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ABSTRACT 
Frontal crashes can be classified as full, offset, or small overlap impacts.   Although the former 
two impacts have received considerable attention in crashworthiness and promulgation of world-
wide standards, small overlap crashes have undergone limited analyses from field and laboratory 
investigation perspectives.  The objective of the present study was to analyze small overlap impacts 
using data from the Crash Injury Research and Engineering Network database and determine the 
head-neck-torso kinetics from full-scale vehicle tests.  Head-neck kinematics and loads, and chest 
deflections from four cruxes were obtained from the Test Device for Human Occupant Restraint 
(THOR – NT version without modifications), positioned in the driver seat.  Head contact occurred 
with the forward and outboard interior components of the vehicle; traditional crash metrics are 
inadequate descriptors; and less than full structural engagement contributes to increased vehicle 
deformations, enhanced occupant motions, and injury susceptibility.   The mechanism of head and 
torso injuries was hypothesized to be due to the asymmetric loading and kinematics of the thorax 
and head-neck complex, resulting in sagittal and coronal motions with less than optimal 
interaction with the frontal airbag.  Acknowledging that these impacts have not been systematically 
analyzed for injuries, mechanisms, occupant kinematics, and dummy measures such as multi-point 
sensing and head-neck trajectories and loads, the present study sheds light in these areas.. 

INTRODUCTION 
Field data and laboratory-driven tests have been used in frontal, rear and side impacts, and rollovers, 

to investigate occupant safety in motor vehicle environments [1, 2].  Focusing on frontal crashes, collisions 
can be classified as full, offset, or small overlap impacts [3, 4].   While the former two types of collisions 
have received considerable attention in crashworthiness and promulgation of world-wide standards for 
occupant safety, small overlap impacts have undergone very limited analyses from real world and laboratory 



investigation perspectives.  Limited structural engagement in these crashes may expose occupants to 
differing kinematics, especially the head-neck complex and torso regions of the human body [5].  Recent 
studies from the United States and Europe have shown that small overlap impacts are susceptible to more 
trauma than full or offset impacts [6-8].  Consequently, the objective of this study was to (a) analyze field 
data and injuries, and (b) conduct full-scale vehicle crash tests to determine the head-neck complex and 
thoracic kinetics.  
 

METHODS 
Field data and injury analyses:  Data were extracted from the Crash Injury Research and 

Engineering Network (CIREN) database with the following stipulation: direct-impact damage should not 
extend inboard of longitudinal vehicle structure.  Criteria used for determining the engagement was based on 
the width of direct-damage, collision deformation codes, location of the center of direct-damage relative to 
the vehicle line, and crush profiles.  The selection criteria included non-ejected belted and unbelted adult 
drivers (greater than 16 years of age), and rollovers were excluded.  Only passenger vehicles were 
considered.  Status was obtained of frontal and side impact airbags.  According to the CIREN criteria, all 
occupants were admitted to Level One Trauma Centers.  Fatalities were also included in the ensemble.  The 
following variables were extracted: size and nature of the collision partner to examine the potential influence 
of stationary object or vehicle-size match; extent zone and crush distances; occupant demographics; 
Abbreviated Injury Score and Injury Severity Score; and associations of injuries to other body regions in 
occupants sustaining head-neck-thoracic trauma.  Medical records such as trauma bay records, x-rays, 
computed tomography scans, operative room records, nurses and progress notes; and vehicle inspection, 
exemplar vehicle, and on-scene photographs were also a part of the analysis.  Body mass index (BMI) was 
calculated by dividing the total body mass by the square of the stature.  

