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ABSTRACT 

A statistical analysis of injury outcome and biomechanical response was performed using data 
from 28 left side impact tests employing Heidelberg-type sleds and post-mortem human subjects, 
with the objective of advancing the development of thoracic injury criteria for lateral impact. 
Injuries were scored by the test centers according to AIS 90. Rib fractures accounted for the 
maximum AIS score in each case. Curvature data from chest band gauges were used for 
calculation of contours depicting the shape of the thorax at 1 ms time intervals following impact. 
Thoracic deformations were deduced from the contours. Risk factors studied included maxima of 
curvature, deflection, rib and spinal accelerations, the Thoracic Trauma Index (TTI), and Average 
Spinal Acceleration (ASA). Subject age at death was found to have a significant effect on injury 
outcome. Consequently, age was used as a confounder variable in logistic regressions for the 
prediction of dichotomous outcomes P(AIS≥3) and P(AIS≥4). Stepwise backward logistic 
regression indicated that subject age and maximum normalized curvature relative to initial 
curvature are the only surviving independent variables among all considered. Separate logistic 
regressions employing age and a single risk factor confirmed that age combined with maximum 
curvature difference yields the greatest statistical significance, and the highest-ranking goodness 
of  fit. Results also showed that by employing the logarithm of curvature difference in the logit, 
goodness-of-fit can be improved, and the usual problem of a poor fit at low values of risk factor is 
eliminated. Thoracic deflection was found to be the second highest-ranking injury correlate for 
side impact, ranked above TTI and ASA in its ability to predict accurately and reliably the extent of 
side impact thoracic injury.  

 INTRODUCTION 

uman fatalities due to side impact account for approximately one-third of all traffic fatalities 
(Cavanaugh, et al., 1993). The majority of side impact accidents occur in cross-traffic 

converging at intersections at relatively low speeds (e.g., 40-60 kph). The side of a vehicle is 
second only to the front as the most frequent impact location. The goal of minimizing side impact 
injuries will become increasingly important as the use of air bags reduces fatalities in vehicle 
collisions. A great deal of attention is now being given to the effective design and implementation 
of side air bags.  

H 
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 An automobile safety standard for side impact was established in October 1970, as the 
addition of Federal Motor Vehicle Safety Standard (FMVSS) 214, Side Impact Strength – 
Passenger Cars. This standard focused on increasing side door strength to minimize intrusion into 
the passenger compartment, and incorporated a quasi-static load test using a rigid cylinder placed 
against the side of a vehicle. FMVSS 214 resulted in the introduction of side door beams in all 
passenger cars by auto manufacturers. By the late 1970’s, it was realized that while side door 
beams were effective in reducing accidental death in side impact collisions with fixed objects, they 
proved inadequate alone in impeding intrusion into the passenger compartment in a severe impact 
with another vehicle.  

  In October 1990, a new rule was appended to the Code of Federal Regulations, imposing 
an additional dynamic requirement, FMVSS 214: Side Impact Protection. This new rule set forth 
specific requirements for a dynamic test procedure simulating a 90° impact on a moving vehicle, to 
include measurements of acceleration at various locations on instrumented crash test dummies. The 
simulation of an automobile traveling at 48 kph (30 mph) impacting the left side of a target vehicle 
at 90° with speed 24 kph (15 mph) is accomplished by means of a “moving deformable barrier” 
(MDB), a 4-wheeled assembly of standard design, impacting a stationary test vehicle. Specially 
designed Side Impact Dummies (SID) are positioned in front and rear occupant positions on the 
side of the vehicle being impacted. The test data measured from SID instrumentation include the 
rib, spine and pelvic accelerations, which must not exceed certain threshold values for compliance 
with FMVSS 214. The rib and spinal accelerations are combined into a single measure denoted as 
the Thoracic Trauma Index, TTI(d). Specifically, TTI(d) is given by 

 
1

( ) ( )
2 R LSTTI d G G= +  

where GR is the maximum of peak accelerations of the lower and upper rib, and GLS is the lower 
spinal (T12 vertebra) peak acceleration. The value of TTI(d) cannot exceed 85g for 4-door vehicles 
and 90g for 2-door vehicles. The pelvic acceleration is assigned an upper limit of 130g. TTI was 
developed in the 1980’s, as a result of analyses by Eppinger (1984) and Morgan (1986) of 
dynamic, kinematic and injury data from 84 sled tests employing post-mortem human subjects. 

 The present U.S. safety standard for side impact does not include a reference to either lateral 
or frontal thoracic deflection. In the late 1970’s, Stalnaker et al. (1979) and Terriere et al. (1979) 
analyzed force-deflection data in a series of lateral drop tests onto unpadded and padded force 
plates, using post-mortem human subjects. Their conclusion was that chest compression correlated 
better with injury than thoracic acceleration. The European standard for side impact, EU Directive 
96/27/EC, is different from FMVSS in several ways. The EU standard makes no attempt to 
simulate movement of the target vehicle, and employs the EUROSID dummy as a test subject. 
Furthermore, the European standard includes upper limits for the head injury criterion (HIC), the 
viscous criterion (VC), abdominal and pelvic forces, and rib deflection. 

 An alternate thoracic injury criterion was proposed by Cavanaugh et al. (1993), as the result 
of a study of 17 Heidelberg-type sled tests using unembalmed cadavers.  Cavanaugh found that 
chest compression and ASA gave better agreement with observed injury data than acceleration and 
force-based criteria. ASA is the average slope of  the velocity vs. time signature, taken over a 
specified time interval, where velocity is obtained by integrating the measured T12 lower spinal 
lateral acceleration. 

   In a study by Pintar et al. (1997), utilizing data from 26 Heidelberg-type side impact sled 
tests performed with post-mortem human subjects, it was found that TTI was a better predictor of 
thoracic injury than ASA or chest deflection. However, in a recent evaluation  by Kuppa, et al. 
(2000) of 34 side impact sled tests, an extension of the study by Pintar, it was concluded that 
maximum normalized chest deflection and upper spinal resultant acceleration gave a better fit to 
injury data than TTI or ASA. 
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 It is apparent that there are conflicting findings with regard to what constitutes a suitable 
injury correlate for thoracic injury due to frontal or side impact. The acceleration-based criteria 
referenced in FMVSS 208 and FMVSS 214 are deemed by many to not have a firm biomechanical 
basis. The overwhelming majority of injuries sustained by the thorax in automobile accidents are 
rib fractures. Variables that can be related in some way to the fracture stress of bone can be 
considered to be biomechanically-based, such as chest deflection and curvature. These variables are 
the focus of the present study, which utilizes the same data employed by Kuppa, et al. (2000), but 
explores a wider range of biomechanically-based risk factors. Of particular interest is the curvature 
(or more precisely, the change in curvature relative to the initial value) of horizontal cross-sections 
of the thorax, a quantity that can be measured directly by means of utilizing existing chest band 
instrumentation. 

