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ABSTRACT 

Many and multiform are the experiments that have been conducted to allow extraction of injury risk 
functions. In particular, human surrogate impact test results are commonly mapped into injury risk 
curves for the purpose of characterizing the stimulus injury response over a given range. However, 
it is not always clear that the quality and quantity of the data along with the experimental design 
are sufficient to reliably determine the desired outcome. Therefore it is desirable to obtain some 
form of guidance, or heuristic rules, as to the usability and appropriateness of injury risk curves 
with respect to sample size, stimulus distribution over the critical range, censoring, shape of the 
underlying risk function, and the inclusion of “actual” (uncensored) along with censored data. To 
accomplish this goal the Consistency threshold and Extended Consistency threshold methods along 
with Monte Carlo simulation are used to evaluate the experimental design of human surrogate 
testing. The results imply that the total amount of tests needed to generate a risk curve with a given 
confidence bound is dependent on the shape of the risk function along with the stimulus distribution 
over the critical range.  This dependence can also be a function of the relative contribution of 
censored and actual data. However, the results from this analysis also indicate that for “large” 
biomechanical injury data sets there is no advantage to using actual data; censored data will yield 
the same injury risk curve as actual data.  Therefore, for “small” biomechanical injury data sets 
the inclusion of actual data will significantly improve the quality of the resulting risk curve but not 
for large data sets. Confidence intervals are presented for the thoracic injury risk and the head 
injury risk to show the influence of data distribution on the goodness of the risk function estimation. 

INTRODUCTION  

he development of human tolerance levels is a difficult task, but one that is essential for the 
assessment of automotive restraint systems.  The main reason for its difficulty is the necessity 
to obtain injury tolerance information through indirect methods such as Post Mortem Human 

Subjects (PMHS) or animal testing resulting in undefined system specification errors.  In addition, 
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the limited amount of data, the high variability, and the inherent complexity of performing 
biomechanical (PMHS) tests presents additional challenges.  Along with the quality and the 
quantity of injury data, the characteristics of the data and the experimental design are critical 
factors for the goodness of the risk curve estimation itself. 

For example, an important characteristic of many biomechanical impact data sets is their 
censored nature (Mertz, 1996). Censored data are biased in one direction or another.  The sign of 
the bias is known but not the magnitude.  This complicates the applications of conventional 
techniques since these methods assume data to be free from bias. Lately, some biomechanical 
laboratories have started using devices, (such as an acoustic device) that can obtain the actual time 
and stimulus in which the injury occurs during a test.  The availability of actual data (instead of 
only censored data) should theoretically improve the estimation of the underlying risk function. 

A common approach to estimate the underlying (unknown) distribution from 
censored/actual biomechanical data is to assume a form for the injury risk distribution (Ran et al., 
1984, Hertz, 1993). The parameters that control the shape of the assumed distribution are fit using 
some kind of optimization technique such as maximum likelihood or least squares.  However, 
many of the advantages and desired properties of parametric approaches are lost if the form of the 
risk distribution is not appropriate. 

Moreover, in a previous paper (Di Domenico et al., 2003), it has been shown that the injury 
risk function of biomechanical injury data could present drastic changes in slope. For example, it 
could resemble a step function in some part of the stimulus interval used.  In the same paper, it has 
also been emphasized that usually there is no basis for the underlying distribution - all these 
characteristics should encourage the use of non-parametric models specific for censored/mixed 
data.  A non-parametric estimate (appropriate for censored/mixed data and with the maximum 
likelihood property) has the flexibility to be closer than the parametric estimate to the actual 
distribution, in particular at the extreme values of the stimulus - since it is not constrained by a 
prior specified risk form. 

Among all the non-parametric methods for censored/actual impact data, the only one that 
has the appealing statistical property of being a maximum likelihood estimate is the Consistent-
Threshold (CT) for double censored and the Extended-Consistent-Threshold (ECT), for a mix of 
double-censored and actual data (Nusholtz et al., 1999). For all the reasons above, the CT/ECT 
estimation methods have been considered for this simulation study.  In this paper, injury risk curves 
will be analyzed in terms of their usability and appropriateness with respect to:  sample size, 
censoring, shape of the underlying risk function, the inclusion of actual along with censored data, 
and stimulus distribution over the critical range (i.e. the interval that spans from the highest 
stimulus value for which there is no injury to the lowest stimulus value for which there will be 
always an injury).  

