking care of the steered
angle δ) and B the wheelbase. Then, a continuous-time
description can be derived as follows:





ẋ(t) = VRW (t) cos(φ(t))

ẏ(t) = VRW (t) sin(φ(t))

φ̇ = VF W (t) sin(δ(t))
B

(6).

with
VFW (t) = VRW (t)

cos(δ(t))

φ̇(t) = VRW (t) tan(δ(t))
B

x

y

V

V

B

δ

φ

FW

RW

Figure 5. Vehicle’s kinematic model

The continuous-time system (6) can be discretized us-
ing forward Euler differences with a sampling time ∆T .
As a result, the following discrete-time description is
achieved




x(k)
y(k)
φ(k)


=




x(k − 1) + VRW (k)∆T cos(φ(k − 1))
y(k − 1) + VRW (k)∆T sin(φ(k − 1))

φ(k − 1) + VRW (k)∆T
B

tan(δ(k))




(7).
Note that such a model does not take into considera-
tion the discrepancy between the vehicle speed and the
wheel speed when spinning or skidding phenomena oc-
cur. The same holds true for the difference between
the measured steer angle and the actual angle steered

in presence of wheel side slip situations. Therefore,
to compensate for some of these effects a wheel ra-
dius state can be added, hereafter named R(k). In par-
ticular, such a quantity increases when the wheel slips
whereas it conversely decreases when the wheel skids.
Beside this, it is important to underline that the wheel
radius varies w.r.t. different vehicle payloads, tempera-
tures and tyre pressures. Hence, the following four state
model can be proposed:



x(k)
y(k)
φ(k)
R(k)


=




x(k − 1) + ω(k)R(k − 1)∆T cos(φ(k − 1))
y(k − 1) + ω(k)R(k − 1)∆T sin(φ(k − 1))

φ(k − 1) + ω(k)R(k−1)∆T
B

tan(δ(k))
R(k − 1)


+




εx(k)
εy(k)
εφ(k)
εR(k)




(8).
where R(k) ∈ R and ω(k) is the forward wheel an-
gular velocity measured by the wheel sensor. More-
over, the additive vector [εx(k), εy(k), εφ(k), εR(k)]T ,
whose components are stochastic processes with zero
mean and fixed variances, reflect inaccuracies in the
state model and the static error occurring when the ve-
hicle is in a steady-state condition.

Extended Kalman filter

The Kalman Filter (KF) [12],[20] is one of the most
widely used methods for tracking and estimation due
to its simplicity, optimality, tractability and robustness.
However, the application of the KF to nonlinear sys-
tems can be difficult. The most common approach is to
use the Extended Kalman Filter (EKF) [21], [22] which
simply linearizes the nonlinear model along the trajec-
tory so that the traditional linear Kalman filter can lo-
cally be applied at each computational step.
Let us consider the following nonlinear discrete-time
system

xk = fk−1(xk−1) + wk−1, (9).
zk = hk(xk) + υk (10).

where xk represents the state vector of the system, zk

the measurement vector, wk the noise process due to
disturbances and modelling errors and υk the measure-
ment noise. It is assumed that the noise vectors wk and
υk are zero-mean, uncorrelated and with covariance ma-
trices Qk = QT

k > 0 and Rk = RT
k > 0 respectively,

ie.
wk ∼ ℵ(0, Qk), υk ∼ ℵ(0, Rk)

The signal and measurement noises are assumed un-
correlated also with the initial state x0. Then, the es-
timation problem can be stated, in general terms, as fol-
lows: given the observations set Zk := {z0, z1, . . . , zk}
evaluate an estimate x̂k of xk such that a suitable cri-
terion is minimized. In the sequel, we will consider
the mean-square error estimator, and therefore, the esti-
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mated value of the random vector is the one that mini-
mizes the cost function

J [x̂k] = E[(xk − x̂k)2|Zk] (11).

At each time instant k, the EKF design can be split in
two parts: time update (prediction) and measurement
update (correction). In the first part, given the current
estimates of the process state x̂k−1 and covariance ma-
trix Pk−1 and based on the linearization of the state
equation (9)

Φk =
∂fk

∂x

∣∣∣∣
x=x̂k−1

(12).

the updating of the covariance matrix and state predic-
tion x̂k|k−1 are performed as follows

Pk|k−1 = ΦkPk−1ΦT
k + Qk, (13).

x̂k|k−1 = fk(x̂k−1) (14).