TEST DATA DESCRIPTION 

 Side impact sled tests using post-mortem human subjects were performed at the Medical 
College of Wisconsin (MCW) and also at NHTSA’s Vehicle Research Test Center at Ohio State 
University (OSU). The sled apparatus at both test centers is of the Heidelberg design (Kallieris, et 
al. 1981), configured for left side impacts against rigid and padded walls.  The post-mortem 
subjects in the MCW tests were unembalmed fresh and frozen human cadavers, while those at OSU 
were fresh cadavers.  Cardiovascular systems of the subjects were pressurized to approximate in-
vivo conditions. Pulmonary systems were pressurized prior to impact, but left open to atmospheric 
pressure subsequent to the impact event. Additional details may be found in Kuppa et al. (2000) 
and Pintar (1996). 

 Both test centers utilized chest band instrumentation on test subjects, consisting of two 40-
channel chest bands at levels of rib 4 and rib 7, for measurement of curvature at approximately 
every 2.5 cm around the chest perimeter. The local measurement of curvature allows the time 
dependent shape of a transverse cross-section of the thorax to be determined. Other thoracic-based 
instrumentation included: (1) triaxial accelerometers affixed to T1 or T2 vertebra, T12 vertebra, 
and the sacrum, and (2) uniaxial accelerometers affixed to left region of ribs 4 and 8 to measure 
lateral acceleration, and to the pelvis for determination of anterior-posterior acceleration. 

 Test subjects were examined and radiographed before and after testing, and necropsied 
subsequent to testing to identify both hard and soft tissue injury. The injury severity was quantified 
in accordance with the AIS 90 standard (Abbreviated Injury Scale, 1990).  Most of the trauma to 
the thorax consisted of multiple rib fractures with occasional hemopneumothorax  (pleural tears 
caused by fractured ribs). According to AIS 90, AIS=1 is characterized by only one rib fracture, 
AIS=2 results from 2-3 fractures, and AIS=3 is assigned when there are more than 3 fractures on 
only one side of the ribcage. A score of AIS=4 is assigned when there are more than 3 fractures on 
each side. The presence of a hemopneumothorax or a flail chest increases the AIS score by 1.  

 Side impact tests were performed with two impact velocities, 24 kph and 32 kph, and with 
several target configurations: flat rigid wall, flat wall with 10 cm of Ethafoam LC200 padding, 
rigid or padded wall with pelvic load plate offset by 12 cm to simulate an armrest. The test matrix 
employed in the present study is shown in Table 1. There are 4 female subjects among a total of 28 
sled tests. Approximately two-thirds of the tests were performed at MCW. An earlier study by 
Kuppa et al. (2000) considered a slightly larger set of this same test group, 34 tests from MCW and 
OSU. The present work is an extension of that study. A detailed examination of injury records in 
the NHTSA Biomechanics database indicated that for 5 of the 34 tests, pre-existing rib fractures 
were indicated in pretest examinations of post-mortem subjects. Those tests have been excluded 
from the present analysis. In addition, a sixth test was identified by NHTSA as having questionable 
data, and was also excluded. 
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 The average age at death among the 28 test subjects in Table 1 is 67.5 ± 13.6 years, with the 
youngest subject age 27, and the oldest age 84. The average age at death of subjects sustaining AIS 
≥ 3 injury is 70.9 ± 9.2, while the average for those with AIS < 3 is only 56.5 ± 16.4. This implies 
that age is a confounder (an independent variable that is associated with both the dependent 
variable and a risk factor under consideration) among risk factors influencing thoracic injury due to 
side impact, a result also arrived at by Kuppa et al. (2000). 

 

Table 1.  Side Impact Sled Tests with Post-Mortem Human Subjects 
Test 

  

Sex 

 

Age 

 

Mass 
(kg) 

Test 
center 

Test 
config. 

AIS rbfx 

 
3120 M 73 89 MCW RLF 4 15 

3122 M 27 72 MCW RLF 0 0 

3155 M 55 76 MCW RLF 3 11 

3276 M 70 71 MCW PLF 0 0 

3277 M 56 64 MCW PLF 2 2 

3278 M 50 93 MCW PHF 2 3 

3320 F 82 74 OSU PHF 4 33 

3321 F 75 42 OSU PHF 4 25 

3322 M 73 72 OSU RHF 4 12 

3323 F 59 81 OSU PHF 4 21 

3324 M 77 75 OSU RHF 4 34 

3325 M 63 61 OSU RHF 4 16 

3422 M 44 83 MCW RHF 2 3 

3423 M 49 62 MCW RHF 4 5 

3535 M 78 88 MCW RLO 4 13 

3536 M 84 76 MCW RLO 4 15 

3537 M 79 93 MCW RHO 3 12 

3538 M 74 77 MCW RHF 5 22 

3580 M 75 56 OSU PHF 3 16 

3586 M 79 146 OSU PHF 4 20 

3587 M 63 100 MCW PHF 4 17 

3588 M 72 66 MCW PLF 4 10 

3589 M 67 76 MCW PHF 3 11 

3661 M 74 51 MCW PLO 3 4 

3662 M 59 73 MCW PLO 2 2 

3664 F 67 74 MCW RLF 0 0 

3700 M 86 67 MCW RLF 3 9 

3719 M 79 53 MCW PLF 0 0 

Test center: MCW=Medical College of Wisconsin, OSU= Ohio State University (Vehicle 
Research Test Center); Test configuration:  R=rigid wall, P=padded wall, L=24kph impact, 
H=32kph impact, F=flat wall, O=offset wall; AIS=Abbreviated Injury Scale (1990); 
rbfx=number of rib fractures 
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 Table 1 indicates that about two-thirds (20) of the subjects sustained AIS ≥ 3 injury, while 
one-half (14) sustained an even higher level of AIS ≥ 4 injury. Hence, half of the subjects had 3 or 
more rib fractures on each side of the ribcage. Multiple fractures on the same rib were a common 
occurrence, with one subject incurring 34 rib fractures. It should be noted here that AIS does not 
distinguish between minor (hairline) rib fractures and displaced (disconnected) fractures. The AIS 
score for all of the 28 tests is attributable to rib fracture, and is the same as the maximum AIS 
(among all body regions) for a subject, which is denoted as MAIS. 

METHODS 

 The selection of risk factors, independent variables that might have an effect on the 
probabilistic outcome variable (thoracic injury), is limited by the available measured data, or 
quantities that can be derived from them. The measured data consist of local curvature of the 
thoracic cross-section, impact load forces, and acceleration measured at the sternum, ribs, spine, 
sacrum and pelvis. The curvature data can be used to calculate deflection, a biomechanically-based 
risk factor of major interest. Deflection can be calculated in a relatively straightforward manner 
from chest band contours. 

 The RBANDPC software module developed by NHTSA and included in NHTSA’s SIMon 
(Simulated Injury Monitor) computer program (Bandak, et al., 2001) was used to calculate chest 
band contours from the curvature data measured for each band. Contours were calculated at 1 ms 
intervals starting at 2 ms prior to the time of impact, over a total interval of 200 ms for each chest 
band. The time of impact was deduced from direct observation of raw curvature data, and from 
sample contours obtained for each test. A visual inspection of curvature and of each contour 
generated served as a useful check on the integrity of the data. Chest bands consist of 40 curvature 
gauges placed approximately 2.5 cm apart, along the entire length of a band. The bands are made 
with a fixed length to accommodate all possible test subjects, so some overlap is always present. 
Curvature gauges in the overlapped region were ignored in this analysis. Data from faulty gauges 
were omitted from the chest band calculations, an acceptable practice which merely decreases 
spatial resolution. The curvature data were not filtered by the post-processing software. 

