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ABSTRACT 
Previous attempts to develop engineering risk curves for mild traumatic brain injury have been hampered by 
a paucity of data from living humans.  A recent study by Pellman et al. (2003) presented risk curves for 
concussion based on data from reconstructed head impacts sustained by National Football League (NFL) 
players.  These risk curves were flawed because the data were heavily biased towards injurious impact 
exposures.  Unbiased head impact exposure data for collegiate football players at Virginia Tech (VT) have 
been collected using the Head Impact Telemetry System (HITS), which estimates head acceleration based on 
spring-mounted helmet accelerometers.  Nearly 23,000 head impacts were recorded during the 2003 – 2005 
seasons, including 3 impacts in which a player sustained a concussion.  A concussion risk curve was 
estimated using the Consistent Threshold (CT) method.  Head impact exposure was modeled using a Weibull 
distribution and normalized on a per player per play basis.  An error deconvolution technique was developed 
to analyze the effect of measurement error in the HITS data on the distribution of head impact exposures.  
The expected incidence of concussion was estimated by combining the CT risk curve with the head impact 
exposure data.  The CT risk curve derived from the HITS data provided a far more reasonable estimate of 
concussion incidence than the NFL risk curve.  

INTRODUCTION   

B iomechanical research on head injury has historically focused on characterizing serious injuries using 
cadaveric or animal models.  These models are limited in their ability to predict concussion, or minor 

traumatic brain injury (MTBI), in living humans.  Although typically only an AIS 1 injury, MTBI occurs far 
more commonly than severe head injury and is a major public health problem.  Finding an experimental 
model with which to study MTBI is difficult; MTBI cannot be detected in cadavers, results from animal 
experiments cannot be directly applied to living humans, and it would be unethical to intentionally inflict 
MTBI on living humans in a laboratory setting.  For these reasons, studying athletes in contact sports is a 
promising avenue of biomechanical research on MTBI.   
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An important goal of MTBI research is to establish biomechanical risk curves that can be used to 
predict the likelihood of injury based on head impact severity.  MTBI risk curves would be useful in 
improving helmets, padding, and other countermeasures to reduce the incidence of MTBI in sports, car 
crashes, and other settings.  Although several studies have provided important information about the 
magnitude of injurious and non-injurious head impacts sustained by living humans, an accurate concussion 
risk curve has yet to be established.  Pellman et al. (2003) have provided the most extensive biomechanical 
incidence data concerning concussive head impacts in living humans to date.  Based on video footage of 
National Football League (NFL) games, Pellman et al. (2003) reconstructed 31 head impacts, 25 of which 
resulted in a player sustaining a concussion, using helmeted Hybrid III dummies.  Pellman et al. (2003) 
presented risk curves for MTBI based on logistic regressions of the NFL data.  However, these risk curves 
were flawed, because the statistical analysis required unbiased exposure data, and the NFL data were 
intentionally biased towards injurious impacts.  As a result of this improper statistical analysis, the NFL risk 
curves are far too conservative.  For example, data collected by Pincemaille et al. (1989) showed that 
amateur boxers were able to sustain numerous head impacts without adverse consequences at severity levels 
that the NFL risk curves would associate with a near certainty of concussion.  The objective of the present 
study was to establish biomechanical risk curves for MTBI using a large set of unbiased head impact data 
collected from collegiate football players.  This paper describes a novel statistical methodology that has been 
developed for analyzing the head impact data and presents some preliminary results of the study.   

METHODS 

Biomechanics 
Head impact data obtained from instrumented helmets worn by Virginia Tech (VT) football players 

during the 2003 – 2005 seasons were analyzed.  Data were collected from 56 different players during games 
and full impact practices.  The helmets were instrumented with the Head Impact Telemetry (HIT) System 
(Simbex, Lebanon, NH), which consisted of six spring-mounted linear accelerometers designed to stay in 
contact with the player’s head.  Data from the accelerometers were sampled at 1000 Hz and transmitted 
wirelessly to a laptop computer on the sidelines in real time.  Only impacts in which the signal from at least 
one of the accelerometers exceeded a user-defined threshold of 10 g were recorded.  The linear acceleration 
at the estimated center of gravity of the head was calculated from the six accelerometer signals using an 
algorithm described by Crisco et al. (2004).  The Head Injury Criterion (HIC) was calculated from the 
resultant linear acceleration at the head center of gravity.  Additional details regarding the data collection 
methodology are described by Duma et al. (2005). 