 NOTATIONS AND TERMINOLOGY 

A stimulus value associated with a specific test is considered to be right censored  if 
neither serious-injury (i.e.  MAIS 3+) nor death is observed at the end of the test itself.  For such 
tests, the loading stimulus values used were not enough to cause the event of interest (injury/death), 
and for this reason these tests are also called losses.  If at the end of the test an injury/death is 
observed, the test is considered to be left censored, since the actual (unknown) threshold value that 
caused the injury is at most equal to the loading stimulus value used, i.e., the actual value is to the 
left of the one used. In some cases, it is possible to infer from the time history of an injury test the 
exact (actual) threshold value that causes the injury,  in such case, the test data is called actual. A 
data set that includes both right censored and left censored  observations is called doubly censored. 
A data set that includes right censored, left censored  and actual observations is called mixed. 
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The following notation will be used:   
• T a random variable denoting the loading stimulus threshold value (e.g., Axial Femur Force, 

Thoracic Peak Acceleration, HIC value, etc.) at which the event (injury) occurred.  
• nttt ,,, 21 L  a sequence of loading stimulus values used by the experimenter.  

• nddd ,,, 21 L  the number of left-censored (serious injuries/deaths) observations at each 
loading stimulus value.  There were dk deaths (serious injuries) at the end of a test in which 
the experimenter used a maximum stimulus value tk, with k=1,2,...,n. This implies that for 
dk tests the actual threshold value is at most  tk.  

• nlll ,,, 21 L  the number of losses at each loading stimulus value.  There were lk losses at 
loading stimulus value  tk.  

• naaa ,,, 21 L  the number of death/serious injuries at each loading stimulus value.  There 
were ak deaths (serious-injuries) at loading stimulus value  tk.  

• S(t) is the survival function at T=t, that is, S(t) = Prob{T = t}.  
• R(t) = Prob{T < t} is the cumulative injury probability (risk function) at the loading stimulus 

value T=t.  
• kR

~
 will denote either CT or ECT Risk function estimate at  tk.  

      •   kS
~

 will denote either CT or ECT Survival function estimate at tk. 

DESIGN OF THE SIMULATION STUDY 

The simulation study was designed so that it reflects practical applications of 
biomechanical data risk estimation.  Synthetic (hypothetical, artificial) data was created that 
mimics the results from a series of biomechanical tests in terms of a peak stimulus result and if 
injury occurred.  The synthetic data does not represent any single test series but resembles a generic 
(hypothetical) test series.  For example, assume a three-point bending test in which a femur is 
supported at both ends and a weight is dropped in the middle.  The peak of the contact force 
threshold of the weight would be the stimulus and if there is a fracture it is an injury.  The synthetic 
data is created through a Monte Carlo method.   

Underlying Risk Functions 

Before choosing a specific distribution for the underlying risk function, it is necessary to 
study if trends and insights from the Monte Carlo simulation could be sensitive to this choice.  To 
address this issue, both discontinuous and parametric risk functions were used; for example, the 
parametric models considered include the Gamma, the Weibull, the lognormal, etc.  (Figure 1). It 
has been noticed that the general -CT estimation error- result did not depend on the risk function 
family chosen, but it depends on the overall rate of increase over the stimulus range.  This is 
mainly due to the fact that CT is a non-parametric estimation method so that its performance is not 
influenced from the particular underlying (parametric) risk function used.  As such, no loss of 
generality will occur if only one set of risk functions are used - the normal risk functions. 

Therefore, the focus will be on the results for three normal risk functions:  all three with 
mean 10, but with different standard deviation (stdv), i.e., stdv=1,3,5 (Figure 2). Thus, all three risk 
functions considered have the same mean survival stimulus value (10 units) but the risk (of injury) 
increases at different rates (as the stimulus value is increased). The slowest risk increase is 
represented by a standard deviation of five and the steepest risk increase is represented by a 
standard deviation of one.  If any biomechanical stimulus risk function would be normalized to a 
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stimulus range of 20 units, then the range of standard deviation values considered encompasses the 
common/usual rate of risk increase observed for biomechanical injury data. 

 

 
Figure 1:  Common Risk function models. 

 
 
 

 
 

Figure 2:   Risk functions used in the simulation study. 
 

