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ABSTRACT 

One of the main objectives of the European 
TRACE project (Traffic Accident Causation in 
Europe, January 2006 – June 2008) was the 
development of methodology for the evaluation of 
the safety benefit of existing on-board safety 
applications in passenger cars with the use of mass 
accident data-bases only.  

The challenge was to evaluate passive safety 
applications as well as active applications and 
especially combinations of the two within a single 
investigation. In order to do so the well known 
concept of odds-ratio has been generalized for 
jointly evaluating injury mitigating effectiveness as 
well as accident avoiding effectiveness at once. 

This paper describes statistical sound methodology 
that is able to evaluate the safety benefit of either a 
single on-board safety function or the additional 
gain of specific safety feature(s) (i.e. a selection of 
various passive safety functions and active safety 
functions), given that some other safety 
applications already are on board. In particular, the 
method allows for evaluation of accident avoiding 
effectiveness as well as injury mitigating 
effectiveness. Hence, it can be applied for joint 
evaluations of passive and on-board active safety 
applications.  

The focus of the paper lies on the presentation of a 
ready-to-apply methodology, including detailed 
examples as well as a discussion on its advantages 
and its limitations. 

EFFECTIVENESS OF SINGLE SAFETY 
FUNCTIONS 

For measuring the effectiveness of a safety function 
it is of critical importance to distinguish between 
different possible types of effects. In general there 

are at least four different types of safety function 
effects. These are: 

• accident avoiding effectiveness 
• injury avoiding effectiveness 
• injury mitigating effectiveness 
• effects of tertiary safety functions 

Some safety functions aim at avoiding the accident 
altogether. If this is not possible, measures to 
prevent the involved persons from suffering 
injuries are taken. If this cannot be achieved either, 
the injury outcome for the passengers is minimized 
as far as possible. Afterwards, the aim is to reduce 
the consequences of already inflicted injuries to the 
largest extend possible (e.g. by automatically 
placing an emergency call). 

A typical primary safety function aims at all of the 
first three types of effectiveness, whereas the 
effectiveness of a typical secondary safety function 
only consists of the injury avoiding and injury 
mitigating effectiveness. Tertiary safety functions 
aim at reducing the consequences of injuries. This 
paper focuses on primary and secondary safety 
functions and does not deal with tertiary safety 
functions at all. 

In some sense the first three mentioned types of 
safety function effects are ordered hierarchically. A 
safety function which aims at accident avoiding 
typically has some measurable effect on injury 
avoiding and injury mitigating in cases in which the 
accident can not be avoided but the crash’s severity 
can be reduced. A secondary safety function aiming 
at injury avoiding typically also has some 
effectiveness towards injury mitigating but not 
towards accident avoiding. Thus, a combined 
evaluation of different safety functions must 
include injury avoiding and mitigating 
effectiveness as well as the accident avoiding 
effectiveness. 

Zangmeister 1 



However, this paper will first focus on the accident 
avoiding effectiveness and deal with the other types 
of effectiveness later. 

Relative risk – odds-ratios 

A reasonable way of measuring the effectiveness of 
a single safety function “SF” within a certain group 
of accidental situations “A” is to compute relative 
risks. For example, a relative risk easy to interpret 
is the ratio of the probability that a vehicle with a 
SF on board and active has to suffer an accident 
that belongs to a predetermined category A of 
accidents, and the probability of suffering an 
accident belonging to A with SF not active (cf. 
equation (1)).  

(suffering | SF active)RR
(suffering | SF not active)
P A

P A
=  (1) 

This relative risk is independent of the population 
of interest if it is the same for both probabilities. 
For example, when interested in the population of 
all vehicles on the road within one specific year, 
the probabilities have to be interpreted as the 
“probability of suffering an accident of type A 
within the year of interest, given that SF is (not) 
active”. 

As the relative risk is the ratio of two probabilities 
it can take any value in the interval [0, ∞). If it 
equals one, the probability of suffering an accident 
of type A is independent of the safety function SF 
being active or not. If it is larger than one, the 
effectiveness of SF is negative, i.e. the safety 
function increases the probability of suffering an 
accident of category A when driving on a road. If 
the relative risk is less than one, the safety function 
has some positive effect, i.e. the safety function 
decreases the probability of suffering an accident of 
category A when driving on a road. 

With simple algebra and Bayes’ theorem for 
conditional probabilities the equivalence between 
this relative risk and the following odds-ratio can 
be shown (cf. equation (2)) 

( )
( )
(

( )
)

SF active |
SF not active |

RR OR :
SF active |

SF not active |

P A
P A

P N
P N

= =  (2) 

where N stands for a category of neutral accidental 
situations or for an internal control group of 
vehicle-related accidental situations. See [15] if 
interested in the derivation of this result. It is 
crucial that the relative risk of suffering an accident 
classified as N depending on SF active (P(suffering 
N | SF active)) and not (P(suffering N | SF not 
active)) respectively, must be equal or very close to 
one. This means that SF more or less has no 

influence on the probability of suffering an 
accident of neutral type N. For more detailed 
information on odds-ratios see [4], [6], [7] and [8]. 
It is crucial for any analysis using odds-ratios to 
have a reliable classification of neutral accidents N 
as the results are very sensitive to this 
classification! 

It is important to point out the difference between 
accidents and vehicle-related accidental situations. 
There may be several vehicles involved in a single 
accident and the different drivers were most likely 
confronted with more or less different situations 
that led to the accident. Hence, safety functions on 
board of vehicles involved in one and the same 
accident may very well be confronted with 
different situations. Therefore, the effectiveness of 
a safety function in a specific accident highly 
depends on which of the involved vehicles is 
considered for the evaluation. 

Thus, when referring to a certain type of accident, 
vehicle-related classification of accidents will 
always be in consideration. 

For computing the term in equation (2) the two 
odds have to be estimated with the equipment-rates 
within the accident type of interest as shown in 
equation (3). 

( )
( )

SF active |
SF not active |

No. of cars with SF active within 
No. of cars with SF not active within 

P A
P A

A
A

≈

 (3) 

Of course, this estimator only is adequate if the 
numbers of these accident counts are reasonably 
high. The section “Confidence intervals” deals with 
the accuracy of the estimated results. 

With this transformation a term is derived that can 
easily be computed and is equivalent to the relative 
risk which can be interpreted, so that the 
effectiveness of SF within A can be computed as 
shown in equation (4). 