MTBI risk curves were calculated as a function of impact severity.  Impact severity was 
characterized in terms of both peak resultant linear head acceleration and HIC.  An assumption was made 
that each player had a fixed injury tolerance.  That is, it was assumed that any head impact having a peak 
acceleration or HIC greater than the player’s injury tolerance would cause a concussion, and any impact 
having a severity less than the player’s injury tolerance would not cause a concussion.  The purpose of the 
statistical analysis was to characterize the variation in individual MTBI injury tolerances across the 
population.  The MTBI risk curves were derived using a straightforward method that is commonly used when 
analyzing data from biomechanical experiments.  All injury data points and maximal non-injury data points 
for each player were analyzed using the consistent threshold (CT) estimate for doubly censored data 
(Nusholtz and Mosier, 1999).  The CT estimate is a non-parametric maximum likelihood estimate of risk.  
The CT risk curves were based on data from only 59 impacts (the maximal non-injurious head impact for 
each of the 56 instrumented players plus the 3 concussive impacts), which was obviously only a tiny fraction 
of the full data set.  The vast majority of the biomechanical data was excluded based on the assumption that 
all submaximal noninjurious head impacts for an individual player contained no unique information.  CT risk 
curves were generated using a custom-written FORTRAN program. 

Epidemiology 
The CT MTBI risk curves were validated using a novel epidemiological methodology that 

characterized the players’ head impact exposure and estimated concussion incidence based on the risk curves.  
The HITS data were assumed to provide unbiased and mutually independent estimates of head impact 
exposure.  This assumption was considered valid because of the prospective nature of the study and the fact 

2 



Development of Concussion Risk Curves Based on Head Impact Data from Collegiate Football Players 
 

that the instrumented players were chosen to encompass a wide range of body types and player positions.  
The distribution of head impact severities was expressed in terms of a probability density function (pdf) and 
cumulative distribution function (cdf).  Head impact exposure data from games and full contact practices 
were combined.  The distribution of head impacts was modeled using a standard Weibull distribution: 
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where α is the shape parameter, β is the scale parameter, and x is the impact severity in terms of either peak 
resultant head acceleration or HIC.   

The HITS data were ordered and normalized to obtain an experimental cdf (cdfexp) of the head 
impact exposure data.  The experimental cdf was mathematically manipulated in two ways before curve 
fitting it to a Weibull distribution (Equation 1b).  First, in order to maximize the accuracy of the curve fit for 
the higher severity impacts that were of most interest, all impacts below 40 g were excluded when fitting the 
peak acceleration data, and all impacts with a HIC < 50 were excluded when fitting the HIC data.  These 
relatively low severity impacts were deemed unlikely to cause MTBI, based on the NFL data (Pellman et al., 
2003).  The equation form for the Weibull distribution was adjusted to obtain the pdf and cdf over the 
severity region of interest θ < x < ∞, where θ = 40 g for the analysis of the peak acceleration data, and θ = 50 
for the analysis of the HIC data:   
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Although the adjusted pdf and cdf contain the parameters α, β, and θ that are sometimes associated with a 
three-parameter Weibull distribution, the distribution in Equations 2a and 2b is not a Weibull distribution.  It 
is a modified Weibull distribution that allowed the curve fit to be performed over a specific region of interest 
(θ < x < ∞).  Second, rather than curve fitting Equation 2b directly to the experimental cdf, the log transform 
of the complement of Equation 2b was fit to the log transform of the complement of the experimental cdf: 
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This transformation was done in order to give greater weight to higher severity impacts when performing the 
least squares curve fit.  It had the incidental effect of excluding the most severe impact in the data set from 
the curve fit, because the expression is undefined when the experimental cdf is equal to one.   

