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ABSTRACT 
 
To increase driver’s interaction with vehicles, 
research interest is growing to develop new 
approaches that allow for detecting the driver’s 
intention. The extraction of features from 
electroencephalograph (EEG) data enables 
establishing a new communication channel by the use 
of brain signals as additional interaction channel. So 
far, the applicability of EEG data in the context of 
driving is strongly limited by the robustness and 
ambiguity of the chosen features. The major goal of 
the presented approach is the robust discrimination of 
EEG patterns preceding intended actions of the driver 
for predicting upcoming manoeuvres.  
A pilot study on a test track containing elements of 
driver safety trainings was carried out. While driving, 
the manoeuvres the brain activity (64/32 EEG 
channels) and data from the car controller area 
network (CAN) was recorded.  
In this paper we present the bottom layer of a 
classification model for upcoming driver’s 
movements by classifying left against right foot 
movement as well as left and right obstacle avoidance 
manoeuvres as sub-classes of the classes hand and 
feet movements.  
This way, we present two ways in which features 
extracted from EEG can be used: (1) by exploiting 
event-related potentials of independent components 
for identifying sources of consolidated neural activity, 
and (2) to establish the fundamentals of an approach 
for an EEG-based rapid-response system that can 
predict the upcoming action of the driver. The latter 
was done by an offline classification of variances in 
certain frequency bands of the EEG. Feature 
validation was implemented by spatial and functional 
filtering driven by independent components of the 
corresponding EEG datasets.  
 

 
INTRODUCTION 
 
The year 2007 saw a number of 335.845 injured and 
4949 fatalities as a result of traffic accidents in 
Germany [1]. In comparison with the last decade, the 
decreasing number of injured and fatalities indicates 
that vehicle-safety research has proven to be very 
effective. Nevertheless, this positive trend suffers 
from the constant high number of traffic accidents 
and also from the fact that there are still a high 
number of fatalities.  
To reduce these numbers, a new approach in vehicle 
safety research is necessary. 
One possible approach focused on this context is an 
absolutely driver-centred point of view. The idea is to 
use the driver’s intention to improve and trigger 
existing drive-dynamic and driver support systems. 
Therefore, cognitive processes before an intended 
action, particularly movement preparations and 
decisions, can be identified as a possible source for 
such a trigger-support system. 
In this manner the EEG allows associating mental 
processes with measurable electrical recordings which 
reflect brain activity and dynamics with a precision in 
the range of milliseconds. This way, changes in the 
EEG data could be analyzed that are induced by 
intended actions (e.g. emergency braking or left/right 
steering) as well as decision-making processes during 
driving (Fig. 1). Hence, the major goal is the robust 
discrimination of EEG patterns correlated to different 
mental processes in this context. Therefore, a pilot 
experiment was carried out for analysing EEG signals 
in a real-world driving scenario with an unforeseen 
obstacle. Hence, the first research question is whether 
it is possible to find EEG features which reflect 
cognitive processes following the popped up obstacle, 
and second, the possibility to transfer the idea of 
using this information to discriminate the upcoming 
driver’s action or manoeuvres (Fig.2). 
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Figure 2. The figure shows a general categorization 
of EEG features that reflects event-related brain 
activity. 

 

Figure 1. The figure shows a general approach for 
a hierarchical classification model of upcoming 
drivers movements based on brain dynamics. 

 
The following section gives an overview of the 
neuropsychological background of the presented 
approach. Then we explain the used experimental 
environment and setting and go on describing the 
experiment, the data acquisition, and the used 
methods for analyzing the EEG data. Finally, we 
show how the findings of the presented experiment 
can be used for answering the research questions. 
 
Neuropsychological background 
 
In the domain of neuropsychological research, it is 
well known that aspects of the human information 
processing, expectation and movement preparation 
can be examined by means of event-related potentials 
(ERPs) and event-related desynchronisations (ERD). 
The potentials not only reflect direct brain activity 
with a latency and precision in the range of 
milliseconds, but also allow for a qualitative 
discrimination of various cognitive processes.  
 
 
 
 
 
 
 
 
 
 
 
 
One category of ERPs is related to a given stimulus 
and occurs only by averaging EEG data from 
different trials locked to the given stimulus. The other 
category is locked to the response of the participant 
e.g. a keystroke.  