Then, given the current measurement zk and by lineariz-
ing the output equation (10) according to

Hk =
∂hk

∂x

∣∣∣∣
x=x̂k|k−1

(15).

the following Kalman observer gain is derived

Kk = Pk|k−1H
T
k (Rk + HkPk|k−1H

T
k )−1 (16).

Finally, the state and the matrix covariance estimates are
updated as

x̂k = x̂k|k−1 + Kk(zk − hk(x̂k|k−1)), (17).
Pk = (I −KkHk)Pk|k−1 (18).

and the procedure is iterated.
Because the aim is to use the EKF for estimating the lat-
eral position y(k) and the yaw angle φ(k) of the vehicle
model (8), real measurements (y(k), φ(k)) are needed.
Such a task will be accomplished by resorting to data
made available by the vision system, because we as-
sume that the vehicle is not equipped with gyroscopes
and/or radar/GPS devices.

VISION SYSTEM

This section is devoted to describe the proposed vision
algorithm. Two main phases can be characterized: Lane
Detection and Lane Tracking. It is assumed that a cam-
era is mounted behind the vehicle windshield and used
for capturing road image frames.

Lane Detection

The lane detection system is represented in Figure 6. It
consists of all steps related to each frame elaboration in
extracting relevant features. It includes five steps that
will be discussed in details below.

Figure 6. Lane Detection.

Frame acquisition − In this first phase, the aim
is to recover image frames from the vehicle camera. To
this end, it is important to adequately set the camera
position on the vehicle and its orientation w.r.t. the hor-
izontal road line. An example of an acquisition frame is
shown in Figure 7.

Figure 7. Frame acquisition.

Image Preprocessing - Inverse Perspective −
Once an image frame is obtained, an image processing
phase is required. Here, we apply the Inverse perspec-
tive mapping, hereafter denoted as IPM.
The IPM is a geometrical transformation technique that
re-maps each pixel of the 2D perspective view (see Fig-
ure 7) of a 3D object in a new planar image (see Figure
10) with a bird’s eye view. In other words, the IPM is
the projection from the image plane I = (u, v) ∈ R2

onto the Euclidean space W = (x, y, z) ∈ R3 (world
space) [23], [24], [25].
Therefore, the side view geometrical model of the IPM
is as depicted in Figure 8, while Figure 9 represents the
top view geometrical model.
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Figure 8. Inverse Perspective: lateral view.

Figure 9. Inverse Perspective: bird view.

In particular, the equations describing the projection
from the image plane I onto the world space W and
viceversa are given by

x(r) = h

(
1+[1−2( r−1

m−1 )] tan(αv) tan(θ0)

tan(θ0)−[1−2( r−1
m−1 )] tan(αv)

)

y(r, c) = h

(
1+[1−2( c−1

r−1 )] tan(αu)

sin(θ0)−[1−2( r−1
m−1 )] tan(αv) cos(θ0)

)

(19).
r(x) = m−1

2

(
1 + h−x tan(θ0)

h tan(θ0)+x
coth(αv)

)
+ 1

c(x, y) = n−1
2

(
1− y

h sin(θ0)+x cos(θ0)
coth(αu)

)
+ 1

(20).
where

• h the height of camera w.r.t. the ground level;

• m× n the image resolution;

• (r, c) image pixel coordinates;

• αv and αu vertical and horizontal camera half-
angle of view, respectively;

• θ0 pitch camera angle.

By using the equation (19), each IPM image pixel is
rephrased by adopting the real world metric coordinates
(x, y), see Figure 10.

4

0

-10

10

18 32

y

x

[m]

[m
]

Figure 10. Inverse Perspective.

Edge Detection and Line Identification − The
task of this phase is that of identifying points in a digital
image at which the image brightness changes sharply
or more formally has discontinuities. For instance, a
strip may be distinguished from the asphalt by means of
the associated intensity changes. The ultimate goal of
the edge detection is the characterization of significant
intensity changes in the digital image in terms of edge
points.
To this end let us denote with IPM(x, y) the gray-
scale image (see Figure 10). An edge point is defined
as the zero crossing of the Laplacian of the function
IPM(x, y) [32] (see Figure 12)

L(x, y) = ∇2 IPM(x, y) =
= ∂2IPM(x,y)

∂x2 + ∂2IPM(x,y)
∂y2

(21).