Error Deconvolution 
The curve fitting method described above assumes that there is no error in the experimental 

measurements.  However, every measuring device has error, and the HIT system is no exception.  A novel 
method of accounting for measurement error when fitting a distribution of data was developed and applied to 
the HITS data.  Measurement error can be divided into two components: bias and scatter.  Bias is typically 
characterized by the mean value of the measurement error in terms of a percentage error and/or an offset at 
various levels of measurement.  Bias can be analytically removed from the data so that the average of the 
corrected measurements equals the true value.  The correction process is straightforward.  For example, if 
bias in the measurement system can be characterized by 
         (4a) bxmx truemeasured +⋅=
then the data can be corrected according to the following formula: 
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However, even if the measurements are unbiased, they may still contain error in the form of scatter.  
The mean value of the error due to scatter is zero.  Individual data points cannot be corrected for scatter, 
because there is no way to know whether the measured value overestimates or underestimates the true value.  
However, the presence of error due to scatter can affect the distribution of a large number of measurements.  
To understand the effect of scatter on a distribution of measurements, first consider a hypothetical 
distribution of true values being measured (Figure 1).  Now consider a small subset of the true distribution, 
say head impacts having a peak acceleration of 50 g.  If this subpopulation of head impacts were to be 
measured, the error due to scatter might cause some of them to be measured at 40 g or 60 g, even though the 
average of the measurements would still be 50 g, the same as the true value.  This phenomenon would occur 
at all measurement levels, depending on the measurement error at each level.  Therefore, when measuring 
from a random sample of the distribution of true values, the distribution of measured values is actually the 
sum of the scatter from the distribution of true values.  That is, the subpopulation of measured values having 
a peak acceleration of 100 g actually contains not only head impacts in which the true peak acceleration was 
100 g, but also a percentage of impacts in which the true value was 90 g but the error due to scatter was +10 
g, and a percentage of impacts in which the true value was 105 g with a scatter error of -5 g.   

Mathematically, the distribution of measured values (f’) can be calculated by convolving the 
distribution of true values (f) with the error distribution (g): 
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where x is the measurement in terms of peak head acceleration or HIC, and z is a dummy variable.  In order 
for Equation 5 to be a true convolution mathematically, the error function (g) must be the same at all levels of 
measurement.  If the measurement error is assumed to be normally distributed, this condition corresponds to 
the assumption of homoscedasticity that is implicit in standard least squares linear regression.  Most often, 
the measurement error of instrumentation is not constant, but increases at increasing levels of measurement.  
Typically, measurement error is expressed as a percentage of the value being measured, which corresponds to 
a normally distributed error function in which the coefficient of variation (cv) is constant: 

µ
σ
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where σ is the standard deviation and µ is the mean of the normally distributed error function.  This error 
model assumes the measurement error is heteroscedastic.  The parameter cv can be obtained from validation 
data by fitting the squared residuals of the curve fit to a quadratic function.  Modeling the error due to scatter 
as heteroscedastic requires an error function g that can be expressed as a function of both (x-z) and (z): 
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Figure 1:  Illustration of the effect of scatter error (cv = 20%) on the distribution of measurements. 
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Equation (7) is no longer a true convolution integral mathematically, and might be more accurately 

called a modified convolution integral.  However, it will continue to be referred to as a convolution integral 
for simplicity.  The error function g(x-z, z) can be expressed as an unbiased normal distribution with scatter 
error having a constant coefficient of variation: 
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Alternatively, Equation 8a can be expanded to include the effect of measurement bias as expressed in 
Equation 4a: 
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Thus, bias in the measurements can be corrected either at the level of individual measurements, or at the level 
of the distribution of measurements.  If individual measurements are corrected for bias, the error due to 
scatter must be recalculated from the validation test data to reflect the correction.  Substituting Equations 1 
and 8b into Equation 7 yields the final form of the error convolution: 
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To account for measurement error when fitting to a distribution, it must be recognized that a curve 
can only be fit to the measured distribution f’(x), not to the true underlying distribution f(x).  However, f’(x) 
must first be manipulated before it can be fit to the experimental HITS data.  Equation 9 has no closed-form 
solution, so the integration must be performed numerically.  The cdf of f’(x) was obtained by numerically 
integrating f’(x), then adjusting F’(x) by normalizing it over the region θ < x < ∞: 
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The values of α and β in Equation 9 were obtained by curve fitting the log transform of the complement of 
the adjusted cdf in Equation 10 to the log transform of he experimental cdf:   t
 ( )[ ] ( )[ ]∞<<−=′− xcdfxFadj θexp1ln1ln        (11) 
Equation 11 is analogous to Equation 3, with the key difference being that the optimized α and β parameters 
are estimates of the true distribution in Equation 11, rather than the error-containing measured distribution, in 
Equation 3.  In this way, the measurement error can be deconvolved from the true distribution.  The 
operations necessary to perform this deconvolution were accomplished using a custom-written FORTRAN 
program.  In order to estimate the importance of scatter error on the final results, a sensitivity analysis was 
conducted in which the HITS data were assumed to be unbiased with scatter errors having coefficients of 
variation of 10%, 20%, and 30%.   