( ) 1 OR
No. of cars w. SF active in 

No. of cars w. SF not active in 1
No. of cars w. SF active in 

No. of cars w. SF not active in 

eff A
A

A
N

N

= −

= −
 (4) 

The effectiveness then describes the percentage of 
avoided accidents within the category A. To 
describe it more precisely:  

Assume that each vehicle out of a certain fleet of 
vehicles is involved in a specific critical accidental 
situation (base unit of exposure) that in case the SF 
is not active would lead to accidents of type A. 
Now assume that exactly the same number of 
similar vehicles out of a similar fleet with the same 
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drivers and the exact same surrounding conditions 
is being confronted with the same critical situation, 
but this time every vehicle out of this second fleet 
is to be equipped with SF. Hence, this thought 
experiment resembles a perfect case-control-study, 
where each critical situation is observed twice – 
one time with the safety function on board, and 
another time without the same. Each pair represents 
a matched pair: Case and control. As for each pair 
all surrounding conditions are exactly the same 
except for the safety function of interest, these pairs 
will be referred to as a “perfect matching” in the 
following. Assuming that SF has some accident 
avoiding effectiveness, eff·100% of the critical 
situations should not have led to an accident. 
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Figure 1: Example for the interpretation of the 

accident avoiding effectiveness of a safety 
function 

In this thought experiment the accident avoiding 
effectiveness is about 10%, as roughly 10% less 
accidents within the group of equipped vehicles 
were observed compared to the group of non-
equipped vehicles. Since the one and only 
difference between the two fleets is supposed to be 
the safety function, the effect may be postulated to 
be caused by the safety function’s effectiveness. 

Obviously, there will never be a chance of 
observing such an ideal situation of a perfectly 
matched case-control-study in the field of accident 
research. However, by explaining another possible 
way of interpreting odds-ratios, it should become 
clear how this problem is circumvented. 

Odds-ratios compare the relative frequency of the 
equipment-rate within accident type A to the 
equipment-rate within type N. If the safety function 
of interest has no effect on the occurrences of 
accidents of type A, the equipment-rate within A 
should be equal to the rate within N. Contrary, if it 
has some positive effect on accident type A, then 
some accidents must have been avoided due to the 
safety function. Hence, these do not appear in the 
database. With odds-ratios it is possible to calculate 
the number of accidents avoided this way. 

The effectiveness of a safety function is calculated 
by using only four different accident counts as 

shown in equation (4). These are the numbers of 
vehicles involved in accidents of type N or A, either 
equipped with SF or not equipped with SF. As N 
stands for a type of accidental situation not 
influenced by SF (neutral accidents), only one of 
these four counts is influenced by SF: The count of 
vehicles equipped with SF involved in accidents of 
type A. Therefore, any accident avoided due to the 
safety function has to be out of the group of SF-
equipped vehicles in A. Hence, any change in the 
calculated odds-ratio may be traced back to the one 
group of interest. Due to that, it is possible to 
calculate the percentage of avoided accidents as 
well as the absolute number of avoided accidents 
within this single group of interest. This is done by 
looking at two different ratios only. Particularly 
section “evaluating injury mitigating and injury 
avoiding effectiveness” will make use of this way 
of interpreting odds-ratios. 

Typically, it is not possible to identify the exact 
cause for these “missing” accidents – whether it is 
solemnly the influence of the SF or possibly due to 
external variables such as vehicle age, driver’s 
experience and so on. As newer vehicles are more 
likely to be equipped with more safety functions 
than older ones, the variable vehicle-age is likely to 
have a confounding influence. The paper will come 
back to the topic of confounding variables in the 
section “the influence of additional external factors 
and logistic regression”. Hence, no causal 
relationship between the safety function and the 
effectiveness can be drawn so far. For the sake of 
simplicity it will still be referred to as the 
“effectiveness of the safety function” instead of 
“effectiveness of the behavior of vehicles equipped 
with the safety function”, which would be more 
appropriate. According to [12] all calculations 
made without taking external factors into account 
shall be referred to as “crude” calculations in this 
paper, e.g. crude odds-ratios and crude 
effectiveness. 

Furthermore, it is important to point out that 
effectiveness always refers to accident counts 
instead of accidents in general. Therefore, an 
effectiveness of 20% for some safety function SF 
and some accident type A must be interpreted in the 
following way: 

20% of the cases that should have been observed in 
group A are not listed in the database at hand. Thus, 
the probability of a vehicle equipped with SF to 
suffer an accident of type A and to have that 
accident actually reported in the database at hand 
is only 80% of the probability for a vehicle without 
SF. This plays an important role in the 
interpretation of the results especially when looking 
at injury-accident databases. Furthermore, when the 
probability of an accident being reported is varying 
among different types of accidents, the computed 
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effectiveness will typically be biased due to that 
variance. 

Overall effectiveness and misclassifications 

Besides the effectiveness for a certain group of 
accidental situations one might also be interested in 
the overall effectiveness for all accidents. There are 
two possible approaches to quantify the overall 
effectiveness of a safety function, either by 
extrapolation or by direct approach. 

For the direct approach, A has to be chosen as the 
category of “all accidents within the database”, 
which leads to such an overall effectiveness. This 
approach has the advantage that additional effects 
of the safety function on other than the selected 
sensitive accidents are taken into account as well. 
On the other hand more unwanted external 
confounding variables could be included in the 
overall effectiveness calculation. For example, if 
drivers of vehicles equipped with ESC are more 
likely to have a parking assistant on board as well, 
then the calculated overall effectiveness of ESC 
would include some effectiveness on parking 
accidents due to the correlation between ESC and 
parking assistants. The main disadvantage is the 
fact, that the category N of neutral accidents for this 
proposal will be a subset of A. This does not lead to 
any problems within the calculation itself, but 
calculating confidence intervals in the way 
described below becomes impossible. 

For the other approach the effectiveness within the 
subgroup of accidental situations which are 
sensitive to the safety function has to be calculated 
and extrapolated to the complete set of accidents. 
Before discussing this approach any further, some 
discussion on the effects of misclassifications of 
accidents in a real world accident-database is in 
order. 

There are two different possibilities for 
misclassifications in every single count out of the 
four accident counts necessary for the calculation 
of odds-ratios. The equipment of the vehicle of 
interest may be falsely classified as well as the 
classification of the type of accident may not be 
correct. It can be shown that if the system has a 
positive effectiveness, independent of the type of 
misclassification, the outcome will be an 
underestimation of the real effectiveness (cf. [7]). 
At this point the interpretation of the effectiveness 
is crucial. It is common to compare all accidents 
that are considered to be sensitive (instead of some 
specific accident type A) to the safety function to a 
neutral group [9]. Therefore a misclassification 
leads to an underestimation of the effectiveness of 
all sensitive cases. Typically, in analyses with 
accident data there will be at least some accidental 
situations that are not easily classifiable to be 
sensitive or neutral to the safety function. In many 

cases there even is a large group of accidents that is 
known to be a mixture of sensitive and neutral 
cases. Often it is impossible to split such a group 
into sensitive and neutral cases with the amount of 
information available. Hence, there are three 
possibilities to deal with such a group: Either 
excluding the entire group from the analysis, or 
including this group in the analysis and considering 
all these cases to be either of sensitive or neutral 
type. When including this group in the analysis, 
many of the cases will be misclassified, which 
results in an underestimated effectiveness for all 
sensitive accidents. The most convenient way to 
deal with such a blend of sensitive and neutral 
cases is to exclude them from the analysis ([7], 
[9]). By excluding such cases from the analysis the 
accuracy of the estimator for the effectiveness is 
higher but this estimator refers to a smaller group 
of sensitive cases. 