 
Sample Size (N) and Number of Actual Data (A) 

Rarely biomechanical impact data sets get above 100 samples, and in many cases they are 
significantly smaller.  To encompass the general range of sample size, a factorial arrangement with 
sample size N=10,20,30,40,50,60,70,80 and actual sample size A=5*i, for i=0,1,2,...,16 is used.  In 
particular, a data set in which N=20 and A=0 (i.e.  i=0), consists of 20 samples all censored (i.e.  no 
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actual data). While, a data set in which N=30 and A=5 (i.e.  i=1) consists of 30 samples of which 5 
are actual and 25 are censored.  
 
Simulation Procedure 

N samples (pseudo-random numbers) of possible injury values were generated from the 
normal underlying risk function with mean 10 and stdv (where stdv=1,3,5). Of the N samples, only 
A will be used in the risk analysis as actual data; the remaining (N-A) will be censored.  This 
implies that (N-A) “censored values”, instead of the actual values, will be used in the risk 
estimation. To generate the censored test value, pseudo-random numbers were uniformly drawn 
from the interval (2, 20). Then, each of the (N-A) pseudo-normal injury values was compared with 
a pseudo-uniform number (test value). If the sampled injury value was below the sampled 
(censored) test value the observation was considered to be an injury (left-censored), otherwise it 
was a no-injury (right-censored).  

METHODS 
Underlying Risk Estimation 

For each combination of N, A and stdv, the underlying risk normal function was estimated 
using a non-parametric method:  The CT method when all the data were censored (A=0) and the 
ECT method when some of the data were actual (A>0). The CT method is a non-parametric 
maximum likelihood method that provides an estimate of the distribution function of doubly 
censored  data.  A description of the CT method and an easy algorithm to compute the CT estimate 
of the risk function of doubly censored data is presented in (Di Domenico et al., 2003). The ECT 
method is the extended form of the CT method that can be used to handle data sets that include 
both doubly censored and actual observations (see Appendix). The method to evaluate the 
confidence intervals for the CT/ECT estimates is also presented in the Appendix. 

Evaluation of Risk Estimation Error 

The risk estimation performance has been evaluated using two different metrics, L1 error 
and L2 error:   
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In particular, the results are presented in terms of percentage of L2 (error) defined by:   
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The L2 error is the most used metric to evaluate the estimate performance, and by the Holder 
inequality (Chung , 1974), the following relationship will hold between L1 and L2:   
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  { }21 20 LL ⋅≤  (4) 
so that the upper bound of the L1 error could be estimated from the L2 error.  However, the exact 
L1 error is also reported since the mean stimulus value that will cause an injury (µ) is related to the 
survival function by the following (see Appendix):   
 

  ∫ ∫== dxxSdxxS )()(µ  (5) 

Thus the L1 error will provide an upper bound estimate of the error that occurs when the mean 
stimulus value µ is evaluated using the risk estimate (instead of the real underlying risk function). 
For each combination of N, A, and stdv, 100 simulations were run to evaluate the average L1 error 
and L2 error incurred in estimating the underlying risk function.  

RESULTS 

In this section, both the results of the simulation analysis (first subsection) and the results 
of “real” biomechanical data risk analysis (second subsection) are reported.  

Results of the Simulation Analysis 

Figures 3 to 10 present the mean L1 error and the (percentage of) mean L2 error of the risk 
function estimation as function of the sample size.  From these plots it is evident that the estimation 
error is a decreasing function of the total number of biomechanical data (censored and actual) used 
for the estimation. Moreover, for the same number of samples, the L1 and L2 errors decrease as the 
number of actual data available increases, or in other words, as some of the censored data are 
substituted with their actual values. 

In each plot, the distance between the lines decreases as the sample size increases.  This 
implies that the quantity of information conveyed by the actual data beyond the one provided by 
the censored data decreases as the total sample size increases.  In particular, availability of actual 
data is very influential to improve the estimation risk based on limited (less than 20) censored 
injury samples.  Increasing the sample size decreases the difference, in terms of error estimation, 
between actual and censored injury data.  When the biomechanical data set is moderately large 
(more than 50 injury points), there is no substantial improvement in terms of estimation 
performance when some of the censored data is substituted with actual injury data (Figure 9). Also, 
when the available biomechanical data consists of about 30 samples of which about half are actual 
injury data there is no significant improvement as the percentage of actual data is increased. 