Both, the stimulus-locked and the response-locked 
ERPs can be induced by the processing of e.g. visual, 
auditory or semantic information and also due 
preparing motor tasks.  
Different neuropsychological consolidated ERPs are 
suitable as a possible source for projecting the 
abstract concept of driver’s intention to features in 
EEG data. This way, for feature selection the 
readiness potential or the contingent negative 
variation (CNV) could be applied.  
In the field of response-related ERPs the pre-motor or 
readiness potential (BP) seems to be a useful ERP for 
approaching the representation of the driver’s 
movement intention in EEG data. In preparation of 
motor tasks, this potential precedes the actual 
execution. Before accomplishing motor tasks, this 
potential is characterized by a negative shift in the 
averaged EEG data at the scalp, reflecting the motor 
preparation.  
The CNV is both, stimulus-locked, but also response 
orientated. This ERP is also known as a potential 
related to expectancy. This kind of CNV can be 
induced by a 2-stimuli paradigm. The first stimulus is 
the request to prepare an action and the second 
stimulus is the corresponding go-signal e.g. for a 
motor response. Between these two stimuli a negative 
shift in the averaged EEG data can be observed at the 
scalp, reflecting the expectation of a task.  
To transfer the idea of using these potentials for 
predicting the upcoming driver’s action the extracted 
information from these potentials has to be related to 
the upcoming movement. Therefore, the spatial 
information of the negative shifts induced by BP and 
CNV could be used to discriminate the upcoming 
movement. 
Different studies figured out that several brain areas 
contribute to the readiness potential (BP). Activity of 
the medial-wall motor areas as well as activity of the 
primary motor cortex MI affect this potential [2,3]. 
Multi-channel EEG recordings of unilateral finger 
movements show that this negative shift originates on 
the frontal lobe in the area of the corresponding motor 
cortex (homunculus) contra-lateral to the performing 
hand [4,5]. This spatial information used as feature 
allows for discriminating EEG recordings towards 
upcoming left from right hand movements [4,5,6]. 
The literature does not suggest any information 
towards comparable characteristics of the CNV. On 
the other hand, event-related desynchronisation in 
certain frequency ranges of the EEG also 
accompanies brain activity.   
It is well known from neuroscience that for instance 
the mu rhythm is induced by idle motor neurons. 
These neural networks tend to exhibit locally 
synchronous polarity oscillations which can be 
observed above the motor cortex. Performance of 
motor actions causes this synchrony to break down 
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and as a result, the measured amplitudes in the 
affected EEG signal spectra drop accordingly. This 
can be used to infer the laterality of the ongoing 
motion [7]. This fundamental finding is also known 
from the occipital area of the human brain. The well 
known alpha-block in the alpha rhythm can be caused 
by an abruptly opening of the eyes after a period of 
closed eyes. In the latter condition the neural 
structures of the occipital brain that are responsible 
for visual information processing generate these 
locally synchronous polarity alpha oscillation. 
In sum, there are a lot of features in EEG data 
preceding and accompanying neural processes which 
allow differentiating between these diverse cognitive 
processes. The application of methods from the area 
of statistical machine learning has proven to be very 
practical and efficient for extracting and classifying 
EEG features in this kind of research [4,5,6,8]. 
 
 
METHODS 
 
Experiment 
 
The presented pilot experiment was carried out at the 
ADAC Fahrsicherheitszentrum Berlin-Brandenburg. 
Participants were requested to repeatedly perform 
obstacle avoidance manoeuvres when the obstacle 
(water wall) popped up (Fig. 3, obstacles in red).  
The direction of the manoeuvres was self-paced 
decided by the drivers. With reference to a two-way 
traffic scenario the participants were required to pass 
a water gate at the end of the track. The whole 
experiment lasted one day totally (half day for each 
participant). The car utilized for this study was a VW 
Touran from the Chair of HMS, TU Berlin.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Participants 
 
A female (age 28, participant S) and a male (age 28, 
participant T) participant took part in this pilot 
experiment. Both of them are free from 
neurological/psychiatric disorders. 
 
Data Acquisition 
 
While performing the driving task brain activity was 
recorded with 62 Ag/AgCl (participant T) and 32 
Ag/AgCl (participant S) impedance-optimized 
electrodes (ActiCap, Brain Products), referenced to a 
signal measured at the intersection of the frontal and 
two nasal bones of the skull (Nasion) were no neural 
activity occurs. This was used as baseline of the 
electrical measurement. Finally, brain activity was 
sampled 1000 Hz and wide-band filtered. The 
horizontal eye-movement of participant T was 
recorded using the Electrooculogram (EOG).  
Data from the car controller area network (CAN) was 
sampled with 50 Hz and recorded as well as videos 
(30 fps) of the driver’s action and the view through 
the windshield. All of the data was synchronized by 
an external sync signal. 
 