Returning to the second approach, calculating the 
overall effectiveness via extrapolation, it is no 
longer of interest to have an accurate estimator for 
the effectiveness for sensitive accidents rather for 
sensitive accidents but for all accidents. The 
extrapolation is done as shown in equation (5). 

( )

( ) ( )

( )

1
0

1
0 0

SF

1 SF
SF

1 SF

overall

A
A

A
A A

A N

A

eff

nn
eff

eff
nn n

eff

+
−

= ⋅
+ +

− 1
Nn+

 (5) 

The abbreviations used in equation (5) are 
explained in equation (6): 

1

0

1

0

: No. of accidents of type  of cars equipped with SF

: No. of accidents of type  of cars not equip. with SF

: No. of accidents of type  of cars equip. with SF

: No. of accidents of type  

A

A

N

N

n A

n A

n N

n N

=

=

=

= of cars not equip. with SF

(6) 

See [15] for the derivation of this formula. This 
way of calculating the overall effectiveness only 
makes sense if definitely all accidents that are 
somehow sensitive to SF are included in A. If A 
contains some neutral accidents, then effA(SF) will 
be reduced accordingly. However, this leads to a 
larger group A and the resulting overall 
effectiveness does not differ from the one 
calculated by using a perfectly dichotomous 
classification of neutral and sensitive accidents at 
all! Therefore, a misclassification in the sense of 
neutral accidents being classified as sensitive does 
not change the calculated overall effectiveness! (cf. 
[15]) 

Hence, it is of no consequences for the calculation 
to include some neutral accidents into the group A, 
whereas the other types of misclassification still 
lead to an underestimation of the effectiveness. 
Therefore, if interested in an overall effectiveness it 

Zangmeister 4 



is strongly recommended to include only these 
cases where the categorization is done with a 
sufficient precision into the neutral category. 
Whereas all cases without such a sufficient 
certainty of a correct classification should be 
included in group A. 

On the basis of these findings, the correct 
classification of a neutral type of accidental 
situation becomes ever more important. Although 
both approaches lead to comparable results, the 
authors recommend the usage of this extrapolation 
approach as in the other approach the accident 
counts are not independent. This is crucial as the 
possibility of calculating confidence intervals is 
eliminated. 

As a last important statement of this section a word 
of caution is in order: It is important to point out 
the non-linearity of odds-ratios. When calculating 
the effectiveness within two disjoint groups of 
accidental situations, the effectiveness of the union 
of the two groups calculated directly will most 
likely differ from the one calculated by a weighted 
mean of each group’s effectiveness. In some cases 
it may even occur that the directly calculated 
effectiveness of the union of the groups is larger (or 
smaller) than each of the two groups’ effectiveness 
(cf. [2] keyword “Simpson’s paradox” for more 
information on this behalf). Therefore, it is not 
advisable to calculate the overall effectiveness by 
dividing the data into different groups and 
averaging the results! In case of the overall 
effectiveness extrapolation approach, the 0% 
effectiveness of the neutral group leads to 
reasonable results, but for many other 
classifications Simpson’s paradox comes into play. 

Confidence intervals 

Independently of the selection of type A, N and SF, 
the calculated result of the effectiveness does not 
take into account statistical fluctuations. For 
example, assume that for a certain given population 
of vehicles the true accident avoiding effectiveness 
of SF for A equals 20%. Then, a randomly drawn 
sample of accidents is reported to a database. If 
then the above described way of calculating the 
accident avoiding effectiveness is applied, it is 
most likely that the result will not be exactly 
20.0%, due to the random drawing and therefore 
statistical fluctuations. Nevertheless, for a given 
interval it is possible to compute the probability 
that the true value is covered by this interval. E.g. 
when the probability of a certain interval for 
including the true value of interest is equal to 95%, 
then the interval is called a 95% confidence interval 
for that value of interest. 

The requirements for calculating a confidence 
interval are the following: 

nA
1, nA

0, nN
1 and nN

0 (cf. equation (6)) need to be 
pair wise stochastically independent and those 
accident counts need to properly follow Poisson 
distributions. Except for the above-mentioned first 
approach for calculating the overall effectiveness, 
these assumptions are very common in literature; 
cf. [10] and the literature review of [9]. If any of 
the two assumptions is not appropriate, a better but 
more time-consuming and computer-intensive 
method would be bootstrapping, where resampling 
is used to calculate a variety of different results for 
the effectiveness. From the variance of these 
different calculations, conclusions about the 
influence of statistical fluctuations on the 
effectiveness may be drawn. See [3] for more 
information on this topic. 

When calculating the effectiveness by the means of 
odds-ratios, it is easily possible to calculate a 
confidence interval for it. If interested in a (1-
α)*100% confidence interval for the effectiveness 
eff(A) with α ∈ (0,1), equation (7) shows how to 
compute it. See [1] page 24 for more detailed 
information. 

1
1 0 1 02

1
1 0 1 02

1 1 1 11 exp

1 1 1 11 exp

low A A N N

high A A N N

eff OR u
n n n n

eff OR u
n n n n

α

α

−

−

⎛ ⎞
= − ⋅ + ⋅ + + +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= − ⋅ − ⋅ + + +⎜ ⎟⎜ ⎟
⎝ ⎠

 (7) 

Where u1-α/2 stands for the (1-α/2)-quantile of the 
standard normal distribution. Please take notice of 
the fact that this is no symmetric confidence 
interval, i.e. eff usually will not be in the center of 
this interval. 

If 0 ∉ [efflow; effhigh], the calculated effectiveness is 
called statistically significant with the level of 
significance α. 

If interested in a confidence interval for the overall 
effectiveness described in the preceding section, 
the upper and lower bounds of the confidence 
interval for effA need to be imputed into equation 
(5). The interval calculated in this way is not an 
exact confidence interval in the strict sense as 
statistical fluctuations on the percentage of neutral 
accidents from all accidents are not taken into 
account. Nevertheless, the authors recommend this 
approach, since as the influence of these statistical 
fluctuations should be negligible compared to the 
fluctuations the confidence interval for effA takes 
into account. 