The intensity changes can be identified by using the
above Laplacian operator. However, because the com-
putation of L(x, y) is highly sensitive to image noises
unacceptable errors could arise. For this reason, a
well-known procedure consists of first convolving the
function IPM(x, y) with a smoothing two-dimensional
Gaussian filter of the following form

G(x, y) =
1

2πσ2
e
−(x2+y2)

2σ2 , σ the standard deviation,

(22).
and then applying the Laplacian operator to the obtained
result.
Here the idea is to reverse such steps thanks to the lin-
earity properties of ∇2 : first we compute ∇2G(x, y),
then the result is convolved with IPM(x, y). The main
reason of such a choice is that it allows one to off-line
compute ∇2G(x, y) and to on-line use low-demanding
filters.
To reduce further the computational burden, we select
the class of steerable filters introduced by Freeman and
Adelson [26]. Such filters can be rotated very efficiently
by taking a suitable linear combination of a small num-
ber of filters. Steerable filters have a number of desir-
able properties that make them excellent for lane detec-
tion applications.
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The steerable filters used here are based on second
derivatives of the Gaussian filter (22), where

Gxx(x, y) = (x2−σ2)
2πσ6 e

−(x2+y2)
2σ2

Gxy(x, y) = xy
2πσ6 e

−(x2+y2)
2σ2

Gyy(x, y) = (y2−σ2)
2πσ6 e

−(x2+y2)
2σ2

(23).

are the second order derivative filter kernels which can
computed off-line and separated into their x and y com-
ponents. At each time instant, the filters are convolved
with the gray-scale image IPM(x, y) to get its deriva-
tives, i.e. Dxx, Dxy, Dyy. The next step is to build the
following binary matrix

IPMb(x, y) =
{

1, L(x̄, ȳ) < λth min(L(x, y))
0, otherwise

(24).
where (x̄, ȳ) are the coordinates of a generic pixel and
λth represents a threshold used to discriminate the edge
pixels. The matrix IPMb(x, y) is used to appropri-
ately select the edge pixels (1-entries) on the image
IPM(x, y).

Figure 11. Edge Detection.

Amongst all the edge pixels, only the stripes need to
be detected. Therefore, an additional filtering phase is
necessary. In particular, the ∇2IPM(x, y) w.r.t. any
angle orientation is defined as follows

∇2IPMθ(x, y) := Dxx cos2(θ) + Dyy sin2(θ)
−2 Dxy cos(θ) sin(θ)

(25).

and we want to determine all pixels (x, y) at which the
gradient of the Gaussian ∇2IPMθ(x, y) along the di-
rection perpendicular to the stripe assumes a maximum
value. This can be achieved by computing

θmax = tan−1
(

Dxx−Dyy+ξ
2Dxy

)

ξ =
√

D2
xx − 2DxxDyy + D2

yy + 4D2
xy

(26).
Finally, by moving the search along the maximum di-
rections, the stripe pixels selection is performed by
searching for zero crossing of L(x, y) [27] (see Figure
11).

zero crossing zero crossing

Figure 12. Zero crossing.

Line Fitting − In this phase, we resort to a simple
parabolic road model [28] which is a sufficiently accu-
rate approximation of the clothoid model usually used
in civil engineering [29]. Therefore, each stripe can be
simply described by the following quadratic function

y(x) = c + bx + ax2 (27).

where y and x represent the physical coordinates as de-
picted in Figure 10 while the sign of the constant c de-
pends on which line is taken into consideration w.r.t. the
optical axis x (see Figure 13: positive values of c cor-
respond to the red line while negative ones to the green
line).

Figure 13. Line Fitting.

Here, for curve fitting purposes, we apply a well-
established algorithm known as RANdom SAmple
Consensus procedure (RANSAC) [30]. The RANSAC
is a robust fitting algorithm that has been successfully
applied in several computer vision problems [31]. The
algorithm consists in an iterative procedure to estimate
the unknown parameters of a given mathematical model
using a set of measured data. It can be considered non-
deterministic in the sense that it produces reasonable
results within a pre-specified probability. RANSAC, as
opposite to the conventional smoothing techniques, uses
as small initial data sets as feasible and enlarges these
sets with consistent data as much as possible.
The paradigm can be more formally stated as follows.
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1. Given a model M, which requires a minimum of
n data points to instantiate its free parameters, a
set D of data points such that card(D) ≥ n and a
number Nmax of trials;

2. Randomly select a subset Si of n data points from
D and instantiate the model M as Mi;

3. Determine a subset S∗i ⊂ D of data points such
that it satisfies a fixed tolerance error w.r.t. Mi.
S∗i is defined as the consensus set of Mi;

4. If card(S∗i ) ≥ Nth (a given threshold which is a
function of the number of data points ofD not con-
sidered in S∗i ) and i < Nmax, use S∗i to generate a
new instantiate model Mi+1, i := i + 1 and goto
the step 3.;

5. Else if card(S∗i ) < Nth and i < Nmax, i := i + 1
and goto the step 2.;

6. Else if i = Nmax,

• if card(S∗Nmax
) ≥ Nth then use MNmax

• otherwise consider that model Mi such that
card(S∗i ) is maximal.