 Sample chest band contours for a typical left side impact are illustrated in Figure 1, where 
contours are shown at 6 ms intervals. The spine (“o” symbol) is located near the bottom center of 
the figure, and the sternum (“x” symbol) near the top center. The origin of each contour (X=0, 
Y=0) is chosen arbitrarily as the point at which the band crosses the spine, where X is the lateral 
direction and Y is the anterior-to-posterior direction. 

 A lateral deflection deemed to be representative of side impact is defined as the maximum of 
the change in distance between three pairs of points located at specified fractional distances along 
the band length, proceeding in a clockwise direction and starting at the location of the spine. The 
three point pairs are defined at 20%-80%, 25%-75% and 30%-70% of the circumferential distance 
along the band, as shown in Figure 2. This definition of “lateral” deflection, which will be denoted 
as variable dmaxn, is consistent with that employed by Kuppa et al. (2000), and will also be 
referred to here as a “6-point” deflection. A value of dmaxn is calculated for each chest band 
contour, and is taken as the larger of the two values over all time for the upper and lower chest 
bands. Hence, dmaxn is the maximum of 6 distances, each representative of a local lateral 
deflection of the full thoracic cross-section. 

 The complete set of risk factors evaluated for possible use as thoracic injury correlates is 
given in Table 2. In addition to dmaxn, three alternate representations for deflection are listed in 
Table 2: (1) maximum “single-point” deflection at the anterior-posterior left side mid-point 
(latdefln), (2) maximum “point-by-point” deflection along all points on all contours (crdefln), and 
(3) spatial average of maximum deflection over time at each point on contours (avdefmxn). The 
maximum “point-by-point” deflection is taken as the maximum of the largest distance between a 
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point on a contour at time t and its initial position at t = 0, among all points on all contours over all 
time. Variable avdefmxn is a spatial average taken over the length of contours, of the maximum 
distance traversed by each point on a contour. This maximum distance will generally be nonzero 
for each point along a contour. Since avdefmxn is the average over all such points of this 
maximum, it accounts for deflection in all directions. 

  Due to the arbitrary position in space of each contour relative to the preceding contour, a 
lateral shift in Y-coordinates is performed prior to the calculation of variables crdefln and 
avdefmxn, such that the anterior-to-posterior “mid-point” on the left side aligns on each successive 
contour. This mid-point is computed at the initial time and is tracked with each contour at later 
times. The mid-point is defined simply as the leftmost point on the contour just prior to the initial 
time of impact. It is acknowledged that the shift in Y is chosen arbitrarily, and that the actual shift 
is unknown. Current chest band technology allows determination of the cross-sectional shape of the 
thorax, but not the position of the contour in space. 

 Table 2 also shows that the complete set of risk factors investigated includes spinal, rib and 
pelvic accelerations. However, it should be noted that acceleration is not considered to be a 
biomechanically-based risk factor for thoracic injury, since it alone cannot lead to the 
determination of the maximum stress experienced by the ribcage and internal organs of the thorax. 
Acceleration was included here for the sake of completeness and for comparison with results of 
similar studies. 

 

 

 

 
 
Figure 1:  Chest band contours for lateral impact. 
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Figure 2:  Locations along chest band for lateral deflection computation. 

 

Table 2.  Risk Factors Evaluated as Injury Correlates in Side Impact Analysis 

Symbol Description 

latdefln Maximum normalized lateral single-point deflection 

crdefln Maximum normalized point-by-point deflection along chest band contours 

avdefmxn Spatial average of maximum normalized deflection at each point along a contour 

dmaxn Maximum normalized deflection between points at 20% and 80%, 25% and 75%,  and 30% -70% 
along band, measured in a clockwise direction from spine 

crvmaxn Maximum normalized curvature along chest band contours 

crvdiffn Maximum normalized curvature difference along chest band contours 

spnlrsn Maximum normalized resultant lower spinal (T12) acceleration 

spnursn Maximum normalized resultant upper spinal (T2) acceleration 

spl100 Maximum normalized lower spinal lateral acceleration (FIR100 filter) 

spl180 Maximum normalized lower spinal lateral acceleration (SAE180 filter) 

rll100 Maximum normalized lower left rib lateral acceleration (FIR100 filter) 

rlu100 Maximum normalized upper left rib lateral acceleration (FIR100 filter) 

  pvsax,y,z,r Maximum normalized pelvic acceleration, all directions and resultant (FIR100 filter) 

asa10 Average Spinal Acceleration (ASA) over 10-90% peak velocity interval 

asa15 Average Spinal Acceleration (ASA) over 15-85% peak velocity interval 

asa20 Average Spinal Acceleration (ASA) over 20-80% peak velocity interval 

TTI Thoracic Trauma Index (TTI) 

Note:  Maxima for variables latdefln, crdefln, dmaxn, crvmaxn and crvdiffn apply to 
maximum of respective quantities for lower and upper chest bands. The value of 
avdefmxn is the maximum of spatial average for lower and upper bands. 
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 Lower (T12) and upper (T2) spinal accelerations (spnlrsn and spnursn are the resultant 
components, respectively) are filtered in accordance with the SAE Class 180 (SAE180) digital 
filter. The lower spinal lateral acceleration (spl180, spl100) is filtered with an SAE180 filter, and 
also with a finite impulse response (FIR100) digital filter having a passband frequency of 100 Hz. 
An FIR100 filter is also applied to the lower and upper rib accelerations (rll100, rlu100) in the 
lateral direction.  

 Average Spinal Acceleration, proposed as a risk factor for thoracic injury by Cavanaugh et 
al. (1993), is determined by first integrating the lower spinal lateral acceleration spl180 over time 
to obtain a velocity signature. The variables asa10, asa15 and asa20 are then calculated as 
averages of the slope of the velocity profile over time intervals corresponding to 10%-90%, 15%-
85% and 20%-80% of peak velocity. 
 The Thoracic Trauma Index TTI (Eppinger et al., 1984) is computed as 

 
1

1.4* ( ) *
2 75

mass
TTI age rib100 spl100

g
= + +  (1) 

where  max(1.3* 2.02, )rib100 rlu100 rll100= −  (2) 

Scaling of Risk Factors 

 All risk factors with the exception of ASA and TTI  are normalized so that they are 
nondimensional. Chest deflections are divided by the initial chest width at the elevation of a chest 
band. In the case of the 6-point deflection dmaxn, the deflection at each of the three lines of a given 
contour is divided by the initial chest width at the location of each individual line. Curvature data, 
having units of reciprocal length, are normalized by multiplying by the initial chest depth (spine-to-
sternum distance) at the chest band elevation. 

 Accelerations are scaled using the equal velocity-equal stress formulation described by 
Eppinger et al. (1984),  

 0.333

75
( )nom

mass
acc acc

kg
=  (3) 

where  accnom  is the unscaled acceleration and  mass  is the mass of the subject in kg. 