In principle the presented confidence intervals or 
bounds are in correspondence to rates and 
percentages only. They are not related to absolute 
numbers since for example the absolute number of 
accidents in a certain time period is a random 
quantity as well. Therefore, the presented absolute 
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numbers should always be understood in relation to 
the total number of accidents (even of a specific 
type). 

The confidence interval for the overall 
effectiveness is computed as shown in equation (8): 
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 (8) 

EVALUATING MULTIPLE SAFETY 
FUNCTIONS 

As a matter of course, it is of major interest to be 
able to evaluate a whole package of multiple safety 
functions as well as a single safety functions only. 
Odds-ratios offer a well interpretable way of 
comparing any two (or even more) different safety 
equipments. In equation (2) the odds-ratio is 
calculated by comparing the probabilities of 
suffering a certain accident depending on whether a 
SF is active or not. The very same approach may be 
applied when looking at different safety 
configurations instead of a single active or non-
active safety function. A safety configuration is 
considered to be a set of various safety functions 
such as “any car that is equipped with anti-lock 
braking system, airbags and emergency brake 
assistant but does not contain ESC”. In this paper a 
safety configuration is understood to be a set of 
safety functions always included, certain safety 
functions may be excluded and information about 
other safety functions is not of interest. In this 
section the effectiveness of a safety configuration 
SC I is compared with the effectiveness of another 
safety configuration SC II. 

The effectiveness calculated by the use of odds-
ratios then describes the additional gain of safety of 
SC I compared to SC II. In other words: Assume 
that some vehicles equipped with SC II are 
involved in critical accidental situations that would 
lead to accidents of type A. The effectiveness then 
describes how many of these accidents could have 
been avoided if instead of SC II the safety 
configuration SC I had been on board. 

SC I and SC II do not have to be a single specific 
safety configuration but may also each describe 

classes of safety configurations. For example, SC II 
may stand for “any safety-configuration that 
includes the safety function SF1 but excludes SF2” 
and SC I could be “any safety configuration that 
includes SF1 as well as SF2”. For the sake of an 
easier interpretation of the results, SC I should 
always include every single safety function that is 
included in SC II plus some additional safety 
function(s) that are excluded in SC II.  

For SC I and SC II defined in this way, the 
corresponding effectiveness shown in equation (9) 

( )
( )
(
( )

)

SC I |
SC II |

( ) 1 OR 1
SC I |
SC II |

P A
P A

eff A
P N
P N

= − = −  (9) 

describes the additional gain of SF2 within accident 
type A, given that SF1 is already existent. If 
interested in safety configurations which contain 
information on more than two safety functions, the 
interpretation of the results is analogous: 

The effectiveness then describes the additional gain 
of all these safety functions that are included in SC 
I but excluded in SC II, given that all the safety 
functions that are included in both, SC I and SC II 
are already present. 

At this point again the neutral accident type N is 
crucial. This type of accident must not be 
influenced by any of the safety functions that 
distinguish SC I from SC II. 

Analogous to evaluating a single safety function, 
the confidence intervals may be computed by 
applying equation (7). 

The overall effectiveness calculation (cf. equation 
(5)) is still possible. However, the fact that the 
computed value refers to the group of all vehicles 
equipped either with SC I or SC II has to be taken 
into consideration. All other safety configurations 
are excluded and therefore the different overall 
effectiveness calculations are not always 
comparable as shown in the following.  

The herewith described algorithm is applied to a 
data example in [15] in detail. 

EVALUATING INJURY MITIGATING AND 
INJURY AVOIDING EFFECTIVENESS 

So far odds-ratios have only been used for 
evaluating the accident avoiding effectiveness, but 
as pointed out in the beginning of the paper the 
other types of effectiveness (e.g. injury avoiding 
and injury mitigating) are of major interest as well. 
Typically these types of effectiveness can be 
quantified on the basis of in-depth accident studies 
and simulations based on accident-reconstructions. 
But as these in-depth studies are not always 
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applicable, this paper intends to propose a general 
approach that as far as possible is independent on 
the type of safety function or configuration of 
interest, such an approach shall be presented in the 
following.  

As seen in the previous sections, odds-ratios are 
able to evaluate the accident avoiding effectiveness 
of some safety configurations within a certain type 
of accidental situation called A. To evaluate the 
effectiveness of a safety configuration on different 
severity levels of injuries, A has to be split up into n 
different subgroups, enumerated according to an 
increasing severity of the accident. Thus A1 may 
stand for all accidents within category A with 
material damage only, A2 may stand for all 
accidents within category A with slightly injured 
passengers only, up to An which may stand for 
accidents of category A with fatally injured 
passengers. As the described classification of the 
accidents is vehicle-related, only the occupants of 
the vehicle of interest are relevant for the 
classification Ax, x=1,…,n, and not for example the 
most severely injured person involved in an 
accident. For such a classification both approaches 
of either looking at the injury status of the driver 
only, or looking at the maximum injury severity of 
any occupant of the vehicle is feasible. As injury 
mitigation stands for a reduction of the severity, it 
may be expressed by a shifting of cases from 
higher groups to lower groups due to the safety 
configuration of interest. 

Explanation with the help of a thought 
experiment 

For the sake of an easier understanding this 
subclassification shall now be introduced to the 
thought experiment above: Two almost identical 
fleets of vehicles are to be involved in critical 
situations. The vehicles of the first fleet are not 
equipped with the safety configuration of interest, 
the vehicles out of the second fleet are all to be 
equipped with the safety configuration. All other 
variables that may have an influence on the 
accident outcome such as driver behavior are 
supposed to be exactly the same for the vehicles of 
both fleets. Hence, this thought experiment again 
resembles a perfect case-control-study, where each 
critical situation is observed twice – one time with 
the safety configuration on board and another time 
without the same. Each pair represents a matched 
pair: Case and control. Assuming that the safety 
configuration indeed has some effect on the injury 
severity of the accident-involved persons, this 
should be observable. The distribution of the 
accidents through the different severity types A1 to 
An within the fleet of equipped vehicles should 
differ from the distribution of the non-equipped 
fleet. For the sake of consistency the event “no 
accident” is to be named A0. 
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Figure 2: Example for a different injury severity 

distribution 

This example is similar to the example in Figure 1, 
just the group “accidents” has been subclassified 
according to the above introduced scheme of 
accident severity. Similar to the accident avoidance 
effectiveness which may be observed by the 
decreasing amount of accidents, the injury 
mitigating effectiveness expresses itself in shifts 
within the group “accidents” from one group of 
injury severity to another one. In this example the 
amount of vehicles with fatally injured occupants 
has decreased in the group of SF-equipped vehicles 
compared to the non-equipped ones. Unfortunately 
it is not possible to tell, what has happened with 
these “missing” fatalities. Did these accidents not 
happen anymore (accident avoidance) or was it an 
accident still but with a lesser severity (injury 
avoidance or injury mitigation)? 