Figure 14. Ransac Fitting.

Lane Tracking

The second phase of the proposed vision system con-
sists of the development of a Lane Tracking algorithm.
The elaborations here take care of data coming from dif-
ferent video frames and try to make consistent quanti-
tative conclusions on how the lane changes during the
vehicle motion. To this end, we will use a Kalman Fil-
ter (KF) [22] in order to estimate and update the coef-
ficients (a, b, c) of the line model (27) during the vehi-
cle motion. Therefore, we consider the following linear
time-invariant system

xk = Axk−1 + wk−1

zk = Hxk + vk
(28).

where the state is

x = [a b c ∆a ∆b ∆c]T (29).

with ∆xk := xk − xk−1, w and v are zero mean white
noises with covariance matrices Q and R respectively,
and

A=




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,H=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




Following the standard notation, at each time step k the
state estimation is given by

x̂k = x̄k + Kk(zk −Hx̄k) (30).

with

x̄ = Ax̂k−1 (31).
P̄k = AP̂k−1A

T + Q (32).
P̂k = (I −KkH) P̄k (33).

Kk = P̄kHT
(
HP̄kHT + R

)−1
(34).

where the above iteration is initialized with x̂0 = 0 and
a covariance matrix P̂0 is appropriately chosen as indi-
cated in [22].

SIMULATION RESULTS

All the above software modules (EKF, Inverse perspec-
tive, Steerable filters, RANSAC and KF) have been
implemented within the Matlab/Simulink R© package.
Simulations have been carried out by using video and
sensors data provided by the Carsim R© simulator.
Simulations were conducted to estimate key vehicle pa-
rameters and to validate the models used in vehicle dy-
namics simulation. Accurate knowledge of the param-
eters is useful for system design, for evaluation of re-
sults in simulation, and for on-board use, in estimating
the vehicle and roadway states and to compute the TLC
time.
We have considered the following simulation scenario.
Double lane crossing - While the vehicle is proceed-
ing along a straight road with a longitudinal veloc-
ity of 90 Km/h, it moves from the right lane to the
left one with a constant lateral velocity of 0.31 m/s
during the time interval [11, 26] sec. Then, it remains
on the left lane until time instant 35 sec. and finally
the vehicle changes again the lane in the time interval
[35, 50] sec.
Numerical results are reported in next Figures 15-18.
First, we have compared the estimates of the lateral po-
sition, lateral velocity and yaw angle against the exact
data provided by Carsim. As it clearly results, the pro-
posed EKF is able to accurately estimate such vehicle
kinematical parameters. In particular, Figure 15 shows
that the proposed procedure allows one to accurately
identify the lane boundaries (with a relative mean error
around 2%) while a larger relative error (around 10%)
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is detected when the car crosses the line. However, this
will not influence the successive TLC computation. The
latter is mainly due to the fact that in such a case the
EKF has to be updated for recovering the new lane po-
sition: this operation leads to a certain degree of loss
of tracking because the EKF has to acquire at least ten
frames of the new lane for a more accurate identifica-
tion. Similar remarks apply for the lateral velocity and
yaw angle estimates (see Figures 16, 17), even if a larger
discrepancy (relative mean error around 5%) w.r.t. the
exact values arises. However, such estimates are still
consistent even for relatively large steer motions.
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Figure 15. Lateral Position estimation
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Figure 16. Lateral Velocity estimation

Finally, Figure 18 depicts the TLC computation by
means of the predictive approach described in the pre-
vious sections. First, the TLC computation has been
saturated (in software) at five seconds if larger values
result. There, it is assumed that a lane departure warn-
ing is issued if TLC is lower than 1.5 seconds. As it is
evident from the figure, the TLC estimate is sufficiently
accurate. In fact, the relative mean error w.r.t. the exact
curve (dashed line) is approximately around 5%.
Next simulations are instrumental to show the capabil-
ity of the proposed approach to avoid false alarms for
drivers who hug one side of the lane.
For comparisons purposes, we have contrasted the
proposed approach with the recently proposed no-
predictive method described in [9], [10]. By referring

to the scheme depicted in Figure 6, the main differ-
ences of such a strategy w.r.t. the proposed LDWS can
be summarized as follows:

• Lane detection -

- Image preprocessing: each single frame is
first converted to a gray-scale picture, then
the bottom region under the frame horizon,
named Region of Interest (ROI), of the im-
age is selected [28] for the next steps;

- Edge detection: a Sobel filter [32] is applied
to each single ROI;

- Line identification: this task is achieved by
resorting to the Hough Transform [32] that
allows one to map each road line into an
accumulator point of the Hough parameter
space in the (ρ, θ) coordinates;

- Line fitting: a linear model of the road is used
[9].