Normalizing Exposure Per Player 

Once the overall distribution of head impacts was established, these exposure data were normalized 
on a per player per play basis by combining the HITS data with player information obtained from the 
Virginia Tech football team.  Once the distribution of head impacts in the severity region of interest was 
characterized, the next step was to determine the probability that a player would sustain a head impact in that 
region of severity in a given play, which was denoted by pθ: 
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The number of recorded impacts greater than θ was obtained from the HITS data.  The number of “players x 
plays” was the sum of the number of plays played by each instrumented player, which was obtained from 
team records.  Preliminary estimates of pθ were obtained by analyzing data from team records.   

 Combining Equations 2a and 12, the probability of a head impact having a severity greater than x 
for a single player in a single play was calculated: 
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It was assumed that the probability of sustaining a head impact of severity x is the same for each play.  
Therefore, each play was modeled as an independent Bernoulli trial.  The probability of exactly k head 
impacts having a severity greater than x for a single player exposed to n plays is given by the binomial 
distribution: 
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The probability that the most severe head impact for a single player over n plays was greater than x was 
obtained from the complement of the probability that no head impacts would be greater than x (binomial 
distribution with k=0): 
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Equation 15 gives the probability that one or more head impacts will be greater than x.  The probability that 
the most severe head impact for a single player over n plays was exactly equal to x was calculated by taking 
the partial derivative of the complement of Equation 15 with respect to x: 
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Having established the exposure of head impacts experienced by a single player over n plays, it is 
now possible to investigate the relationship between the risk of injury and incidence of injury.  From the 
assumption that each player has a fixed injury tolerance, it follows that if a player sustains a concussion, then 
that concussion must have been caused by the most severe impact that player experienced.  There are two 
equivalent approaches that can be taken to determine a player’s risk of MTBI as a function of the number of 
plays to which he is exposed.  Both involve calculating the probability of a player sustaining a concussion at 
a particular impact severity level x and then integrating over all x to obtain the overall risk of concussion for 
that player.  In the first approach, the probability of a concussion incidence for a player having an injury 
tolerance xinj = x is given by: 

( ) ( ) ( xxpxxpxp ninjinc >== max )       (17) 
In the second approach, the probability of a concussion incidence for an impact of severity xhit = x is given 
by: 

( ) ( ) ( )xxpxxpxp injninc <== max       (18) 
The incidence probabilities calculated by these two approaches are not equivalent.  In the first approach 
(Equation 17), the probability of a concussion incidence is given in terms of the injury tolerance of the player 
(x = xinj).  In the second approach (Equation 18), the probability of a concussion incidence is given in terms 
of the maximum severity impact experienced by the player (x = xmax).  When a player is injured, it is because 
the severity of the concussive impact exceeded the injury tolerance of the individual by some amount (xmax > 
xinj).  Therefore, the probability incidence calculated from Equation 17 will be shifted to the left somewhat 
(lower values of x) compared to the probability incidence calculated from Equation 18.  In spite of this 
difference, it can be shown from integration by parts that the area under each curve is the same: 
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Therefore, the overall probability of injury for a given player exposed to n plays can be calculated using 
either approach: 

         (20) ( ) ( )∫
∞

=
0

dxxpnp incinj

It should be noted that the probability of MTBI incidence (Equations 18 and 19) and the overall probability 
of injury (Equation 20) represent the probability of a player sustaining one or more concussions.     