 The Average Spinal Acceleration ASA is normalized to account for variation in subject age 
and mass according to the equation 

  * *
45 75nom
age mass

ASA ASA
kg

=  (4) 

The Thoracic Trauma Index TTI is calculated using Eq. (1), which includes the influence of subject 
age and mass. The variables ASA and TTI  have units of g’s. 

Statistical Methods 

 The probabilistic outcome for a specified level of injury can be cast as a dichotomous 
dependent variable y, which is 0 for no injury and 1 for an observed injury. A commonly used 
method of fitting dichotomous data to an analytic function is the logistic regression, where the 
assumed form for the probability P for given values of independent variables 1 2 3, , ,...., nx x x x  is  

 

+ + + +

+ + + +
=

+

0 1 1 2 2 n n

0 1 1 2 2 n n

b b x b x .... b x

b b x b x .... b x
e

P
1 e

 (5) 

The independent variables 1 2 3 n(x , x ,x ,...., x )=x  constitute a set of risk factors and possible 
confounders (variables that are associated with both the dependent variable and one or more risk 
factors). 
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 The logit is defined as 
 0 1 1 2 2( ) ..... n nL b b x b x b x= + + + +x  (6) 

and is a linear function of the independent variables xi, where the coefficients bi are constants to be 
determined by regression. The probability of injury is then given by 

 

( )

( )1

L

L

e
P

e
=

+

x

x  (7) 

 Backward stepwise logistic regression is used to determine the set of xi that are statistically 
significant. In backward stepwise regression, the full set of risk factors for consideration is 
specified initially, and the regression process eliminates variables deemed to be statistically 
insignificant. Forward stepwise regression, where variables are added consecutively to the set x 
from an initial null set, is used to confirm the results of backwards regression. Statistical 
significance is evaluated by examining likelihood ratios and related statistics. Goodness of fit is 
assessed by consideration of several statistical measures such as the Hosmer and Lemeshow (1989) 
goodness of fit 2χ  and the Goodman-Kruskal (1954) gamma.  

 Linear regression is used to construct a model for prediction of the number of rib fractures. 
Commercial grade statistical analysis tools STATISTICA (Statsoft, Inc., 1997) and STATA (Stata 
Corp., 1999) were employed for the logistic and linear regressions performed in this study. 

RESULTS 

 A statistical analysis of the effects on thoracic injury of side impact test subject 
characteristics such as age, mass and gender, and of test conditions and test center has already been 
performed by Kuppa et al. (2000). Kuppa found that while gender and mass made little difference, 
subject age has a significant influence on injury outcome, and should be included in the set of 
independent variables xi as a confounder variable. The effect of subject mass is already accounted 
for in part by scaling individual risk factors to account for dimensional effects. 

 An analysis of 28 of the original 34 tests with post-mortem human subjects (5 of the 34 were 
excluded from this study, as explained earlier) also showed that the subject age at death has a 
considerable influence on injury outcome, and should be a confounder variable. Logistic 
regressions using the subject age and one or more risk factors showed consistently greater 
statistical significance compared with those not having age as a confounder variable (e.g.- for 
dmaxn, p-level = 0.0006 with age included vs. p-level = 0.0465 without age). Hence, age was 
always included as a member of the set xi in this study. 

 Separate logistic regressions were performed for each risk factor in Table 2 using age as a 
confounder variable. Regressions for P(AIS ≥ 3) for deflection-based and curvature-based risk 
factors, and for ASA and TTI, are given in Table 3. The form of the logit, standard measures of 
statistical significance, and commonly used benchmarks for analysis of goodness of fit are included 
in Table 3. Statistical significance is assessed by examining the magnitude of the term 2ln( )lr− , 
where lr denotes the likelihood ratio, a measure of the ratio of the likelihood that the complete 
model captures the data to that for a model not including the xi in the logit L (a “constant only” 
model). The larger the value of 2ln( )lr− , the higher is the statistical significance of the logistic 
model. According to the “null hypothesis”, where dependent variables would have no association 
with independent variables, the term 2ln( )lr−  has a Chi-squared distribution from which the 
probability of incorrectly rejecting the null hypothesis can be determined. The value of p in Table 3 
is the probability associated with the value of 2ln( )lr−  given a Chi-squared distribution, and 
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should be small (e.g., p < 0.05) for statistical significance. Table 3 also contains values of Pseudo 
R2 given by 

  2 1

0

L
1

L
Pseudo R = −   (8) 

where L1 is the log likelihood of the full model and L0 is log likelihood of the “constant-only” 
model. 

 Table 3.  Logistic Regressions for P(AIS ≥ 3) 

Logit of model for P(AIS≥3) 
-2ln(lr) 

 

p Pseudo 
R2 

2
H Lχ −  

 
H LP −  Kruskal 

Gamma 

-16.48 + 0.151 age + 24.07 dmaxn 14.92 0.0006 0.4453 10.59 0.2260 0.7875 

-9.94 + 0.111 age + 18.67 latdefln 11.61 0.0030 0.3467 5.76 0.6737 0.7625 

-14.46 + 0.119 age + 33.70 crdefln 14.96 0.0006 0.4465 11.36 0.1819 0.7750 

-12.66 + 0.124 age + 44.75 avdefmxn 12.92 0.0016 0.3856 12.74 0.1211 0.7375 

-38.11 + 0.285 age + 2.710 crvmaxn 24.73 0.0000 0.7382 1.89 0.9842 0.9500 

-15.38 + 0.128 age + 1.221 crvdiffn 16.85 0.0002 0.5031 4.88 0.7698 0.8500 

-1.643 + 0.074 asa10 6.61 0.0101 0.1973 10.41 0.2371 0.5625 

-1.834 + 0.068 asa15 6.49 0.0109 0.1936 5.10 0.7464 0.5500 

-1.111 + 0.043 asa20 4.36 0.0367 0.1303 8.39 0.3959 0.4500 

-8.434 + 0.052 TTI 11.50 0.0007 0.3432 5.29 0.7265 0.7500 

lr = Likelihood ratio; H-L = Hosmer and Lemeshow (1989) goodness of fit measures 
 

The form for Pseudo 2R  is due to Judge et al. (1985), and serves as a convenient measure of 
relative statistical significance. Pseudo 2R  ranges from 0 for a model with no significance to a 
maximum value of 1. The values of  Pseudo 2R  in Table 3 indicate that maximum normalized 
curvature has the highest statistical significance, and ASA-based variables have the lowest. This 
observation is also consistent with values shown for 2ln( )lr− and for p-level. 

 Table 3 includes results for two statistical measures of goodness-of-fit: (1) the Hosmer-
Lemeshow (1989)  Chi-squared statistic 2

H Lχ − , and (2) the Goodman-Kruskal (1954) Gamma (Γ). 