Comparing Figure 3 with Figures 4 and 5 it is noticed that the diamond-solid line in Figure 
3 is above the diamond-solid line in Figure 4 and it is consistently above the diamond-solid line in 
Figure 5. In general, for each type-line considered, the line plotted in Figure 3 is above the one (of 
the same type) plotted in Figure 4 and this is above the line (of the same type) plotted in Figure 5. 
Since the only difference among the three plots (Figures 3, 4 and 5) is the standard deviation value 
of the underlying risk function (i.e. stdv ranging from 1 to 5 units), the estimation error is a 
function of the shape of the underlying risk function:  the greater the average slope of the risk 
function the smaller the number of samples (censored, actual, or a mix of both) needed to obtain a 
good estimation.  Also, the greater the average slope of the risk function the greater the difference 
in estimation performance between censored and actual injury data. 
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Figure 3:  Results of the simulation study.  Percentage of  EQ L2 error as function of the total number of 
samples for the case in which the standard deviation of the underlying risk function is five, i.e., stdv=5. 

 
 

 
Figure 4:  Results of the simulation study.  Percentage of  EQ L2 error as function of the total number of 
samples for the case in which the standard deviation of the underlying risk function is three, i.e., stdv=3. 

 
 
In Figures 3-10 are plotted the estimated mean L1 and L2 errors; the variance of these 

estimated errors can be substantial when the number of samples is limited.  In general, the variance 
of the L2 error and L1 error decreases as the number of samples (or the number of actual data) 
increases.  The estimated 95% upper bounds for the percentage of L2 error are reported in Table 1 
(Appendix). Table 1 shows that to insure (at 95% confidence level) an estimation error less than 
5%, it is necessary to have either about 60-70 censored data or 20 actual data when the underlying 
risk function is slowly increasing, (i.e.  stdv = 5); less data is needed for steeper risk functions (i.e.  
stdv = 1, 3). 

 
Finally, in all the simulations the threshold injury values used by the experimenter are 

assumed to be evenly (uniformly) distributed in the stimulus range where the risk function 
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increased from about zero to almost 100% (critical range). Usually this does not happen for the real 
data, where the data could contain gaps (see, for example, the injury data analyses reported in the 
next sub-section). A preliminary analysis has shown that moderate changes of the threshold 
stimulus range do not affect the final results.  More precisely, if the threshold region considered 
includes the region where the risk ranges from 10% to 90%, then there is no substantial difference 
in the estimation performance. However, if the stimulus range considered is restricted/shrunk or 
shifted substantially, the (overall) estimation error will increase; the further the considered range is 
decreased/shifted, the greater the (overall) estimation error will be.  In particular, the error will be 
substantial in the region where there is a limited amount of data to perform the risk estimation.  For 
example, if we consider the risk estimation for the maximum normalized thoracic deflection 
(Figure 11) or the peak head acceleration (Figure 12), the confidence intervals for the lower risk 
estimations are larger than the ones for the higher risk estimation (for which more data is 
available). 
 
 

 
Figure 5:  Results of the simulation study.  Percentage of  EQ L2 error as function of the total number of 
samples for the case in which the standard deviation of the underlying risk function is one, i.e., stdv=1. 

 

 
Figure 6:   EQ L1 error as function of the total number of samples when the standard deviation of the 

underlying risk function is five, i.e., stdv=5. 
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Figure 7:   EQ L1 error as function of the total number of samples when the standard deviation of the 

underlying risk function is three, i.e., stdv=3. 
 

 
Figure 8:   EQ L1 error as function of the total number of samples when the standard deviation of the 

underlying risk function is one, i.e., stdv=1. 

 
Figure 9:  Percentage of  EQ L2 error as function of the total number of actual samples (A) when the standard 

deviation of the underlying risk function is five, i.e., stdv=5. 
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Figure 10:   EQ L1 error as function of the total number of actual samples (A) when the standard deviation of 

the underlying risk function is five, i.e., stdv=5. 
 

 
Results of the Biomechanical Data Injury Risk Estimation 

Thoracic Injury Risk Curve.  
Thoracic risk functions and tolerance limits have been based on results from the analysis of 

seventy-one PMHS frontal impact tests.  Details of the experimental procedure and test results can 
be found in Kuppa et al. (1998). As suggested by Prasad (1999) the following tests have been 
removed from the data set for analysis purposes:  ASTS96, ASTS97,ASTS103, ASTS250, 
ASTS259 (performed at University of Virginia) and the test RC104 (performed at the Medical 
College of Wisconsin). Thus six tests have been removed and the remaining tests have been 
augmented with the tests from Kallieries et al. (1995). This final data set has been used to perform 
the CT estimated risk curve of serious-to-fatal PMHS thoracic injury as a function of maximum 
normalized deflection.  The CT estimated risk of PMHS thoracic injury and the 90% confidence 
intervals are presented in Figure 11. The confidence intervals are large for the lower stimulus 
values where the amount of data is limited and it is not uniformly distributed. 
 