 Although both approaches are equivalent, there are two advantages to the second approach 
(Equation 18).  First, the CT risk curve is a discontinuous stairstep function that cannot be differentiated to 
obtain the p(xinj = x) expression required in the first approach (Equation 17).  Second, characterizing MTBI 
incidence in terms of the impact severity of the injurious impact allows for a meaningful comparison with the 
experimental data obtained in both the present study and the NFL study (Pellman et al., 2003).  The overall 
probability per play that a player will sustain a concussion is found by substituting Equation 18 into Equation 
20:   

 ( ) ( )∫
∞ −

− <==
0

11 dxxxpexpnp inj

x

inj
α

αα

β
θ

α
α

θ

β
α

     (21) 

where p(xinj < x) is the CT risk curve.  Because the CT risk curve is a stepwise constant function having ksteps 
steps, Equation 21 can be integrated and summed over each step: 
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The expected number of concussions per game can be estimated by multiplying the above probability by the 
mean number of players x plays per game, which is approximately 1600. 

RESULTS 

Biomechanics 
HITS data from 22,704 impacts in games and practices were collected.  The distribution of impacts 

followed a roughly exponential distribution in terms of both peak acceleration and HIC.  The distribution of 
head impacts was similar for games and practices (Figure 2), which justified combining the data.  The vast 
majority of the impacts were of low severity.  Nonetheless, there were 3,339 impacts in which the peak 
acceleration was greater than 40 g, and 1,376 impacts in which the HIC was greater than 50.  There were 
three impacts in which an instrumented player sustained a concussion.  In the three concussive impacts, the 
peak acceleration values were 81 g, 172 g, and 200 g, and the HIC values were 200, 589, and 859.  In two out 
of the three concussed players, the injurious impact was the most severe impact experienced by that player in 
terms of both peak acceleration and HIC out of over 400 recorded impacts for each player.  In the third 
concussed player, the injurious impact was the eleventh most severe impact in terms of head acceleration, the 
third most severe impact in terms of HIC out of over 200 recorded impacts, and the most severe impact from 
the front in terms of both head acceleration and HIC.   
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Figure 2:  Probability density functions for all Virginia Tech HITS data. 

 
The MTBI risk curves developed from the HITS data using the CT estimate are drastically different 

from the MTBI risk curves proposed by Pellman et al. (2003).  The NFL risk curves (Pellman et al., 2003) 
predict a far higher risk of injury at a given impact severity than the CT risk curves derived from the HITS 
data (Figure 3).   For example, for a head acceleration of 150 g, the CT risk curve predicts a 3% risk of 
concussion, while the NFL risk curve predicts a 98% risk of concussion.  Curiously, the NFL risk curve 
predicts a 7% risk of concussion at a HIC of 0.  A 7% risk of concussion corresponds to a HIC of 589 in the 
CT estimate.   
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Figure 3:  Comparison of MTBI risk curves from the present study (CT estimate – VT data)  

    and from the NFL study (Pellman et al., 2003). 

Epidemiology 
The Weibull distribution effectively modeled the distribution of head impacts measured by the HIT 

system.  The Weibull model produced a good fit both visually and in terms of the correlation coefficient R2, 
which exceeded 0.99 in all cases (Figure 4).  The effect of measurement error due to scatter on the estimated 
distribution of head impacts was negligible for the HIC distribution but potentially important for the peak 
acceleration distribution.  The main effect of scatter error was to inflate the high end tail of the measured 
distribution. 
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Figure 4:  Effect of measurement error due to scatter on the true vs. measured distribution of head impacts. 

 
By combining player data from team records with the HITS data, it was estimated that on average, 

players experienced head accelerations greater than 40 g in approximately 6% of plays, and HIC values 
greater than 50 in approximately 2.5% of plays in which they played.  These values defined pθ (Equation 12) 
and allowed the head impact distributions to be normalized on a per player per play basis.  Specifically, the 
distribution of the maximum head impact for a player was characterized as a function of the number of plays 
the player was in.  In any single play, a player was unlikely to experience a severe head impact, and often did 
not experience any head impact at all (Figure 5).  The risk of experiencing a severe head impact rises with 
each subsequent play, but the rate of that rise decreases roughly logarithmically as the number of plays 
increases.  The expected distribution of maximum head impact severities as a function of number of plays is 
only mildly affected by scatter error (Figure 6).   
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Figure 5:  Effect of the number of plays on the probability of maximum head impact severity. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000
Number of plays (n)