Data Pre-processing 
 
For ERP analysis, the EEG data was digitally filtered 
using a high pass filter (1 Hz) to minimize drifts. In a 
next step, the recorded data was divided into causal 
epochs related to the drivers’ actions like the steering 
response (increase of the steering speed [deg/s]) or to 
slam on the brake or clutch (switch [0 1]). Data 
epochs were extracted from 5000ms before the 
driver’s response, until 4000ms after the taken action. 
The average of time range [-5s,-2s] was chosen as 
baseline. The corresponding baselines were removed 
from every epoch.  
For ERD analysis, data was sub-sampled to 200 Hz 
and digital filtered between 1 Hz and 90 Hz. 
 
ERD Feature Extraction and Classification 
 
To extract ERD features from the EEG data, the 
Common Spatial Patterns (CSP) algorithm was used 
[9]. The rationale behind CSP is to find few, e.g. 4 to 
6, linear combinations of EEG channels such that the 
variance in each trial projected according to these 
patterns is most discriminative (i.e. differs maximally 
between two classes). Subsequently, the EEG data for 
each trial is projected according to each pattern and 
the logarithmic power spectral density is calculated 
similar to the above method, yielding 4 to 6 features. 
To estimate conservative classification accuracy, 
features from the EEG data (sub-sampled to 200Hz) 
were extracted using a moving window with a length 

Figure 3. The figure shows the setup and the 
research car (VW Touran) with participant. 
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Figure 4. Averaged EEG signal from 244 clutch 
presses of participant T at electrodes C1, Cz  
and C2. 

of 150 ms and an overlap of 125ms. The CSP-based 
feature distributions generated for this window were 
classified using the Linear Discriminate Analysis 
(LDA) for each of the time windows [10]. The 
classification accuracy was computed by using a  
10-fold cross-validation (CV) for a comparable 
number of trials per class. This was implemented for 
every bin of the Fast-Fourier-Transformation (FFT) 
with a micro band range (± 2 bins) around each 
measured band for the CSP computation. 
Consequently, the resulting plot contains information 
about the estimated classification accuracy depending 
on class specific variances for each time window and 
corresponding frequency range.  
 
Analysis 
 
In the analysis we concentrated on the EEG data 
obtained where the participants performed the 
obstacle avoidance manoeuvres. In this manner an 
ERP and ERD analysis of the EEG data was carried 
out. EEG recordings involve plenty of influences 
(artefacts) to the quality of the EEG signal, such as 
eye movements, muscle noise, cardiac signals and 
coincidental noise patterns. In this study, two 
methods, Independent Components Analysis (ICA) 
and Average Re-reference, were used to improve the 
data quality for identifying ERP components and for 
verification of ERD features.  
To improve the data quality we used a method to re-
reference the data to the average potential across the 
whole head [11], termed Average Re-reference. 
Therefore, the average time course of all electrodes 
was calculated and removed from each electrode. 
The ICA decomposes EEG data into temporally 
independent and spatially fixed components, which 
account for artefacts, stimulus and response locked 
events and spontaneous EEG activities. Recently, it 
has been considered as a powerful tool for EEG 
components identification and artefacts removal as 
well as source identification [12, 13, 14, 15, 16, 17]. 
After calculation of independent components (IC), we 
followed the following procedure to remove artefacts: 

� Rejection of Independent Components (IC) that 
are related to eye and muscle movement from the 
neck as well as ICs that reflects the heart beat and 

� Rejection of IC-dipoles outside the head. 

The following section gives an overview over the 
ERP analysis for each participant driven by events 
inferred from the CAN data (i.e. de-clutch) and go on 
analysing the ICs for each participant separately since 
this depends on each of the dimensionalities of the 
recorded EEG. Finally we show the estimated 
classification accuracy for clutching vs. braking as 
well as obstacle avoidance to the left vs. right side 
based on oscillatory features for both participants.   