 
Figure 11:  CT estimate and Confidence Intervals for the Serious-to-Fatal Thoracic Injury Risk. 
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Head Injury Risk Curve. 

In Figure 12 is presented the CT estimated PMHS head injury risk and the 90% confidence 
intervals as a function of the peak resultant head acceleration.  The risk estimation is based on the 
PMHS data reported in Mertz et al. (1996). Also, in this case the confidence intervals are large for 
the lower stimulus values where the amount of data is limited.  For the higher stimulus values the 
estimation is mainly affected by the sparseness of the data.   
 

 

 
Figure 12:  CT estimate and Confidence Intervals for the Serious-to-Fatal Head Injury Risk. 

 
 
 
 

DISCUSSION 
 

The risk estimation error appears to be a function of many parameters representing a 
response surface:  the number of actual biomechanical data used in the estimation, the size of the 
data set (actual and censored), and the shape of the underlying risk function.  This study shows that 
the estimation error will decrease as the sample size increases and this occurs regardless of the 
number of actual data. Also, the analysis indicates that the estimation error is related to the shape of 
the underlying risk function - the steeper the underlying risk function, the smaller the sample size 
needed to obtain a reliable estimation of the risk function itself, and the more informative will be 
the actual data with respect to the censored data.  This result is intuitively easy to explain because 
the steeper the risk function, the “easier” it should be to discriminate the injury cases from the non-
injury cases, up to the (unrealistic) situation in which it is possible to identify one single stimulus 
value that will discriminate the injury and non-injury tests (i.e.  for which every loading force value 
above that value will cause an injury and every loading force value below will not cause an injury). 
An example of a sharply increasing risk function is provided by the Neck injury risk function as a 
function of the peak tension (Nusholtz et al., 2003). 

In addition, it has been noticed that the error reduction effect of augmenting censored data 
with actual data depends substantially on the sample size and on the percentage of actual data 
already included in the data.  The availability of actual data is very influential when the total 
sample size is relatively small. However, it should be emphasized that if the sample size is too 
small the overall error could be too high for practical use even if all the injury data is actual data. 
As a first order approximation, the error reduction for 20 censored samples can be approximated by 
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a factor of three if all samples are actual.  But, when the available biomechanical data consists of 
more than 30 samples and approximately half of them are actual, there is not significant 
improvement in increasing further the percentage of actual data.  When the sample size is large 
enough (more than 50 data points) it is almost irrelevant to have all censored data or a mix of 
censored and actual data or even all actual data (i.e. dashed, dash-dot and solid lines in Figure 9). 
Thus, augmenting an already large biomechanical injury data set with actual injury data should not 
lead to a substantial improvement in the risk estimation goodness.  In other words, it is not crucial 
to acquire biomechanical actual data for the injury risk estimation of a body region for which a 
large censored data set is already available. Also, the efficiency and the complexity of the technical 
procedure may make obtaining actual data difficult or impossible. 

In all the simulations it is assumed that the threshold values used by the experimenter are 
uniformly distributed in the critical range so that the available data (information) on which the risk 
estimation is based covers evenly the critical risk range.  Although this is the best scenario, 
biomechanical injury data is usually not evenly distributed in the critical risk range.  In some cases 
the available biomechanical injury data covers only a portion of the risk function (critical) domain 
so that it is possible to estimate, with high confidence, only a portion of the risk function.  For 
example, the experimenter could decide to run the tests using mainly medium-high stimulus values 
so that the available injury data could be mainly spread in the region where the injury risk is 
medium/high.  The risk estimation error for the low risk stimulus value (based on these tests) could 
be substantial but it will decrease as we approach the higher risk stimulus values.  Therefore, the 
overall (L2 and L1) risk estimation error will be mainly driven by the risk estimation at the lower 
stimulus values, i.e., large confidence intervals at the lower stimulus values, see Figures 11 and 12. 