• Lane Tracking - A Kalman Filter is used in or-
der to numerically identify the accumulator points
(ρi, θi), i = 1, 2 of the Hough parameter space
which describe the lines of two adjacent and suc-
cessive frames;
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Figure 17. Yaw Angle estimation
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Figure 18. TLC computation
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• Lane Departure - The numerical method is as fol-
lows. Let θl and θr the left and right orientation an-
gles of the lane boundaries of a specified frame, see
Figure 19. If the vehicle is traveling in a straight
portion of the road and stays at the center of the
lane we have θl + θr ≈ 0, with θl < 0 and θr > 0.
If the vehicle drifts to its left, both θl and θr in-
crease, while if the vehicle drifts to its right, both
θl and θr decrease. Thus, a simple and efficient
measure for trajectory deviations is given by

β = |θl + θr| (35).

If β gets sufficiently large, the vehicle is leaving
the center of the lane. In practice, β is compared
to a threshold T , and a lane departure warning is
issued if β > T.

θ θrl

Figure 19. Orientation of lane boundaries

Finally, Figure 20 reports the simple lane departure
warning activation scheme of [9], [10] with the thresh-
old T set to T = 30o. Then, at each time instant the
absolute sum of angles β is computed. Hence, if the
numerical value β(t) (continuous line) overcomes the
threshold T (dashed-line) a warning (red circle) is in-
stantaneously activated.
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Figure 20. Departure warning method [9]

In the sequel we shall consider the following critical sit-
uation.
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Figure 21: Proposed approach: Warning alarms
(Up) TLC computation (Down)

Single lane warning scenario - While the vehicle is
proceeding along a straight road with a longitudinal
velocity of 70 Km/h, it shows unintentional displace-
ments from the center lane towards the right and/or left
boundaries and viceversa with a varying lateral veloc-
ity ẏ ∈ [−0.5, 0.5] m/s.
This scenario simulates situations when drivers are
sleepy or drowsy driving and they are not capable to
adequately conduct the vehicle.
Figure 21 depicts the sequence of warnings computed
by the proposed LDWS strategy. The dashed and dot-
dashed lines describe the left and right lane boundaries
respectively while the red circles represent the vehicle
positions (distance from the boundary) when the warn-
ing is issued. Moreover, the TLC computation is also
provided in the figure.
Figure 22 shows the warning events signaled by the no-
predictive strategy [9]. In this case, besides the red
circles which represent correct warnings, this strategy
gives rise to some false alarms (green circles). The
main reason for the latter relies upon the fact that the
alarm is automatically activated when the vehicle stays
at specified orientations with respect to the lane bound-
aries without taking care of the vehicle dynamics. In
principle, one could increase the threshold to reduce the
generation of false alarms but this would imply the ac-
tivation of true alarms too late for any safe maneuver.

CONCLUSIONS

In this paper, the development of a TLC-based lane de-
parture warning system has been presented. An on-
board vision system has been used for collecting road
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images and extracting useful features, relevant to iden-
tify the lane strips and compute the position and the
heading of the vehicle with respect to the lane. Beside
a single calibrated camera mounted behind the wind-
shield, also steering angle and angular speed sensors are
used to collect relevant kinematical data to be used in a
model-based data-fusion strategy for the computation of
the TLC and the generation of warnings about possible
imminent lane departures.
Experimental results have shown good accuracy and
robustness, w.r.t. road and weather conditions, in the
estimation of the TLC. It has been also shown that
the proposed LDWS system is able to reduce false
alarms and increase, in comparison with traditional no
model-based strategies, the time margins for warnings
generation.

Future work will include the full development of a
hw/sw demonstrator to be mounted in a commercial car
to verify the effectiveness of the concepts and the qual-
ity of the implemented strategies. Field tests will be
also conducted in order to verify the drivers acceptance
of this sort of equipments in terms of readiness and ac-
curacy in generating lane departure warnings or possi-
ble rejections due to a too high interference into their
normal driving habits.
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