The Hosmer-Lemeshow 2
H Lχ −  is generally more effective than the Pearson residual in cases where 

the number of distinct covariate patterns J (number of distinct value combinations of the 
independent variables) is close to the number of observations N, which is indeed the case for the 
side impact data. The Hosmer-Lemeshow 2

H Lχ −  is defined by 

 
10

k 1
H L

2
2 k k k

k k k

(o n )
n (1 )=

−
− π

=
π −π∑X  (9) 

where nk is the total number of subjects for the kth group. The number of positive responses 

among covariant patterns in the kth decile, ok, is given by 

 
k

j 1

c

k jo y
=

= ∑  (10) 
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where yj is the observed number of positive responses in group k for covariate pattern 
j, and ck is the number of covariate patterns in the group. The average estimated probability for 
group k, kπ , is given by 

 
j 1

kc j j
k

k

ˆm

n=

π
π = ∑  (11) 

where ˆ jπ  is the predicted probability of occurrence of covariate pattern j. 

The Hosmer-Lemeshow 2
H Lχ −  statistic is essentially the application of the Pearson residual to data 

grouped into a relatively small number of consecutive bins, with 10 bins (the upper limit in Eq. 9) 
recommended for most data sets. A good fit of the model to the observed probabilistic outcomes is 
indicated by a small value of the 2

H Lχ −  residual. Generally, a value of  2 5H Lχ − <  indicates that the 
fit is quite good, although there are exceptions. Small but finite probabilities predicted by the 
model that ideally should yield a zero probability can sometimes result in larger than expected 
values of 2

H Lχ − . The value of probability associated with 2
H Lχ −  is also given in Table 3. The larger 

the value of H LP −  the better is the fit of the logistic regression model. 

 Results for the 2
H Lχ −  and H LP −  goodness of fit measures obtained by the STATA (Stata 

Corp., 1999) computer code are given in Table 3, and indicate that the best fits are associated with 
the curvature-based risk factors crvmaxn and crvdiffn. These results are consistent with the high 
measures of statistical significance for these variables. 

 A goodness of fit statistic, which is a measure of the association of predicted probabilities 
for unlike pairs of dichotomous outcomes, referred to as “Kruskal Gamma”, is also provided in 
Table 3. The Kruskal  Γ  is due to Goodman and Kruskal (1954), and is defined by 

 
nc nd
nc nd

−
Γ =

+
 (12) 

  
where nc is the number of concordant pairs and nd is the number of discordant pairs. All possible 
pairs of events having unequal dichotomous outcomes are considered among the observed data. All 
other event pairs are ignored in the calculation of Γ . An event pair is considered to be concordant 
if the positive outcome (injury=1) of the pair is associated with a higher predicted probability than 
that for the event with the negative outcome (injury=0). Conversely, a pair is considered to be 
discordant if the positive outcome of the pair is associated with a lower predicted probability than 
that for the negative outcome. The minimum value of  Γ  is -1 for the case in which nc = 0, and the 
maximum is +1 which occurs when nd = 0. The higher the value of Kruskal Γ , the better is the fit 
to the observed data, in terms of the proper association of unlike pairs of outcomes. 

 Table 3 shows that the largest values of Kruskal Γ  are obtained for the curvature-based 
variables crvmaxn and crvdiffn, a result consistent with the goodness of fit assessment based on the 
Hosmer-Lemeshow measure 2

H Lχ − . Large values of Kruskal Gamma ( 0.75Γ ≥ ) also result for 
logits employing the deflection-based risk factors dmaxn, latdefln, crdefln, as well as the Thoracic 
Trauma Index TTI. However, Table 3 shows that in terms of both statistical significance and 
goodness of fit, the curvature-based risk factors crvmaxn and crvdiffn are the best predictors of 
thoracic side impact injury. 

 The logistic regression for P(AIS ≥ 3) with crvdiffn as a risk factor and age as a confounder 
is illustrated in Figure 3, where the logit is given by 
 15.38 0.1278 1.221L age crvdiffn= − + +  (13) 
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Dichotomous outcomes for  AIS ≥ 3 are also shown in Figure 3, in addition to a five point moving 
average of the binary outcome. The moving average of  dichotomous outcome is seen to 
approximate the regression curve, and lies within the 95% confidence bands for the logistic 
regression. Goodness of fit for logistic regressions can be evaluated graphically by comparing 
observed and predicted cumulative counts of positive outcomes. The observed cumulative count for 

event j is given by 
1

j

i
i

D
=
∑ , and the predicted cumulative count  by  

1

j

i
i

P
=
∑ , where 

Di  = dichotomous event variable (0 or 1) for event  i 

Pi  = predicted probability at Li , /(1 )ii L
i

LP e e= +  

Li  = logit for event i, 0 1 1 2 2 ....
ii ii m mL b b x b x b x= + + + +  

m  = number of risk factors in logit  

In Figure 4 the summations 
1

j

i
i

D
=
∑  and 

1

j

i
i

P
=
∑  are plotted against Lj and compared for the logistic 

regression P(AIS ≥ 3) given by the logit in Eq. (13). The small differences between the two curves 

for 
1

j

i
i

D
=
∑  and 

1

j

i
i

P
=
∑ , the observed and predicted injury counts, serve as confirmation of a good fit 

for the logistic regression based on age and crvdiffn. 

 The statistical significance of maximum curvature difference can be verified using stepwise 
backward regression, where all independent variables are included as an initial set, with the less 
significant variables eliminated successively by the stepwise procedure. Prior to performing a 
stepwise regression, a determination should be made of risk factors that are strongly correlated. 
Variable groups that are strongly correlated should have only one member present in the initial set 
specified. Cross-correlation coefficients are given in Table 4, where each result applies typically to 
28 samples. In cases where data do not exist for all 28 tests for both variables of a variable pair, the 
number of samples was reduced to a number as low as 21. Only variable pairs including 
accelerations spnlrsn, spl100, spl180, rll100, rlu100 and pvsay (pelvic-sacrum resultant 
acceleration in the lateral direction) fall into that category. The correlation coefficients in Table 4 
generally show a relatively weak dependence among risk factors (typically, r < 0.6). The 
exceptions are variables of the same type: (1) deflections latdefln (single-point lateral deflection) 
and crdefln (maximum distance traversed among all points on contours), (2) curvature-based 
parameters crvmaxn (maximum curvature) and crvdiffn (maximum curvature difference), (3) lower 
spinal acceleration with different digital filters, spl100 and spl180, and (4) Average Spinal 
Acceleration asa10, asa15, asa20. Maximum curvature crvmaxn was excluded in favor of 
maximum curvature difference crvdiffn, which has the proper limit of zero prior to impact. The 
lower spinal acceleration spl180 with SAE180 filter was excluded in favor of spl100, which 
employs a finite impulse response filter (FIR100) usually applied to thoracic and pelvic 
acceleration data in side impact crash dummy testing. Since ASA variables asa10, asa15, asa20 are 
strongly correlated, only asa15 was selected in the initial set of xi for stepwise logistic regression. 
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Figure 3: Logistic regression of P(AIS≥3) as a function of age and 
maximum normalized curvature difference. 