Finally, in this study the risk estimation has been performed using non-parametric 
methods: CT for doubly-censored data and ECT for mixed data. For this simulation study, the 
logistic method (or a parametric risk analysis) would have given results that are too 
liberal/optimistic, since the underlying distribution was chosen to be normal.  The two methods 
used (CT/ECT) are non-parametric methods so that they are more independent of the form 
considered for the underlying risk function.  Thus, the results can have a much broader 
applicability.   
 

 
CONCLUSIONS 

Development of injury criteria is often based on the injury risk estimation of PMHS 
specimens. Often these specimens are censored and their number could be limited. A simulation 
study has been performed to understand which factors are critical in the injury risk estimation and 
in which scenario the availability of actual biomechanical injury data could be relevant. This 
analysis shows that the injury risk estimation error depends on many factors: the total sample size, 
the number of actual data, the shape of the underlying risk function, and the way in which the 
censored data are distributed in the critical range. In general, the estimation error decreases as 
either the total sample size or the number of actual data increases. However, the quantity of 
information conveyed by the actual data beyond the censored data decreases as the sample size 
increases, and for a sample size large enough, there is no substantial difference between an 
estimation based on all censored, a mix of censored and actual, or all actual data. Also, the more 
sharply increasing is the underlying risk function, the smaller is the sample size needed to obtain 
good risk estimations and the less influential is the availability of actual injury data. Moreover, for 
censored data, the distribution of the threshold stimulus used to run the experiment is relevant; in 
the threshold region were there is not enough data available, the estimation performance could be 
very poor (i.e. large confidence intervals) so that the overall estimation error could be high. 
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Confidence intervals are presented for the thorax and the head (CT) estimated injury risk to show 
the influence of data distribution on the goodness of the risk function estimation.  

APPENDIX 
 
The Product Limit 

The product limit (PL) is the standard method for non-parametric estimation of the survival 
function when the data contain losses but it is not doubly censored.  First, the range of the data is 
partitioned by a sequence of stimulus threshold values,  nttt L,21,  where each tk is the stimulus 

threshold value of at least one death or at least one loss, where, for now, we assume that deaths are 
not censored.  Then, we have:   
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Therefore, we have the estimate:   
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As one can see from these formulae, the PL estimate at  tk is formed by computing the probability 
of a threshold value falling in the interval  (tk ,tk] given that it is larger than tk-1 and taking the 
product with the PL estimate for Sk-1. For a more detailed discussion see (Kaplan et al., 1958, 
Turnbull, 1974).  
 
The Extended Consistent Threshold Method 

For the PL method, death stimulus values are assumed to be known exactly. Suppose now 
that only some deaths/serious-injury values are known exactly.  The others are left censored.  

Denote by 0
kd  those deaths at stimulus values which are known exactly and denote by dk those 

deaths that are censored. 

Suppose also that we know the values of  So , S1 , ..., Sn. Consider a censored death at tk . 
We know only that the threshold stimulus value lies at or below tk, but since we know the 
distribution, we also know that  
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What we intend to do, instead of counting a censored death in any one interval, is to count 

it partially according to the above probability formula in every interval.  Our new derived count 
will be considered not censored and we will thus be able to use the PL method.  Define:   
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These equations will provide us with a new estimate of the distribution, but we would like 

this new estimate to be the same as the one that we already have.  This property of a distribution 
was defined by Efron (1967), and is called self-consistent.  To find a self-consistent distribution we 
need to substitute  kŜ  for every Sk in the above equations and solve with the additional condition 

that 0ˆˆˆ1 10 ≥≥≥≥= nSSS L . Turnbull (1974) suggests simple iteration, beginning with an 
initial guess of the PL estimate, ignoring left-censored deaths.  It does seem to converge quickly. 
This procedure provides the unique maximum likelihood estimate of S0, S1, ..., Sn (Ayer et al., 
1955; Turnbull, 1974).  
 
 
Confidence Intervals for CT 

For the double censored data, Turnbull (1974) suggested as an estimator of the variance 
matrix of )(

~
tS , the matrix V=(Vij), where ( ))(

~
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~
jiij tStSCovV = , defined as follows.  Let  
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where i = 1, 2,..., m-1; and  
 
   Ai,j=0 (19) 
 
for 2≥− ji . The inverse of the matrix ( )ijAA =  is the estimated covariance matrix V, 

1−= AV . Thus, an approximate 95% confidence interval for )(
~

itS can be defined as (Borgan et 
al., 1990):   
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Vzαθ and  αz  is the α - percentile of the standard normal distribution. 