RESULTS 
 
ERP analysis and ICA – participant T 
 
On Figure 4, the EEG signal at electrodes C1, Cz and 
C2 averaged over all extracted clutch presses  
(left foot) shows characteristic waveforms. The time 
range represents the clutching procedure with an 
onset around 1500 ms before the CAN-bus indicates 
that the driver has de-clutched (Figure 4,  
point of origin). 
This pre-processed data shows significant 
components across the central part of the brain with a 
two-peak maximum at the latency of around 400 ms 
before and after the foot response (clutch). The same 
characteristic was observed using the common 
averaged reference. For taking the brake or steering in 
both directions no clear ERP could be observed in the 
raw data. 
 
 
 
 
 

              
 
 
 

              
 
 
 

              
 
 
 
 
 
 
 
Independent Component Analysis  
 
The independent component analysis (ICA) 
decomposes the EEG into temporally independent 
and spatially locked components.  
These components could either be the result of task 
events or stimulus, or account for artefacts. Figure 5 
shows some of the independent components from the 
EEG set of participant T. 
Figure 5(1) shows an Independent Component which 
contains noise that is spread over the whole head (this 
component is missing when the ICA was computed 
on a common averaged EEG set); while Figure 5  
(2 and 3) demonstrates clear ICs which decomposes 
vertical and horizontal eye-movements.  

C2 

Cz 

C1 
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Figure 6. Averaged EEG signal [Cz] and IC 29 
activity from 244 clutch presses [T]. 

 

Figure 8. Event-related spectral perturbation 
of IC 29 (baseline [-5 to -4]) – participant T. 

Figure 5. Selected scalp maps of the independent 
components of the EEG set from participant T. 

Figure 7. Dipole fitting of IC 29 for a boundary 
head model with warped electrode positions of 
participant T. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In contrast Figure 5 (29) shows an IC dipole that 
seems to contain neural information of the central 
area of the brain. These components are of particular 
interest since they should represent only real 
movement related brain activity (cf. homunculus). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 shows the IC activity across the time for an 
extracted epoch determined by slamming the clutch. 
The IC activity shows a hight correlation to the the 
observed ERP at electrode Cz (cf. Fig. 4). 
The spatial information given in Figure 7 allows for 
interpreting the source of the observed potential at Cz 
in comparison to the observed activity of IC 29. The 
IC 29-based dipole is located in the motor cortex of 
subject T for the used head model. 
To transfer the idea of using spatial information of 
negative shifts induced by the readiness potential or 
the location of the IC-based dipole for discriminating 
the upcoming drivers action, these features have to be 
class-specific. Otherwise they are not suitable for an 
EEG-based classification system for upcoming 
driver’s movements.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The spectral properties of the ICs can also be used for 
selecting brain based components. By exploiting 
differences in known movement-related EEG spectra 
it is possible to separate movement related 
independent components which contain information 
of activity in the motor cortex. This way, it is well 
known from the neuropsychological literature that the 
movement imagination as well as the movement 
execution is accompanied by variances in the alpha 
and beta band of the corresponding EEG [6, 8].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 shows the event-related spectral perturbation 
of the activity in component 29. Here, clear changes 
in different frequency bands could be observed. 
Changes in self-contained and characteristic spectral 
ranges of the EEG spectrum could be used as 
indicator for a brain based component. Such a 
component is suitable as carrier of information 
preceding the driver’s movement.  

Cz 

IC 29 
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Figure 8. Scalp maps of computed independent 
components – participant S. 

Figure 9. Time course of IC 26 for de-clutching –
participant S 

Figure 10. Dipole fitting of IC 26 (green) and IC 30 
(yellow) for a boundary head model with warped 
electrode positions of participant S.  

ERP analysis and ICA – participant S  
 
The average of each extracted epoch shows no clear 
ERP for participants S in the raw EEG data. 
In Figure 8 the ICs that are computed for the 
continuous EEG set of participant S are presented. A 
clear decomposition of noise and eye-movement 
could be observed (Fig. 8 1-3). 
Figure 9 shows the averaged time course of the 
activity from component 26 that is also located in the 
middle of the primary motor cortex. Here, a weak 
ERP could be observed in the component activity that 
is comparable to the observed ERP of IC 29 from 
participant T (see Fig. 6). The dipole fitting of the 
computed independent components reveals that the 
decomposition was not so clear like for participant T. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are two diploes located in the expected area of 
the motor cortex containing information of this 
source. No other ERP in the component activity could 
be observed by averaging epochs based on the 
driver’s responses (clutch, brake and steering). 
 