  
Full-scale vehicle tests:  Vehicle-to-pole tests were conducted to determine the kinematics and 

loading of the left front seat occupant in small overlap impacts.  They were chosen to determine the effects of 
a newer versus older structural member design, and small versus full-size vehicles.  The matrix included the 
following tests: one with 2010 model year, small car; one with 2007 model year, full-size car; and one each 
with 2005 and 2009 model years, small car, and the structural member designed to distribute the load due to 
small overlap impact was different between the 2005 and 2009 cars.  Three-point belted, mid-size Test 
device for Human Occupant Restraint (THOR) was positioned in the driver seat, following protocols 
including NCAP procedures.  The vehicle under test was positioned on a “flying floor,” supported by wheels 
located approximately 10 cm from the track.  Each vehicle was placed in the neutral or second gear, and 
parking brakes were engaged.  The vehicle was initially rotated counterclockwise on the floor such that the 
midsagittal plane of the dummy head was aligned with the central axis of the pole.  The flying floor along 
with the vehicle under test was accelerated to the preset target speed of 15.6 m/s such that only the vehicle 
impacted the 25 cm diameter stationary pole, simulating a small overlap impact.  The distance between the 
pole and the starting accelerating location of the floor-vehicle setup was approximately 125 m.  The floor 
was released before vehicle impact with the pole.  While the vehicle continued to impact the pole at a 
constant velocity, the floor was stopped by contacts on its leading end with heavy duty energy absorbers.  
The impact of the vehicle with the pole induced counter clockwise rotation, as viewed from the top, prior to 
rest.  The entire event of the impact with the pole and rotation of the vehicle occurred on the flying floor.  

  
Twelve cameras at 1000 f/s were used: four were onboard, two on the sides, one on the roof, and 

one underneath the foot of the dummy; eight off board cameras, one positioned mid-laterally on the driver 
side, one focusing on the steering column, and one left overall; an overhead overall and a close up view of 
the windshield; a front left overhead oblique view focusing on the chest and head; a front overhead oblique 
view of the windshield; and a front overall oblique to capture the overhead kinematics.  A handheld camera 
was used to capture the real time event at 30 frames per second.  Targets were placed on the dummy: one 
each at the center of gravity of the head and tip of the nose; one 125 mm below the chin on the chest 
centerline; and one representing the inion location on the THOR.  Colored chalk on the face and head were 
used to determine contact regions.  The seat was fully down in the center fore-aft position for positioning the 



dummy.  The shoulder belt was placed at its highest position and pulled taught on the dummy according to 
the New Car Assessment Program (NCAP tests).  The Lap belt was pulled taught and D-ring was placed in 
its highest position. 
  

Instrumentation consisted of 180 channels.  Briefly, linear accelerometers were used for head 
accelerations including a nine accelerometer package inside the dummy head.  Load cells were used to record 
upper and lower neck forces and moments.  Four crux potentiometers inside the chest were used to compute 
the thoracic deflections at multiple locations.  Uniaxial accelerometers were used at T1, T4, and T12 
locations to obtain spine kinematics.  Load cells were used in the lower extremities to record impact forces.  
Pole-impacts were recorded using six uniaxial load cells.  Accelerations of the vehicles were recorded using a 
uniaxal accelerometer placed at its center of gravity.  The entire system of cameras, instrumentation, and 
floor-vehicle motions were synchronized using custom software, with the exception of the real time camera 
to obtain a panned view of the event.  Interactions of the dummy head-neck-torso complex with the frontal 
impact airbag were evaluated along with timings of the initiation and full deployment using different camera 
views on a frame-by-frame basis.  Loads and kinematics of the head-neck-torso and lower extremities, and 
deflection profiles at the four chest locations were evaluated with respect to the dummy motions.   

RESULTS 
Field data and injury analyses: Eighty-four cases consisted of 52 males and 32 females; 79 