p n
 (a

m
ax

 >
 1

00
 g

)

cv = 0
cv = 0.1
cv = 0.2
cv = 0.3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1000 2000 3000 4000 5000
Number of plays (n)

p n
 (H

IC
m

ax
 >

 5
00

)

cv = 0
cv = 0.1
cv = 0.2
cv = 0.3

 
Figure 6:  Effect of scatter on the distribution of maximum head impact severity. 
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The incidence of MTBI was evaluated more globally by comparing the cdf of the injury data set and 
the expected incidence of concussion to the NFL data.  The injurious impacts contained in the HITS data 
occurred at generally higher impact severities compared to the biomechanical incidence data from the NFL 
study (Pellman et al., 2003) (Figure 7).  The match was closer for the HIC data than the peak acceleration 
data.  However, there were only three concussive impacts recorded, so the sample size was rather small.   
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Figure 7:  Cumulative distribution of concussive impacts. 

 
The expected rate of concussions per team per game was calculated by applying the CT estimates 

for MTBI risk curves to the impact exposure data recorded by the HIT system.  The expected concussion rate 
predicted by peak acceleration was considerably higher than the actual incidence in the NFL (Pellman et al., 
2004), indicating that the CT risk curve based on peak acceleration was too conservative.  The expected 
concussion rate predicted by HIC compared favorably to the epidemiological data from the NFL study 
(Figure 8, left).  Scatter error in the measurements had no significant effect on the predicted incidence of 
concussion based on HIC.  However, scatter in the peak acceleration measurements had a significant effect 
on the predicted number of concussions per game, but only for large coefficients of variation (20% – 30%).  
The concussion incidence predicted by applying the NFL MTBI risk curves proposed by Pellman et al. 
(2003) to the exposure data measured by the HIT system were more than 100 times higher than the actual 
concussion incidence in the NFL (Pellman et al., 2004) (Figure 8, right).   
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Figure 8.  Number of concussions per game predicted by various MTBI risk curves. 

DISCUSSION 
Risk curves for MTBI were derived using the Consistent Threshold (CT) estimate, which is a 

standard technique for analyzing biomechanical data.  The CT risk curves were validated using a novel 
epidemiological analysis of a large set of head impact data collected from collegiate football players.  The 
CT risk curves developed in the present study are drastically different from the NFL risk curves reported by 
Pellman et al. (2003).  MTBI risk curves from the present study are more accurate because they utilized a 
very large database that provided an unbiased estimate of head impact exposure.  The data were unbiased 
because the present study was designed as a prospective cohort study.  The experimental design of the NFL 
study (Pellman et al., 2003) was a case control study.  As such, a reasonably large set of concussion cases 
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were studied, which provided good biomechanical data about concussion incidences.  However, 
comparatively few non-injury control cases were studied, and therefore the head impact exposure could not 
be characterized biomechanically.  Risk curves require accurate incidence data and accurate exposure data.  
There was insufficient information regarding the overall distribution of head impacts in the NFL to calculate 
MTBI risk curves.  Nonetheless, Pellman et al. (2003) analyzed their data using logistic regression, which 
implicitly assumed that their data set was representative of the head impacts players were exposed to in the 
field.   

The NFL data set was intentionally biased towards injurious impacts, such that almost all of the 
highest impacts in their data set were injurious.  In the present study, very few of the highest severity impacts 
were injurious.  In light of these more complete exposure data, it was determined that the risk of injury at the 
severity level where most injuries occur (peak head acceleration ~ 100 g, HIC ~ 400) is actually low, not 
high.  This same phenomenon occurs and is widely recognized in the field of traffic safety.  For example, 
although half of all fatal crashes occur at velocity changes of roughly 30 mph or less, the risk of fatality in a 
30 mph delta-V crash is actually quite low (Evans, 2004).  The number of car crashes decreases roughly 
exponentially at increasing delta-V levels, just like the number of head impacts on the football field decreases 
roughly exponentially at increasing peak acceleration and HIC levels.  Because there are so many low 
severity car crashes and head impacts, the incidence of injury at these levels is amplified, which belies the 
fact that they are actually low risk events.  However, the only way to uncover this epidemiological peculiarity 
is to obtain both unbiased incidence data and unbiased exposure data.  The NFL study obtained the former; 
the present study obtained the latter (and a little bit of the former).  In the present study, the head impact 
exposure for each player was not broken down by player position.  However, the HITS data showed that the 
distribution of head impacts is notably different for different players and positions, and Pellman et al. (2004) 
noted significantly different concussion rates for different positions.  Therefore, future work will attempt to 
refine the analysis by accounting for player positions.   