 
 

 

Figure 4: Comparison of cumulative count of positive outcomes for 
logistic regression of  P(AIS ≥ 3).  
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Table 4.  Cross-Correlation Coefficients Among Risk Factors 
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latdefln 1.00 0.80 0.44 0.76 0.30 0.15 -0.07 0.57 0.03 -0.02 0.18 0.22 0.02 0.40 0.40 0.39 0.45 

crdefln 0.80 1.00 0.71 0.79 0.59 0.47 0.21 0.73 0.32 0.26 0.27 0.34 0.13 0.57 0.54 0.48 0.47 

avdefmxn 0.44 0.71 1.00 0.68 0.43 0.27 0.38 0.67 0.45 0.41 0.35 0.46 -0.03 0.42 0.44 0.39 0.40 

dmaxn 0.76 0.79 0.68 1.00 0.45 0.35 0.30 0.69 0.40 0.37 0.24 0.31 0.02 0.55 0.53 0.50 0.40 

crvmaxn 0.30 0.59 0.43 0.45 1.00 0.84 0.08 0.55 0.35 0.30 0.10 0.28 0.16 0.36 0.36 0.35 0.33 

crvdiffn 0.15 0.47 0.27 0.35 0.84 1.00 0.16 0.45 0.39 0.37 0.01 0.02 0.15 0.49 0.50 0.49 0.25 

spnlrsn -0.07 0.21 0.38 0.30  0.08 0.16 1.00 0.28 0.93 0.67 0.31 -0.04 -0.04 0.09 0.10 0.09 0.04 

spnursn 0.57 0.73 0.67 0.69 0.55 0.45 0.28 1.00 0.48 0.41 0.43 0.48 0.15 0.46 0.50 0.51 0.50 

spl100 0.03 0.32 0.45 0.40 0.35 0.39 0.93 0.48 1.00 0.99 0.29 0.05 0.04 0.32 0.31 0.38 0.26 

spl180 -0.02 0.26 0.41 0.37 0.30 0.37 0.67 0.41 0.99 1.00 0.26 0.05 0.01 0.29 0.29 0.35 0.21 

rll100 0.18 0.27 0.35 0.24 0.10 0.01 0.31 0.43 0.29 0.26 1.00 0.48 0.52 0.01 0.09 0.10 0.25 

rlu100 0.22 0.34 0.46 0.31 0.28 0.02 -0.04 0.48 0.05 0.05 0.40 1.00 0.13 0.08 0.11 0.09 0.61 

pvsay 0.02 0.13 -0.03 0.02 0.16 0.15 -0.04 0.15 0.04 0.01 0.52 0.13 1.00 0.15 0.13 0.09 0.16 

asa10 0.40 0.57 0.42 0.55 0.36 0.49 0.09 0.46 0.32 0.29 0.01 0.08 0.15 1.00 0.97 0.89 0.60 

asa15 0.40 0.54 0.44 0.53 0.36 0.50 0.10 0.50 0.31 0.29 0.09 0.11 0.13 0.97 1.00 0.94 0.64 

asa20 0.39 0.48 0.39 0.50 0.35 0.49 0.09 0.51 0.38 0.35 0.10 0.09 0.09 0.89 0.94 1.00 0.63 

TTI 0.45 0.47 0.40 0.40 0.35 0.25 0.04 0.50 0.26 0.21 0.25 0.61 0.16 0.60 0.64 0.63 1.00 

Note:  Risk factors are defined in Table 2. 
  
 Table 5 shows the results of stepwise backward logistic regression for the dichotomous 
outcome P(AIS ≥ 3), obtained using the STATA (Stata Corporation, 1999) computer code. When 
the initial set of independent variables xi included age as a confounder variable and all risk factors 
not having strong cross-correlation, only age and crvdiffn survived. This implies that maximum 
normalized curvature difference crvdiffn is the most statistically significant variable, and no other 
risk factors are required in combination with crvdiffn for a suitable description of P(AIS ≥ 3) using 
logistic regression. Variations in the order of specification of the initial set of variables xi did not 
alter the results of stepwise backward regression, nor did reducing the number of risk factors in the 
set. Results of forward stepwise regression, where variables are added successively based on 
statistical significance, gave results identical to those for backward regression. 

 
Table 5.  Results of Stepwise Backward Logistic Regression for P(AIS ≥ 3) 

Initial Set of Risk Factors  Surviving Risk Factors 

age latdefln crdefln avdefmxn dmaxn crvdiffn spnursn spl100 
rlu100 pvsay asa15 TTI age  crvdiffn 

age  crvdiffn  spnursn age  crvdiffn 

age  dmaxn  crvdiffn  age  crvdiffn 

Note:  Risk factors are defined in Table 2.  
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 Logistic regressions for P(AIS ≥ 4) are given in Table 6. Results for measures of both 
statistical significance and goodness of fit indicate that curvature-based risk factors crvmaxn and 
crvdiffn also lead to the best fits for the dichotomous outcome variable P(AIS ≥ 4). Results for 
maximum normalized 6-point deflection dmaxn also indicate good statistical significance and a 
good fit to the data. The value of goodness of fit measure H LP −   is surprisingly high at 0.9459 for 

TTI, although the statistical significance is not ranked high ( 2ln( ) 7.15)lr− =  among data for the 
risk factors considered. 

 Table 6.  Logistic Regressions for P(AIS ≥ 4) 

Logit of model for P(AIS≥4) 
-2ln(lr) 

 

p Pseudo 
R2 

2
H Lχ −  

 
H LP −  Kruskal 

Gamma 

-10.61 + 0.062 age + 18.98 dmaxn 10.95 0.0042 0.2821 9.39 0.3102 0.6877 

-6.94 + 0.045 age + 18.24 latdefln 8.13 0.0172 0.2095 5.61 0.6908 0.6020 

-12.65 + 0.056 age + 36.71 crdefln 13.23 0.0013 0.3408 8.26 0.4086 0.7143 

-10.06 + 0.064 age + 44.50 avdefmxn 9.45 0.0089 0.2435 9.78 0.2806 0.6327 

-9.37 + 0.069 age + 0.531 crvmaxn 9.81 0.0074 0.2527 6.35 0.6078 0.6122 

-9.30 + 0.059 age + 0.740 crvdiffn 11.68 0.0029 0.3008 4.66 0.7937 0.6531 

-2.39 + 0.061 asa10 7.36 0.0067 0.1896 7.37 0.4976 0.5204 

-2.27 + 0.049 asa15 6.64 0.0100 0.1711 4.89 0.7694 0.5306 

-1.99 + 0.038 asa20 5.82 0.0158 0.1500 7.50 0.4835 0.4694 

-6.02 + 0.031 TTI 7.15 0.0075 0.1842 2.81 0.9459 0.5204 

lr = Likelihood ratio; H-L = Hosmer and Lemeshow (1989) goodness of fit measures 
 
 The logistic regression for P(AIS ≥ 4) with independent variables age and crvdiffn is 
illustrated in Figure 5, with the logit having the form 
 9.304 0.0589 0.7403L age crvdiffn= − + +  (14) 
A comparison of cumulative counts of positive injury outcomes for the logistic model of P(AIS ≥ 
4) is shown in Figure 6. Both figures indicate that a logistic regression using maximum normalized 
curvature difference fits the data for P(AIS ≥ 4) quite well. 
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Figure 5: Logistic regression of P(AIS≥4) as a function of age and 
maximum normalized curvature difference. 