At this point one major assumption has to be made: 

It is assumed that the safety configuration of 
interest has to have a positive effectiveness. This 
means that every accident that is prevented from 
being of severity x and instead of severity y, it 
must be assumed that y ≤ x will always hold! In 
other words for every matched pair of cases and 
controls the severity of the case (that is a vehicle 
equipped with this specific safety configuration) 
must be of the same or of a lower level than the 
severity of the control (non-equipped vehicle)! 

Obviously this assumption sometimes may not be 
true in single specific accidents, such as if a vehicle 
falls into water where drowning may become more 
likely for a belted person. Nevertheless, for the 
majority of the cases the assumption is not 
unrealistic and as the assumption is crucial for all 
the follow-ups, the few exceptions shall be ignored. 

Due to this assumption it may be taken for granted 
that all accidents out of the second fleet, classified 
to a certain severity level has its matching partner 
within the same or a higher group of accident-
severity. For example all fatal accidents in the 
group of equipped vehicles have their matching 
non-equipped counterpart in the group of fatal 
accidents.  
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Figure 3: Example for different amounts of fatal 

accidents 

A short recall: In the thought experiment every 
critical situation is observed twice with identical 
surrounding conditions except for the safety 
function. Each of these pairs is called a matched 
pair. In the context of Figure 1 “matched” stands 
for matched within the same severity level and if 
the matching partner of a specific critical situation 
is not within the same group it is denoted as being 
“unmatched”. 

All non-equipped vehicles out of the group A4 that 
are not matched have been avoided to stay in the 
group of fatal accidents due to the safety 
configuration. Thus, the injury mitigating 
effectiveness for the group of fatal accidents is 
somehow expressed by an accident avoiding 
effectiveness of this subgroup. If the above 
assumption does not hold, it is not possible to tell 
anything about the amount of unmatched vehicles 
within the non-equipped group A4, as it may be the 
case that some of the equipped fatal accidents may 
have their matching partner in a non-fatal group. 
That is why the assumption is crucial for the 
following. 

The same argument may be applied to any group of 
accident where it is for sure that all vehicles in this 
group out of the equipped fleet have their matching 
counterpart in the same injury severity group 
within the non-equipped fleet. Hence, in the 
equipped fleet no shifts from other groups to the 
group of interest are allowed. Due to the above 
assumption this will always hold if this group of 
interest is what shall be referred to as a “topmost 
group”, which may be described as a group of at 
least a certain severity. Thus if the group with a 
certain severity x, that is group Ax is to be 
investigated, it is necessary to look at this very 
group and all more severe groups which may be 
defined as Ax+ := Ax ∪ A(x+1) ∪ … ∪ A(n-1) ∪ 
An. Only then it is for sure that theoretically all 
cases of equipped vehicles in this group Ax+ have 
their control of non-equipped vehicles in the group 
Ax+ as well. 
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Figure 4: Example for different amounts of 

severe or fatal accidents 

For every topmost group the injury mitigation 
effectiveness may be calculated in this way and it 
describes the amount of non-equipped vehicles (or 
controls) that are downshifted from the topmost 
group to some other groups. It stays unclear to 
which group these controls are shifted, i.e. to which 
group the matching case-vehicle belongs. 

 
Figure 5: Example for unknown amount of 

downshift to group of interest: A2 

When now looking at a not topmost group, for 
example A2, it is obviously impossible to tell how 
many of the A3+-unmatched controls are matched 
to a case in A2. One extreme would be that all of 
these are matched to a case in A2, which would 
describe the situation that due to the safety 
configuration, the outcome of all these accidents 
has been mitigated to slight injuries only. This is 
expressed in Figure 6, where all the A3+-unmatched 
controls are matched to a case in A2. For 
calculating the injury mitigation effectiveness 
within group A2 it is again necessary to identify the 
amount of unmatched controls, that is non-
equipped vehicles, in group A2. Because of the 
assumed non-negative effectiveness, it becomes 
clear that all leftover cases in A2 are matched to 
controls of the same severity (dark blue areas in 
Figure 6). With this knowledge the exact amount of 
controls that are not matched to cases of the same 
severity level may be obtained, which is as well 
shown in Figure 6. 

Zangmeister 8 



 
Figure 6: Upper bound for effectiveness in 

group A2 

It has to be kept in mind that due to the assumption, 
that every time the safety configuration prevented 
an accident from being severe or fatal, the outcome 
then has necessarily to be classified as belonging to 
group A2. If this is not true and at least some injury 
mitigation leads to a less severe classification, then 
the amount of matchings from case group A2 to 
control group A2 increases and therefore the 
amount of unmatched controls in group A2 
decreases. As the injury mitigation effectiveness 
decreases with a decreasing amount of unmatched 
controls, the above described extreme leads to an 
upper bound for the effectiveness! 

The other extreme would be to assume, that all 
controls of the group A3+ that are not matched to 
cases in A3+ as well are matched to a less severe 
group than A2. Thus, as no cases in A2 are matched 
to a higher group, all the observed cases in A2 need 
to have their matching counterpart in the control 
group A2. By then looking at the size of both 
groups A2 and seeing which is bigger and therefore 
leaves some cases or controls unmatched within the 
same severity level, a lower bound for the injury 
mitigating effectives may be calculated. In this 
example one observes more cases of severity level 
A2 than controls of the same severity level. This 
would lead to a negative effectiveness for the group 
A2 which contradicts the general assumption of a 
non-negative effectiveness. On the other hand this 
extreme scenario, where every time the safety 
configuration prevents an accident from being fatal 
or severe, the outcome must be no injury or no 
accident seems rather unlikely. Therefore a 
negative lower bound of the effectiveness does not 
necessarily contradict the non-negativity-
assumption. 

 
Figure 7: Lower bound for effectiveness in 

group A2 

A negative lower bound for the effectiveness has to 
be interpreted almost similar to a lower bound 
equal to zero with the only difference that it 
indicates a high effectiveness in the higher groups 
and in some cases possibly a low effectiveness in 
the group of interest. 

It is important to point out, that the interval given 
by the lower and upper bound do have nothing in 
common with a confidence interval. This interval 
just includes all possible values for the 
effectiveness for the group A2 that are conformable 
with the data at hand. Confidence intervals need to 
be computed separately for each of the two 
boundaries! 