It should be noted that determining concussion incidence from the HITS data involved more than 
simply multiplying the raw exposure data by the risk curve.  For example, the CT estimate of injury risk for a 
peak acceleration of 85 g was 2.6%.  There were 672 head impacts recorded with a severity of 85 g or 
greater.  If the 2.6% risk were simply multiplied by the 762 exposures, then at least 17 concussions would be 
expected amongst those 672 head impacts.  In actuality, only 2 occurred.  It was therefore necessary to 
account for the fact that each head impact did not represent an independent exposure with respect to injury 
risk because many of the same players experienced multiple impacts.  This problem was dealt with by 
assuming that each player had a fixed injury tolerance that could be characterized in terms of peak resultant 
linear head acceleration or HIC.  Head impact exposure was therefore recalculated to reflect the distribution 
of the most severe impact experienced by each player, rather than the distribution of all impacts.  The 
experimental data generally supported the assumption of a fixed injury tolerance for each player, in that two 
of the three injurious impacts recorded by the HIT system were the most severe impact experienced by the 
concussed player, and the third was among the most severe.  It is possible that an individual’s tolerance to 
head impact may vary somewhat from game to game, depending on physiological and environmental 
conditions, but the assumption of a fixed injury tolerance provides the most conservative estimate when 
calculating injury risk.  One would also expect a continuous gradation of brain injury severity as a function of 
head impact severity, rather than a jump from no injury to injury at a particular severity level.  In fact, 
clinicians do recognize a graduated progression in brain injury severity (e.g., from AIS 1 – 6).  However, 
diagnoses at each severity level (i.e., AIS 1) are categorical, and therefore concussion has been treated as a 
binary event in the present study.   

The accuracy of the HITS data and of the statistical analysis was assessed in various ways.  The 
error deconvolution technique demonstrated that error due to scatter can alter the measured distribution of 
head impacts, in spite of the fact that the scatter error is unbiased.  This technique quantifies the intuitive 
notion that the very highest of a large number of impacts are statistically more likely to be due to high end 
scatter than low end scatter.  The implication is that the very highest measurements in the HITS data are 
more likely to be overestimates of the true value than the rest of the data.  However, it was shown that error 
due to scatter must be large to substantially alter the final results of the analysis.   

In addition, the HITS data were validated against biomechanical and epidemiological incidence 
data.  The validation against epidemiological incidence data is primarily a test of internal consistency rather 
than a test of accuracy (Figure 8).  For example, it would be possible for the HITS data to be erroneous and 
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yet accurately predict the expected number of concussions per game, because a shift towards lower or higher 
severities in the exposure data would be offset by a shift to a much more or less conservative risk function.  
However, the only way to reconcile the NFL risk curves with the NFL concussion incidence is to assume that 
the HITS data overpredicted head impact severity by a factor of roughly 100.  Given that the HITS data have 
been shown to be reasonably accurate in validation testing, it must be concluded that the NFL risk curves are 
far too conservative.   

The biomechanical incidence data were also compared to the NFL study, which is an external source 
of data.  The injurious impacts in the HITS data were associated with significantly higher peak accelerations 
than the injurious impacts in the NFL data (p < 0.05), and with nonsignificantly higher HIC values than the 
NFL data (p > 0.05).  This finding is interesting, because validation testing of the HIT system with Hybrid III 
dummies has shown that the results of the two measurement systems generally agree.  The disparity between 
the HITS injury data and the NFL injury data could be due to error in the HITS data, error in the NFL data, 
and/or a true difference in the injury tolerance between college and professional football players.  On the one 
hand, the helmet-mounted accelerometers in the HIT system may not measure head CG acceleration as 
accurately as the CG accelerometers in a dummy.  Validation testing suggests that this error is small.  On the 
other hand, the HIT system records the actual injury event as measured on the actual injured person, as 
opposed to Pellman et al.’s approach of measuring a reconstructed event in a dummy.  The NFL study was 
subject to errors inherent in reconstructing a head impact from 30 Hz video using Hybrid III dummies, which 
have a different size, body mass, head shape, and neck response than the injured individuals.  The errors 
associated with the video reconstruction aspect of the methodology were analyzed in depth by Newman et al. 
(2005) and found to be small.  Lastly, there is the possibility that the disparity in the two injury data sets 
reflects the fact that college football players truly do have a higher concussive injury tolerance than 
professional football players, perhaps due to their youth or a less extensive history of previous concussions. 