 

 

Figure 6: Comparison of cumulative count of positive outcomes for 
logistic regression of  P(AIS ≥ 4).  

 

Logistic Model Improvement 

 The independent variables 1 2 3 n(x , x ,x ,...., x )=x  considered here as risk factors for 
thoracic injury are all quantities that assume either zero or positive values. As a consequence of the 
form for the logistic regression, Eq. (5), a nonzero probability of injury will result when the risk 
factors are all zero. Specifically, this probability is given by  
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Hence, a finite probability of injury will be obtained for zero risk factor, e.g., the undisturbed state. 
If the constant b0 is negative with a large magnitude, the predicted value of P(x = 0) can become 
extremely small. However, there is no guarantee that this will be the case, since b0 is the result of 
the logistic regression procedure, and is unalterable for a given set of data. A technique that can be 
used to improve the fit of the model at low values of risk factor is to apply logarithms to the 
independent variables in the logit form, 
 0 1 1 2 2( ) ln( ) ln( ) ..... ln( )n nL b b x b x b x= + + + +x  (16) 

In the rare event that an individual risk factor xi is identically zero, a small tolerance value (e.g., 
10-6) can be used in place of xi = 0 in Eq. (16). Normally, the xi always have positive values for 
crash test data, since they are maxima over all time of some measured quantity believed to be 
representative of thoracic injury.  

 Logistic regressions were performed for all risk factors using the logarithmic form given by 
Eq. 16. It was observed that the effect of employing logarithms of risk factors in logistic 
regressions is to slightly improve both the goodness of fit and statistical significance, as shown in 
Table 7 for logits comprised of age and maximum curvature difference. Figures 7-10 also show a 
slight improvement in the fit of the logistic models for P(AIS ≥ 3) and P(AIS ≥ 4) when logarithms 
are employed. When all other risk factors are zero, the effect of a large number for subject age 
(e.g., 90) is to increase the probability of injury for an undisturbed thorax to some value above 
zero. This effect is eliminated when logarithms are applied to the risk factors. For example, if the 
linear form of the logit, Eq. (6), is used with the logistic regression employing age and maximum 
curvature difference, the probability of thoracic injury for a 90 year old is 2.1% for the undisturbed 
state. However, when the logarithmic form of the logit is used, Eq. (16), the predicted probability is 
0.0% for an undisturbed thorax. This benefit is realized despite the fact that the constant b0 is a 
relatively large negative number for the regressions using maximum curvature difference. Model 
improvements were more significant for risk factors other than curvature difference, since the 
estimated probabilities of injury for an unimpacted thorax are generally higher for other risk factors 
(e.g., for dmaxn, P(AIS ≥ 3) is 5.3% for an undisturbed thorax of a 90 year old). Maximum 
normalized curvature difference is preferred over maximum curvature as a risk factor, since 
curvature itself has an undesirable lower limit of a finite value for its maximum in the undisturbed 
state. Although the 95% confidence bands of the logistic regressions are relatively wide for low 
values of the logit (as a consequence of the small number of samples), it is still reassuring that the 
model has the proper limit in this region. 

Table 7.  Logistic Regressions With and Without Logarithms Applied to the Independent Variables 

Logit of model -2ln(lr) 
 

p Pseudo 
R2 

2
H Lχ −  

 
H LP −  Kruskal 

Gamma 

P(AIS≥3) 

-46.63 + 7.866 ln(age) + 8.025 ln(crvdiffn) 17.91 0.0001 0.5347 5.41 0.7124 0.8750 

-15.38 + 0.128 age + 1.221 crvdiffn 16.85 0.0002 0.5031 4.88 0.7698 0.8500 

P(AIS≥4) 

-25.32 + 3.620 ln(age) + 5.201ln(crvdiffn) 11.89 0.0026 0.3063 5.28 0.7278 0.6735 

-9.30 + 0.059 age + 0.740 crvdiffn 11.68 0.0029 0.3008 4.66 0.7937 0.6531 

 
 The results of stepwise backward logistic regression did not change when logarithms of risk  
factors xi were employed. Subject age and maximum curvature difference were still the only 
surviving independent variables. The results shown in Table 5 apply to both linear and logarithmic 
forms of the logit. 
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Figure 7: Logistic regression of P(AIS ≥ 3) using logarithms of age and 

maximum normalized curvature difference. 
 
 
 

 
Figure 8: Comparison of cumulative count of positive outcomes for 

logistic regression of  P(AIS ≥ 3) using logarithms of age and 
maximum curvature difference. 
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Figure 9: Logistic regression of P(AIS ≥ 4) using logarithms of age and 
maximum normalized curvature difference. 

 
 
 

 
Figure 10: Comparison of cumulative count of positive outcomes for 

logistic regression of  P(AIS ≥ 4) using logarithms of age and 
maximum curvature difference. 

 

Linear Regression for Number of Rib Fractures 

 Side impact injury data also includes the number of rib fractures sustained by the post-
mortem human subjects. It is of interest to determine whether maximum normalized curvature 
difference can be used to estimate the number of rib fractures using a linear regression model. For 
simplicity, a single independent variable is employed, scaled linearly with age,  
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 1 *( / 45)x crvdiffn age=  (17) 
Scaling the risk factor linearly with age removes the troublesome effect of a zero value of risk 
factor leading to a positive number of rib fractures, resulting from the use of a linear combination 
including age. A linear regression for the number of rib fractures rbfx is sought, where 

 0 1 ( / 45)rbfx b b crvdiffn age= +  (18) 

The results of linear regression using independent variable *( / 45)crvdiffn age  are shown in Table 

8, where the constant coefficients were calculated as b0 = -8.248 and b1 = 1.835. The p-value for 
this regression is small at 4 x 10-6 , and the 2R  sufficiently large at 0.55, indicating good statistical 
significance. The linear regression for the number of rib fractures is shown in Figure 11, and is 
seen to exhibit a higher degree of scatter than logistic regressions for dichotomous injury outcomes. 
This is an expected result, since it is more difficult for a model to predict the exact number of 
fractures, especially in light of the fact that the severity of individual fractures (hairline vs. 
displaced) is not accounted for in the injury scoring. 
 

 Table 8.  Linear Regression for Number of Rib Fractures 

Linear regression for number of 
 rib fractures 

n 
 
 

P-value of  
F-stat 

R2 Adj. R2 Std. 
Err. 

rbfx = max ( -8.01 + 1.82 crvdiffn (age/45) , 0) 28 3.60 x 10-6 0.5685 0.5519 6.347 
 
 
 
 The linear regression given by Eq. (18) yields a negative value of rbfx for sufficiently small 
values of maximum curvature difference, 
 0 1( / )(45 / )crvdfn b b age< −  (19) 
This suggests that a threshold applies to crvdiffn, whereby it is necessary to exceed some finite 
level of curvature difference in order to reach the fracture stress of the ribcage. In light of such a 
threshold, a maximum of zero should be applied to the estimated number of fractures such that the 
value of rbfx cannot become negative if crvdfn falls below the threshold. Hence, the full 
description for rbfx becomes 
 max( 8.248 1.835 ( / 45), 0)rbfx crvdiffn age= − +  (20) 

The values for linear regression coefficients b0 and b1 imply that the threshold value of crvdfn for 
the onset of rib fracture is given by 

 202.3 /thresholdcrvdfn age=  (21) 

Hence, an older subject has a lower threshold of maximum curvature difference.  
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Figure 11: Linear regression for number of rib fractures using maximum 

curvature difference scaled by age. 
 