 
 
Upper Bound Table for the L2 error 

In Figures 3-5 are plotted the average over 100 simulations of L2 errors for each 
combination of N, A and stdv.  As we have noticed, to each of these errors will correspond a 
standard deviation that is not constant:  it will decrease as either the total sample size or the total 
number of actual data will increase.  In particular, Table 1 reports the estimated 95% upper bounds 
for the percentage of L2 error when the standard deviation of the underlying risk function is five.  
 

Table 1.  Estimated 95% Upper Bound For The Percentage Of L2 Error, When The Underlying Risk 
Function Has Stdv=5. In The First Column, For Each Row (In Bold) The Total Sample Size (N) Is Reported. 

Total Number of Actual data (A)  

  N 
0 5 10 15 20 25 30 35 40 

 10 29.2 17.7 7.9       

20 16.4 13.3 6.4 5.5 4.7     

30 8.7 8.4 5.3 4.4 3.1 2.6 2.1   

40 7.4 6.7 4.4 3.5 2.7 1.9 1.5 1.4 1.3 

50  6.1 5.2 4.0 2.9 2.4 1.9 1.5 1.3 1.3 

60 5.0 4.5 3.6 2.8 2.3 1.8 1.4 1.2 1.1 

70 4.5 4.1 3.3 2.5 2.0 1.7 1.4 1.1 1.0 

80 4.0 3.8 2.9 2.2 1.8 1.5 1.3 1.1 1.0 
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Mean Survival Time 

Theorem (Chung, 1974):  If X is a positive random variable with probability density f(x), 
then for its mean E(X) holds:   
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Since )()( xSxXP =≥ , where S(x) is the survival function, it follows that:   
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DISCUSSION 
 

PAPER: Risk Curve Boundaries 
 
PRESENTER: Guy Nusholtz, DaimlerChrysler  
 

QUESTION:  Richard Kent, University of Virginia 
 One question and one comment:  I've used some of these non-parametric methods and I'm 

having a difficult time finding out if you can do a multiple, kind of a multi-variant analysis 
with a non-parametric model in terms of using multiple predictors instead of just a single 
stimulus.  Do you know about that?  Is that possible?  Has that been defined? 

ANSWER:  The reason I made that last comment was to answer that question.  Let me try it again.  
We've done it.  We did it with only two variables.  We did it on the neck numbers where we 
did--and that's published and I can get you that paper--where we did a moment and force.  The 
problem with that is it isn't a clean system where you have a program and you just put the 
variables in.  You have to go through a series of pre-conditioning of the data and test statistical 
validity of the data before you can go ahead and do it.  So, I think the problem you're really 
running into is there are no software package out there to do it.  It requires a lot of additional 
pre-work.  So, the answer to your question is both yes and no.  It can be done, but it can't be 
done easily. 

Q: My comment is--[fog horn sound] 

A: Well, I don't know if I can answer that comment in the way it was stated.  [laughter] 

Q: Okay.  What was my comment?  So, you showed that whether data is uncensored or censored 
plays a big role in the error--in the error that you have between the actual and the predicted 
risk? 

A: That's right. 

Q: But, there's an even bigger point in that if you assume your data's uncensored when it's 
actually censored, you get the wrong answer.  And in fact, we've probably all seen in the 
literature this backwards risk function where you have decreasing risk with increasing force, 
or something like that, and a lot of times that results from an assumption of having uncensored 
data when in reality you do have--an assumption of censored data when in reality you have 
accurate data.  And so, I just want to make that point because I do see it quite a bit in the 
literature. 

A: In other words, you're getting that problem from...assuming that it's censored when-- 

Q: Right.  Well, I think--I think logistic regression is to blame because--I think--Yeah.  It's 
become kind of standard practice if you're going to come up with an injury function, you hit 
some things; you break some; you don't break others, and then you do a logistic regression.  
Well if those points where you're causing injury are actually uncensored, if they're accurate 
data and you do a logistic regression with them, then you'll underestimate the injury threshold 
because the injury's actually occurring at that point, not somewhere after that point or before 
that point. 

A: [nearly inaudible] ...will be much larger...almost a factor of say 3 or 4 with a small sample 
size.  With a large sample size, it won't matter what... 

Q: Right.  Yeah, I'm thinking specifically for biomechanical data where you typically only have-- 

A: If you have 10 or 15 samples, it can make a big difference. 