ERD Classification 
 
One of the central research questions in this research 
area is whether the analysis and extraction of EEG 
features is suitable for projecting the driver’s 
intention. Therefore the chosen EEG features have to 
be related to the cognitive process.  
Furthermore, they have to be detectable in single trial 
conditions. The analysis of the induced ERPs 
revealed that there are potentials preceding the 
movement execution.  
The extraction and classification of ERD features is 
an approach for establishing an EEG-based driver 
support system, too. Of particular interest here is the 
classification of ERDs between different drivers’ 
movement representations in the EEG data.  
To define the class-specificity of the ERDs preceding 
the driver’s action, the classifier output was estimated 
based on a data-driven approach (see ERD-Feature 
Extraction and Classification).  
 
According to machine learning methodology, the 
machine will be trained on the extracted spectral 
features [18]. Especially in this phase, the EEG data 
typically consists of underlying cognitive processes 
but also coincidental noise patterns and artefacts. This 
additional information has to be removed from the 
recorded EEG data before the classifier can be trained 
to stress the neural source of the feature. 

IC 26 
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Therefore, for participant T, 14 out of 61 and for 
participant S 18 out of 31 independent components 
were selected as brain based.  
To estimate the ERD-based classification accuracy 
these brain components where re-projected to the 
EEG data. In a second step the presented data-driven 
feature extraction was computed. To compare and 
validate, both the raw EEG set and the re-projected 
EEG set were used as input for the data-driven feature 
selection and classification. 
Figure 11 (top) and 13 (top) shows the estimated 
classification accuracy based on variances in certain 
frequency bands of the EEG spectra preceding the 
feet movement execution on raw data. The results are 
going up to more than 75% accuracy around the 
movement execution. There are also good 
classification estimations around 500 ms before the 
movement in different frequency bands. As seen in 
Figure 5 and 8, the EEG dataset contains a lot of 
components which have probably no neural source. 
To validate the data-driven ERD-features, the spatial 
information of these components was used for 
functional filtering. All of the components which do 
not reflect brain activity were rejected. To separate 
the brain ICs from the artefact ICs the spatial 
localisation of the IC-based dipole was used as well 
as the properties of the components.  
Figure 11 (bottom) shows that there are very different 
results from those estimated without the rejection of 
components that are containing information from eye 
and muscle movements. For both participants, a new 
weakly class-specific area in the range of 45Hz to 
65Hz at 1500ms before the foot movement becomes 
evident. 
Figure 12 and 14 show the estimated classification 
accuracy for the left and right obstacle avoidance 
manoeuvre. Here the exact point in time of the 
driver’s response was inferred from the increase of 
the steering speed following the unforeseen obstacle 
(i.e. water wall). The classification of raw data shows 
for both participants very good results in the 
beginning of the taken avoidance manoeuvre. 
Preceding the steering act there are also areas of  
class-specific variances in the spectra of the data sets. 
The back-projection of the brain components reveals 
other areas of interest for classification. These areas 
become evident in the beta band as well as in the 
gamma band of the EEG data sets. 
 
DISCUSSION 
 
The presented results indicate (1) that there is the 
possibility to decompose EEG data into independent 
components representing artefacts caused by the 
driver’s movement and the car environment to some 
degree and (2) that the presented data-driven 
approach for feature extraction is highly applicable, 

but fragile in the presence of coincidental noise 
patterns and artefacts.  
 