CONCLUSIONS 

 The most serious thoracic injuries are rib fractures, or soft tissue injury associated with 
hemopneumothorax, which is caused by rib fracture. Injury test scores for the maximum value of 
the Abbreviated Injury Scale (AIS) correspond to rib fracture for all 28 side impact crash tests 
analyzed in this study. 

 Results of statistical analysis showed that subject age at death has a significant influence on 
injury sustained in side impact. The effect of age can be attributed to the change with age in 
material properties of bone, with the fracture stress of human bone tissue decreasing with 
increasing age.  
 Logistic regressions serve as effective models for thoracic injury characterized by 
categorical outcomes for AIS, and lead to both statistical significance and good fits to the measured 
data. Among an extensive set of risk factors considered, including deflection-based and 
acceleration-based risk factors, only the age confounder and maximum normalized curvature 
difference (with respect to the curvature of the undisturbed thorax) survive as independent 
variables in stepwise backward and forward logistic regressions. Individual logistic regressions 
employing age as a confounder variable and a single risk factor have reaffirmed that models 
employing maximum curvature difference have the highest degrees of statistical significance and 
the best fits to observed data for dichotomous injury outcomes P(AIS≥3) and P(AIS≥4). 

 Probabilistic models based on logistic regression have the property of yielding finite 
probabilities when all of the independent variables are nonzero. A method that can be used to 
improve the behavior of logistic regressions for very low values of risk factor is to apply 
logarithms to all independent variables in the logit. Model predictions for zero risk factor (e.g., an 
undisturbed thorax) result in a zero probability of injury using this technique, with accompanying 
improvements in overall goodness of fit and statistical significance.  
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  Maximum curvature can be envisioned as a function of the maximum stress reached within 
the thorax, and as such, curvature can be conceived of as a biomechanically-based risk factor for 
thoracic injury. The same cannot be said of acceleration-based risk factors. 

 The use of curvature as an injury criterion in crash dummy testing presumes that the 
compliance around the entire perimeter of a dummy torso can be related to that for a human 
subject. Ideally, relationships must be found between curvature as measured on a dummy and as 
determined from post-mortem human subjects, or models should be formulated for the calculation 
of curvature as a function of dummy-based measured quantities. It is suggested that both tasks be 
carried out in future research activities relating to the assessment of thoracic injury due to side 
impact. 
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DISCUSSION  

PAPER:  Side Impact Rib Fracture Injury Analysis 
 
PRESENTER: Paul Masiello, JAYCOR 
 
QUESTION:  Richard Kent, UVA 
 One comment, one question, maybe.  The comment is: I’m surprised that you’re 

able to get maximum curvature to emerge as an independent predictor separately 
from deflection given that you’re not changing, really, the boundary condition too 
much at the side impact with a plate kind of a thing; and so, you would expect 
those things to be pretty co-linear.  So, I’m surprised that they do provide unique 
information. 

 The second–The question I have is: We’ve done similar kinds of analyses on our 
frontal impact data, and we found extreme sensitivity to one or two subjects 
where you may have an excessive curvature or something, often can be a remnant 
of the chest band or other factors related to the test.  Did you–given the fairly low 
n of 25 or 28 or something–Did you do a sensitivity analysis because we found 
sensitivities even to one or two subjects with our data set, which was, I think, 
maybe around 40.  So, maybe a little higher numbers, and we still saw 
sensitivities just due to one or two subjects.  And, I wonder if you have an effect 
like that in your data and if you looked for that? 

ANSWER: Well, the first question–The first question: Deflection doesn’t appear to be 
necessary with the use of maximum curvature.  I’ve seen some correlations that 
seem to do well with both.  But the fit’s so good anyway; it appears that 
deflection’s not needed in the presence of the curvature.  That’s the case where a 
simple beam–I know, of course, the thorax is a lot more complicated than that as 
a shape.  But, it just might be that curvature alone can, can make the 
determination. 
Second question: No, I haven’t really been able to do any kind of sensitivity study 
on a number of samples.  Could be that you could get some effects.  I’m sure the 
results would be different.  We just need more samples to, to evaluate. 
 

Q:   Guy Nusholtz, Daimler/Chrysler 
 Your plots–your logistic plots: You’re merely plotting numbers against numbers, 

so every single curve is the same regardless of what your logistic functions.  

A: If you plot it against the logic, that’s true. 

Q: So, it almost becomes–The only way a plot, then, can show anything meaningful 
is to break it into the multi-dimensional space and then plot several plots to show 
what the effect is.  Then, you can get a better feel for where it is– 

A: Yes. 

Q: –As opposed the moving average.  It’s just a suggestion in terms of that.  Did you 
check for any cross terms in your logistics? 

A: No, we did not check for cross terms. 

Q: (inaudible) 
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A: The Rolf Epigenger’s study showed that that wasn’t beneficial to do, and we had a 
limited time, so we didn’t do that. 

Q: Okay.  And, the third question is: It looked like age is your dominant–It looked to 
me, at least–and I haven’t done the analysis, but it looked like age is the 
dominant parameter and so your risk function might just be age. 

A: Well, to a large extent.  

Q: Just be young and you’re safe. 

A: To a large extent age is important, but age is probably not correlated to the other 
risk factors, which is a good thing.  And, I’d like to downplay the stepwise logistic 
progression–stepwise regression because actually it could be misleading because 
if you have–Stepwise just looks at–The first variable it finds it appears to be the 
most statistically significant. Stays with it and adds other ones.  But if that first 
variable is a linear, is a correlate of some linear combination of the other risk 
factors, it could leave a misleading result.  So while the result of stepwise 
regression is gratifying because it’s in agreement with everything else, it’s not the 
final answer to making assessments. 

Q: And with that in mind: Did you look at your variables without age to run 
correlated tests?  Do you still get the same ring quarterly? 

A: Without age: No, we just did a few cases, as was shown in the table and we saw 
that the, you know– 

Q: Was degraded. 

A: As statistically significant.  So, we didn’t deal with that.  Just age alone. 

Q: Thank you. 
 
Q: Jeff Crandall, University of Virginia 
 Paul, I had a question for you.  In terms of what Rich Kent mentioned earlier, in 

terms of a couple cadavers giving you, maybe, outliers: I was wondering whether 
you could determine whether curvature was sort of a cause or effect variable?  In 
other words, if you had failure of the thorax, you might have large changes in the 
curvature subsequent to failure.  And, have you given any thought to that? 

A: No.  Not really.  The cause and effect is really hard to show in any case.  All of 
this–All of these statistics just show associations relationships.  They don’t show 
cause and effect.  That’s something more you have to appeal on the physical 
grounds and have to look at a lot of different data to see if, you know, your results 
are consistent among different data sets to do cause and effect.  We only have 28 
samples right now. 

Q: Good.  Thank you.  
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