Of course all the above explanations are applicable 
to any of the different severity groups A1 to An as 
well as especially A1+ to A(n-1)+. When then 
having a closer look and the classification of A0 
and A1 is similar to the example above, the 
effectiveness of group A1+ describes the amount of 
cases that are shifted to group A0 due to the safety 
configuration. In other words the safety 
configuration has changed an event from being an 
accident of a certain severity to become an event 
“no accident”. Thus the effectiveness of group A1+, 
denoted by eff(A1+), is equivalent to the accident 
avoiding effectiveness. Accordingly eff(A2+) is a 
combination of the injury avoiding effectiveness 
and the accident avoiding effectiveness. 

Analogous to the section “effectiveness of single 
safety functions” it is important to point out the 
impossibility of observing such a perfectly matched 
case-control study in the real world similar to the 
above thought experiment. Nevertheless, if there is 
a neutral type of accidental situation according to 
the requirements for such mentioned above, this 
group may be used as the control group and some 
other group of interest then will be the case group. 
These two groups of course then are not case wise 
matched as it is assumed in the thought experiment, 
but these matchings were only introduced for the 
sake of an easier understanding, odds-ratios do not 
require such an assumption. 
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Resulting formulas for injury mitigation 
analysis 

When implying the above described theory to the 
formulas for odds-ratios, the effectiveness for a 
topmost group is calculated as shown in equation 
(10), where SC I stands for the safety configuration 
of interest that is about to be compared to the other 
safety configuration SC II. N stands for the neutral 
type of accidental situation. 

( )
( )
( )

( )
( )

1 OR

SC I | ( 1)
SC II | ( 1)

1
SC I |
SC II |

eff Ax

P Ax A x An
P Ax A x A

P N
P N

+ = −

∩ + ∩ ∩
∩ + ∩ ∩

= −

K

K n  (10) 

The probability-rates such as P(SC I | N)/P(SC II | 
N) may be understood as the equipment-rates 
within the groups of interest as shown in equation 
(3). 

If there is a sufficient amount of accidents involved 
in accidents of type N in the database at hand, the 
group N may be divided into subgroups according 
to the subclassification of A. But as the difference 
between SC I and SC II is considered to have no 
influence on crash occurrence and injury severity 
for the group N, the equipment-rate should not 
differ between the different severity levels. Hence, 
there should be no need to do so. In some cases it 
even will occur that the equipment rate within 
different severity levels within N do differ (either 
due to statistical fluctuations or to substantial 
differences) but then it seems to be questionable to 
take these differences into account for calculating 
the different types of effectiveness. 

The confidence interval for this effectiveness may 
be computed by applying equations (7) which shall 
be repeated in equations (11). 

1
1 0 1 02

1
1 0 1 02

1 1 1 1
1 exp

1 1 1 1
1 exp

low A A N N

high A A N N

eff OR u
n n n n

eff OR u
n n n n

α

α

−

−

= − ⋅ + ⋅ + + +

= − ⋅ − ⋅ + + +

⎛
⎜
⎝

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎞
⎟
⎠

 (11) 

Again, u1-α/2 stands for the (1-α/2)-quantile of the 
standard normal distribution and nA

1, nA
0, nN

1 and 
nN

0 are the four different absolute numbers used in 
the calculation for the odds-ratio OR (cf. [15]). 

As this paper now comes back to the earlier 
discussed lower and upper bounds it is important to 
point out the difference between these upper and 
lower bounds and confidence intervals. The upper 
and lower bounds only account for different 
possible amounts of injury mitigations from more 
severe groups to the group of interest, whereas 

confidence intervals account for statistical 
fluctuations! 

As argued above where Figure 7 is described, the 
lower bound for the effectiveness is calculated by 
not taking any possible injury mitigation (or 
downshifts) from more severe accident categories 
to the group of interest into account. Therefore this 
effectiveness is calculated by the crude odds-ratio 
of this group as shown in equation (12). 

( )min

1 1

2 2

No. of vehicles with SC I in 
No. of vehicles with SC II in 1
No. of vehicles with SC I in 
No. of vehicles with SC II in 

1
x N

x N

Ax
Axeff Ax
N
N

n n
n n

= −

= −

 (12) 

For calculating the confidence interval for this 
lower bound, only a one-sided interval is of use, as 
the maximal possible value for the lower bound 
does not provide any useful information. Therefore 
it must be calculated with using the (1-α)-quantile 
of the standard normal distribution instead of the 
(1-α/2)-quantile and equation (13) describes the (1-
α) lower confidence bound for the minimal 
effectiveness. 

( )min,

1

2
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1 1 2 1

2
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x

x

N x x N

N

eff Ax

n
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u
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n
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⎛ ⎞
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⎝ ⎠2
Nn

x

x

z

z

(13) 

The calculation of the upper bound is a bit more 
complicated, so only the resulting formulas are 
presented here. The derivation of these results may 
be found in [15]. The crucial point for this upper 
bound for a certain group Ax is a proper estimation 
of the downshifts from higher groups to this group 
Ax as described with Figure 6. Therefore many 
different variables needed for the formula are 
defined, as well as some abbreviations comparable 
to equation (6) are introduced in equations (14). 

1
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1

+
2

1

2

: No. of vehicles with SC I in 

: No. of vehicles with SC II in 
: 1
: No. of vehicles with SC I in 

: No. of vehicles with SC II in 

: No. of vehicles with SC I in 

: No. 

x

x

z

z

N

N

n A

n A
z x

n A

n A

n N

n

+

+

=

=

= +

=

=

=

= of vehicles with SC II in N

 (14) 

Then the upper bound for the effectiveness within 
group Ax may be calculated as explained in [15]. In 
a first step, the maximum amount of downshifts 
into the group of interest ist computed (cf. equation 
(15)).  
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z+2 1
1N

2

#
n n

shifts n
n
⋅

= −  (15) 

Then, for the sake of consistency this value needs 
to be truncated to the interval [0, n1

x] as any other 
value would lead to negative accident counts (cf. 
equation (16)). 

1 1

IF # 0 THEN # : 0
IF # THEN # :x x

shifts shifts
shifts n shifts n

≤ =
> =

 (16) 

Finally, the effectiveness is computed by 
subtracting the amount of shifts from the accident 
count of interest and computing the effectiveness in 
the standard way with the use of odds-ratios. 
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⋅
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If interested in a direct calculation of the 
effectiveness without explicitely computing the 
amount of shifts, equation (18) may be used. 
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When interested in an upper confidence bound for 
the maximal effectiveness, the proceeding is 
analogously. First the maximum number of shifts 
needs to be calculated, this time including 
confidence intervals (cf. equation (19)). 
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11
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n

eff Az eff Az

α

+
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 (19) 

Please take special note of the fact that for the 
calculation of effhigh(Az+) the one-sided upper 
confidence bound instead of the two-sided one was 
used! 