The implication of the MTBI risk analysis performed in the present study is that living humans, at 
least in the setting of collegiate football, can sustain much more severe head impacts without apparent injury 
than previously thought.  Although the current CT risk curve is a coarse stairstep function that only 
characterizes the low end of the risk curve, it is clear that future risk curves that will be refined with more 
injury data will also be radically different from the NFL risk curves.  In fact, the CT risk curve for AIS 1+ 
injury as a function of HIC is not very different from the AIS 3+ HIC risk curve developed by Prasad and 
Mertz (1985).  This unexpected similarity may be explained by the difference in the sources of the 
biomechanical data used to derive each risk curve.  The CT risk curve is based on concussion data from 
helmeted football players, whereas the traditional HIC risk curve is based largely on cadaver head impacts 
into unpadded surfaces that resulted in skull fracture.  The results of the present study imply that for a given 
HIC level, the risk of concussion in a padded head impact may be similar to the risk of skull fracture in an 
unpadded impact.  Although the primary benefit of padding is that it attenuates the impact pulse and reduces 
the HIC level for a given head impact, padding has the additional benefit of distributing the impact load over 
a broad contact area, thus reducing the peak stress on the skull.  Therefore, it is reasonable to expect that for 
the same level of head acceleration and HIC, a padded impact may be less likely to cause skull fracture than 
an unpadded impact.   

CONCLUSIONS 
The risk of MTBI in living humans was characterized by analyzing a large set of head impact data 

taken from college football players using the HIT system.  The methodology of collecting head impact data 
in real time from players with instrumented helmets allowed for an unbiased estimate of the distribution of 
head impacts that players are exposed to on the field.  A newly developed error deconvolution method 
showed that measurement error in the HITS data due to scatter probably does create significant error in the 
distribution estimate.  The HITS data suggest that living humans can sustain much more severe head impacts 
without apparent injury than previously thought.  Although the risk curves developed in the present study 
specifically reflect the risk of MTBI in helmeted college football players, they may have applicability to 
padded impacts in the general population, as well.  These risk curves may be useful in improving helmets, 
padding, and other countermeasures to reduce the incidence of MTBI in sports, car crashes, and other 
settings.   
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DISCUSSION 
 
PAPER: Development of Concussion Risk Curves Based on Head Impact Data from 

Collegiate Football Players. 
 
PRESENTER: J. R. Funk, Biodynamic Research Corporation 
 

QUESTION:  Guy Nusholtz, Daimler Chrysler 
 Your results are extremely interesting, but if I—when I look at your acceleration and you HIC data, 

you’ve got HICs way out with no injury and you’ve got low HICs without concussion and low HICs 
with concussions.  It almost looks like HIC and acceleration are not explanatory variables.  They just 
happen to randomly show up under certain conditions.  Have you considered that that might be the 
case?  Even though you’ve got a prediction of the number of concussions, have you thought that maybe 
you’ve got more—your results are a little more profound than what you’re saying that you may show 
that in this case HICs and g’s are not really explanatory variables? 

ANSWER:  Well, that’s a good point and that’s one explanation.  This is a statistical study.  It’s not a 
biomechanical study per se.  It’s only going to show you a correlation.  It’s not going to prove causality, 
you know, whether peak or g or rotational or HIC is the best predictor.  Another explanation is that 
there’s a range of tolerances out there, and the guys that get concussed have a lower tolerance than the 
ones that don’t and therefore, you know, you see this a lot of times in other biomechanical data, too. 

Q: Yes.  Thank you. 

A: Thanks. 
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