ICA and feature extraction 
 
The main challenge of this approach is that the 
decomposition of the EEG implies that the neural 
sources are really independent from each other. This 
question cannot be answered finally. Also, the 
residual variance of the dipole fitting indicates that 
the source identification is not definite in each case. 
Rejecting components that contain for instance  
eye-movements could also contain suitable parts of 
real class-specific brain dynamics.  
The results also reveal that an observed ERP in the 
raw data can be found in independent components. 
This indicates that the ICA is able to decompose EEG 
data under very hard experimental conditions. The 
fact that an ERP for de-clutching can be observed in 
the components for both of the subjects indicates that 
there are similar neural processes preceding and 
accompanying the de-clutch procedure while driving.  
Furthermore, the time course of this ERP allows for 
an extraction of clutch-specific features up to 700ms 
before the action can be observed in the EEG data. 
Unfortunately, this feature is only related to the left 
feet movement and does not allow for a classification 
of braking against clutching. Furthermore, the 
observed ERP does not match to any of the expected 
related motor ERPs. It seems to be a mixture of 
readiness potentials and CNV. Although, the 
observed ERP is well located at Cz and the IC also 
reflects the characteristic of the raw data, the 
behaviour of this signals could be affected by a haptic 
process. It could be that the EEG signal is affected by 
the process of de-clutch and clutch-in or due to a 
clutch sensor that induces this kind of signal 
characteristic. But an ERP only reflects the linear 
parts of the epoched EEG data. More and other 
information preceding the driver action could be 
present in the frequency domain. 
Regarding the presented classification results, the 
good classification of brake against clutching implies 
that these two feet movements are really comparable 
and only body-side specific. But this comparison 
suffers from the fact that for breaking a foot 
movement from the accelerator to the braking pedal 
precedes the actual braking. The shown classification 
results are probably affected by this foot movement. 
This foot movement preceding the actual braking 
probably affected also the absence of a braking 
response related ERP.  
To validate the classification accuracy, a 10-fold 
cross-validation was carried out. Nevertheless, the 
number of trials for the obstacle avoidance 
manoeuvre was too small for a significant 
computation of the ability to classify.   
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Figure 14. Estimated classification accuracy before the 
obstacle avoidance to left or right side on EEG raw data 
(top) and IC-filtered EEG data (bottom) [S]. 

Figure 12. Estimated classification accuracy before the 
obstacle avoidance to left or right side on EEG raw data 
(top) and IC-filtered EEG data (bottom) [T]. 

Figure 11. Estimated classification accuracy before 
using the clutch against brake on EEG raw data (top) 
and IC-filtered EEG data (bottom) [T]. 

Figure 13. Estimated classification accuracy before 
using the clutch against brake on EEG raw data (top) 
and IC- filtered EEG data (bottom) [S]. 
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CONCLUSION 
 
Conclusively, we have presented a pilot study for 
exploring the electrical brain dynamics (i.e. EEG) 
preceding intended actions of the driver in a  
real-world environment. This way, a hierarchical 
classification scheme was used for predicting the 
upcoming movement of the driver.  
 
Potential 
 
We have shown that the human brain contains 
information preceding the movement execution that 
can be extracted from the EEG and that these features 
can be used for single trial detestability. We also 
presented a useful approach for validating these 
extracted features by decomposing the EEG data into 
independent components. This way, it is possible to 
select features which contain information of real brain 
based EEG representations in single trial conditions.  
Hence, the brain as origin of intentions and distributor 
of information preceding an action has a very high 
potential to increase traffic safety since data from the 
cat area network only reflects the driver’s action but 
not the corresponding intention. 
We observed a potential in the EEG raw data related 
to the process of de-clutch and clutch in for 
participant T. The analysis of the corresponding 
independent components reveals that one of these 
components clarifies this ERP to a high degree. This 
indicates that the ICA was able to separate real brain 
sources from sources that contain other sources of 
electrical activity. Furthermore, this kind of analysis 
enables a better understanding of ERP observations in 
the EEG since the decomposition of EEG into ICs 
contains information about the localisation of the 
source in the brain. 
The presented results of an ERD-based classification 
of upcoming feet movements as well as the direction 
of obstacle manoeuvres promises a good possibility 
the extract features from the EEG containing 
information about the driver’s movement intention in 
these conditions. This additional information can be 
used in a driver support system i.e. to prepare the 
braking system 
 
Challenges 
  
To classify different foot movement, the extracted 
feature has to be definite and class-specific. The 
observed ERP was only descriptive to the class of left 
foot movements (clutch). Furthermore it is well 
known from the neurophysiologic literature that ERPs 
reflect brain activity in the range of milliseconds but 
only by averaging a couple of trials. This way, ERPs 
are not well qualified to predict the upcoming driver’s 
movement in single trial conditions. The ERD 

representation of brain dynamics is much more 
applicable. Nevertheless, this estimated classification 
accuracy indicates that there is class-specific 
information in the EEG data. The estimated 
classification accuracy is in fact too imprecise as 
suitable definite information channel for a driver 
support system.  
To validate these findings this analysis has to be 
carried out for more subjects. Due to the fact that the 
number of independent components depends on the 
dimensionality of the recorded EEG, this study should 
be carried out with more EEG electrodes. This should 
affect the decomposition positively and would allow 
for a better identification of non-artefact affected 
EEG representations of brain dynamics. Furthermore, 
to classify the feature distributions only a simple but 
robust classifier (LDA) was used. Here, a lot of other 
classifiers (i.e. support vector machines) are also 
suitable for this kind of classification approach. 
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