Again, for the sake of consistency this value needs 
to be truncated to the interval [0, n1

x] as any other 
value would lead to negative accident counts (cf. 
equation (16)). 
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shifts shifts
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α α
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This amount of shifts has to be subtracted from the 
accident count of interest for the computation of the 
upper bound of the effectiveness as shown in 
equation (21). 
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The resulting value will most certainly be equal or 
larger than the actual upper confidence bound. The 
left over uncertainty and the exact derivation of 
these formulas is explained in detail in [15].  

As a matter of course, the overall effectiveness 
introduced in the section “overall effectiveness and 
misclassifications” is of interest for the different 
groups of injury severity. The formula given in 
equation (5) may be transformed accordingly to 
any group Ax or Ax+, subgroup of A with an injury 
severity x or x+ respectively as shown in equation 
(22). Please pay special attention to the necessity of 
splitting the accident type N according to the injury 
severity splitting of accident type A. This is 
necessary for the calculation of the overall 
effectiveness within a certain injury severity level 
and does not contradict the recommendation from 
above not to do such a splitting for the calculation 
of effAx or effAx+. The abbreviations used are 
according to equation (14) except for the 
substitution of N with Nx due to the 
subclassification of N. According to the definition 
of group Ax+ the group Nx+ stands for “accidents of 
type N classified with a severity of at least x”. 
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 (22) 

For calculating the overall effectiveness of an 
upper bound for the effectiveness of a not topmost 
injury-group, the shifts described in equation (15) 
and (19) respectively need to be taken into 
consideration which leads to equation (23): 
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If interested in the overall effectiveness of a group 
Ax+ instead of Ax the formulas are almost 
identically and therefore will not be repeated. 
Again it shall be stressed, that the interval given by 
the extrapolation of confidence boundaries for the 
effectiveness within a certain accident group to an 
interval for the overall effectiveness is not any 
longer an exact (1-α) confidence interval as 
statistical fluctuations on the percentage of neutral 
accidents from all accidents are not taken into 
account.  

The herewith described algorithm is applied to a 
data example in [15] in detail. 

THE INFLUENCE OF ADDITIONAL 
EXTERNAL FACTORS AND LOGISTIC 
REGRESSION 

In drawing conclusions from a statistical analysis 
one always has to be careful. A causal relationship 
between two variables always leads to some kind of 
statistical dependence between these two quantities. 
The opposite assertion that an existing statistical 
dependence between two quantities leads to a 
causal relationship between the corresponding 
variables in general is not true. The easiest example 
one may think of is as follows. Assume that one 
variable Z has a causal relationship to the variables 
X and Y which are of interest to the investigator. If 
one considers or observes the variables X and Y 
only, then they typically will show up some kind of 
dependence. But the true story is that both variables 
depend on the third one Z. In the context of this 
paper this could mean that if the driver populations 
of vehicles equipped and not-equipped with a 
specific safety equipment are completely different 
or even disjoint. Then the observed effectiveness of 
this safety equipment may be entirely due to the 
difference in the driver population. One easily can 
think of other examples which in some and even in 
relevant cases may lead to a significant 
misinterpretation of the results. In pure statistical 
theory one therefore usually assumes that the test 
conditions of the two experiments are completely 
equal except for the variable of interest as in the 
thought experiments in the preceding section. 
Having such an ideal situation at hand, all observed 

differences in accident outcome between equipped 
and non-equipped vehicles are due to the safety 
configuration for sure. But the above mentioned 
theoretical assumption is far from being realistic 
when investigating real world accident data. In 
reality the equipment of vehicles not only differs in 
specific safety functions and the driver population 
rarely is the same for different vehicles. Therefore 
methodology is needed to deal with this situation.  

One simple idea is to create different categories of 
accidents in which all relevant external variables 
like driver’s age and gender, size of the vehicle, 
weather conditions at the accident spot, accidental 
situation etc are as similar as possible. Within 
every group of such categorized accidents one may 
compute an odds-ratio as described above. The 
variation of the odds-ratio over the different 
categories easily may be interpreted as a 
quantification of the influence of the accident 
characteristics within a single category. This 
approach perfectly works if one has sufficient 
accident data at hand and not too many external 
variables in mind. If only one of these two 
hypotheses is not true one ends up with very few 
cases in each category which leads to non reliable 
statistical quantities within each category. Even if 
only five external variables are considered, for 
which each of them may take five different values 
at least hundred thousand and more accidents are 
needed in order to obtain reliable and interpretable 
results. Thus, even for a rather low number of 
external variables the so-called curse of 
dimensionality arises. 

Another possibility in order to quantify the 
influence of external variables to the accident 
outcome is given by the statistical concept of 
logistic regression. A detailed explanation of the 
concept of logistic regression models may be found 
in any textbook of categorical data (cf. for example 
[1]). Before starting the explanation, a brief word 
of caution is in order. Logistic regression is not 
able to circumvent the above mentioned curse of 
dimensionality. Logistic regression is a statistical 
tool which is able to deal with a moderate and 
sometimes even high number of external variables 
by the price of assuming that the influence of the 
external variables is to some extend easily 
structured. From a principle point of view logistic 
regression assumes that the influence of the 
external variables to a slightly transformed output 
quantity is just as simple as a linear influence.  

For describing the essentials of logistic modeling 
some external variables x1, x2, … , xd are 
introduced. These variables could take values 0 or 
1, in case of gender as an example, or could take 
numbers (like the age of the driver of the vehicle) 
and so on. One or more of the variables denotes the 
coding whether a specific safety function in the 
vehicle is on or off. Then logistic modeling for the 
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probability P(A|x1 , x2, … , xd) of having an accident 
of type A given that the external variables take the 
specific values x1, x2, … , xd reads as follows (cf. 
equation (24)). 

0 1 1
1

0 1 1

exp( ... )
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1 exp( ... )
d d

d
d d

x x
P A x x

x x
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For the so-called odds this means 
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−

= + + +

 (25) 

which just indicates the above mentioned linearity 
assumption of logistic modeling. When the 
accident-database at hand is split into two groups – 
accidents of type A and accidents of type N which 
is neutral to the safety function of interest – 
statistical routine software is able to estimate the 
parameters β1, β2, …, βd. With the use of equation 
(26) which is shown to be valid in [15], the relative 
risk introduced in the section “relative risk – odds-
ratios” may be computed. 
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In equation (26) Ωk stands for the set of all possible 
values xk can take. Hence, for any given specific 
combination of values for the different external 
factors xk ‘s, the relative risk of suffering an 
accident of type A with SC I compared to SC II is 
calculable. It even is independent on the specific 
values of x2, … , xk which means that no matter the 
specific situation of external factors, the relative 
risk always stays the same. This may be interpreted 
as the relative risk shown in equation (1) where all 
the confounding influences of the variables 
x2, … , xk have been canceled out!  

It shall be stressed that the classification and 
choosing of the variables x2, … , xk may have an 
enormous influence on the estimation of β1.  

First, the type of variable is of interest: When a 
variable has more than two values possible to take, 
the logistic model always assumes that the 
influence of that variable continuously increases or 
decreases. E.g. if looking at the influence of the 
driver’s age on the probability to be involved in a 
skidding accident the model either assumes that the 
older the driver, the higher (or lower) the 
probability of being involved in a skidding accident 
will be. It is not possible to model a high risk for 
young drivers, a low one for middle-aged and again 
a high one for old drivers when using a logistic 
regression. Therefore the authors strongly 
recommend using binary variables only. This 

would not be a loss of generality as every variable 
describing a single external factor xk with h 
different possible values may be expressed by 
binary variables only. In order to do so, one of the 
possible outcomes needs to be set as a reference 
group. Then this single factor may be coded as (h-
1) different variables xk1, … , xk(h-1) each to be 
coded as 0, if the value xk equals the reference 
group. If the value equals one of the other (h-1) 
possible outcomes, e.g. the m-st possible value, 
then xkm is set to 1 and all the others to 0. Thus, any 
categorized variable with h different possible 
values may be coded as (h-1) different binary 
variables. (Many statistical software-packages do 
this automatically when applying a categorical 
logistic regression.) 

When dealing with continuous variables, these may 
be categorized as well without losing much 
information due to the limited number of cases 
within a database and a limited interpretability – is 
there much information to gain by distinguishing 
between a driver who is 37 years and 360 days old 
and a 38 years old driver?  

Second, including one more variable or excluding a 
single one from the model may have a big 
influence on the estimation of β1 as well. 
Accordingly, the inclusion or exclusion of certain 
interactions of multiple of the different variables 
may have a big influence. Thus, for the logistic 
regression it is of crucial importance to choose the 
“right” variables and interactions of variables to be 
included into the model only. There are multiple 
ways of identifying the so-called “goodness of fit” 
of a model which may be used to select the model 
most appropriate for the data at hand. See [1] for 
more information. 

Another important remark is that it is crucial that β1 
is interpretable in such a good way due to the 
specific choice of neutral accident types. Please see 
[15] on what requirements need to be fulfilled in 
order to be able to interpret βk with k ≠ 1. 

It shall be stressed, that when applying a logistic 
regression typically a confidence interval for the 
parameter β1 is given. Imputing these in equation 
(26) directly leads to confidence intervals for the 
effectiveness of interest. 

Finally a logistic regression model is only able to 
deal with data sets that have complete information 
on all variables included in the model. As a logistic 
regression model typically includes plenty of 
different confounder variables this typically leads 
to a considerable reduction of the amount of data 
available to run the regression on. To circumvent 
this problem two approaches are promising: 

Either a missing data imputation algorithm [5] 
should be run on the data-base, or the attribute 
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“missing” should be used as another category of the 
corresponding categorical confounding variable. 

GENERAL REMARKS 

The methodology presented in this paper is 
applicable for any accident-database with a 
sufficient amount of information available to 
identify the crucial group of neutral accidents. Even 
though to obtain representative results it is crucial 
to have a database which is representative for the 
population of interest. Many databases are not 
representative as for example most of the times the 
injury outcome of any accident has an influence on 
the probability of a specific accident to be recorded 
in the database. This problem of representativeness 
may be dealt with by using an appropriate 
weighting algorithm. See [13] for more details. 

Another important remark deals with missing 
values in the database. Often many entries within a 
database are missing. Many studies assume these 
values to be missing at random and therefore 
simply exclude these cases from further analyses. 
However if this nonexistence of information is not 
entirely at random this proceeding results in a 
possible bias. Therefore it is recommended to take 
missing value imputation methods into 
consideration as they are described in [5]. 
Especially when calculating the effectiveness with 
a logistic regression to cancel out the influence of 
different confounder variables this is crucial. That 
is because a logistic regression requires complete 
information on all variables of all cases that are to 
be involved in the analysis. Typically this is only 
true for a comparatively small number of cases 
within a database. 

CONCLUSIONS 

So far the findings of the preceding sections are 
more or less stand-alone results. As a matter of 
course, it is of great interest to combine these 
findings in order to be able to do an injury 
mitigation analysis for multiple safety functions 
including external factors. Therefore, the results are 
summarized in the following and it is explained 
how to combine the various methods. 

First, the paper describes how odds-ratios may be 
interpreted, how to use these values in order to 
calculate the effectiveness of a safety function, how 
to extrapolate the results to an overall effectiveness 
and how to compute confidence intervals. 

Afterwards, these findings are generalized in order 
to evaluate more than a single safety function. This 
is done by evaluating different combinations of the 
safety functions. Hence, if interested in an 
evaluation of more than a single safety function, 
multiple analyses have to be made. These multiple 

evaluations distinguish from each other in a 
different focus on the safety configuration of 
interest. 

Section “evaluating injury mitigating and injury 
avoiding effectiveness” again describes a 
generalization of the use of odds-ratios and again 
multiple evaluations have to be made in order to 
quantify the injury mitigation effectiveness of a 
safety function. This time the multiple evaluations 
necessary differ in the injury severity of interest. 
Thus, it is no problem to combine the different 
generalization methods of odds-ratios: Each 
evaluation necessary for evaluating multiple safety 
functions at once may be split up into the multiple 
injury mitigation evaluations. 

It is important to point out, that for all calculations 
presented so far, only aggregated data is necessary. 
Only with introducing a logistic regression in order 
to deal with confounding variables it becomes 
necessary to have more detailed case by case 
information! 

Section “the influence of additional external factors 
and logistic regression” suggests a logistic 
regression instead of calculating the crude odds-
ratios. By doing so, external factors may be taken 
into account in order to reduce interfering 
influences. Therefore, each calculation necessary 
should be done with the use of logistic regression. 
This is easily possible for almost all evaluations 
described above. Only if so-called “shifts” need to 
be taken into account, the logistic regression may 
not be applied directly. Nevertheless it is possible 
to apply a logistic regression in these cases as well. 
See [15] for a detailed description. 
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