survivors and five fatalities; 64 belted, 18 unbelted, and belt status was unknown in two occupants; frontal 
airbags deployed in 77 cases, not deployed in four, and in the remaining three cases it was unknown; 47 and 
37 cases were in the moderate (zone 2-5) and severe (zone 6-9) extent zone categories; 33 vehicle-to-
pole/tree, 29 matched vehicle (car to car), 22 mismatched vehicle (car versus SUV) cases.  The average age, 
stature, total body mass, and BMI were of the 84 occupants were: 41 years (standard deviation: ± 17 years), 
1.72 ± 0 .10 m, 85 kg ± 21 kg, and 27.5 ± 7.7 kg/m2.  Seventy cases were classified as frontal plane crashes 
with a mean barrier change in velocity of 30.6 ± 14.3 km/h.  The mean curb weight of the case vehicle was 
1460 ± 330 kg.  Model years ranged from 1993 to 2006.  The crush distance and extent zone demonstrated 
poor correlations (r2 < 0.02) with injury severity.  The injury severity scores ranged from 5 to 75, with a 
mean of 21 ± 14 for the entire ensemble.  The injury severity for the thorax was similar between vehicle-to-
pole and matched-vehicle impacts (ISS = 19 and 18), and was considerably greater (26) for mismatched 
vehicles.  All five fatalities occurred in frontal plane crashes: head injuries occurred in four cases, thorax 
injuries occurred in three, and neck/cervical spine occurred in three cases (all AIS 4+); and all cases had 
traumas to more than one body region including the abdomen and extremities.  In the remaining 65 survivors, 
according to AIS, injuries occurred to the head, face, thorax, abdomen, and spine regions in 18, 5, 20, 8, and 
4 cases.  Lower extremity injuries were common in fatal and non fatal groups.  Head injuries were associated 
with contact within the vehicle components, assessments based on vehicle inspections, photographs, and 
medical records.  The most frequent contact was attributed to the A-pillar. 
 

Full-scale vehicle tests:  The as-tested vehicle weights were 1445, 1742, 1446, and 1268 kg, for the 
2005, 2007, 2009, and 2010 vehicles, respectively.  Chest deflections generally peaked approximately at the 
same time in each test; the right side of the chest of the dummy sustained greater deflections than the left 
side, and this was independent of the vehicle type.  Increased belt tension lead to decreased upper neck shear 
forces, and greater shear force at the lower neck was associated with longer attainment times of peak belt 
tension.  In all tests the dummy responded with forward and outboard kinematics; duration of contact of the 
head-neck with the airbag directly influenced the lower neck flexion moment and upper left chest antero-
posterior compression; and lateral chest deflection patterns at the upper level were symmetrical in both sides. 
Maximum chest compressions in the newer-body-structure (2009 model) vehicle was considerably lower 
than the companion older-body-structure (2005 model, compression-time histories shown in figure 1): upper 
right, upper left, lower right, and lower left deflections reduced to 17, 61, 31, and 74% in the newer-body-
structure vehicle.  The duration of the head-neck excursion was 22% shorter in the newer vehicle, and its 
airbag deployed later by 25 ms, took 11 ms less to fully inflate, and contacted the dummy for 48 ms less than 
the older vehicle.  The upper neck shear and lower neck tension were reduced while upper neck tension 



stayed the same and lower neck tension increased in the newer-body-structure compared to the older-body-
structure vehicles.  In the full-size vehicle, the airbag interaction was minimal with the dummy essentially 
escaping the deployed airbag with an outboard translation of the head-neck complex prior to considerable 
thorax motion.  In contrast, in small vehicles, the dummy head interacted with the airbag, and the head-neck 
kinematics was such that the head moved closer to the A-pillar during the impact phase.  The head did not 
contact the A-pillar in any test. 
 

 
Figure 1:  Chest deflections in the dummy from a full-scale vehicle small overlap impact test 

 
 

Limited number of full-scale vehicle tests was conducted.  While the Hybrid III dummy is widely 
accepted as the frontal impact device, it was not considered because of its inability to sense measure multi-
point deflections.  Mid-sternum deflections do not best represent full occupant kinematics in small overlap 
impacts.  The design of the THOR head-neck-torso based on more recent data, better mimics the geometry 
and response of the human.  Forward and outboard motions of the THOR dummy characterizes small overlap 
impacts, as this type of combined kinematics are in contrast to full frontal impacts wherein the motion is 
predominantly forward.  Off-axis motions and loading may contribute to the added severity of trauma.  
Changes in the design of the longitudinal members of the vehicle affecting the impact load (re)distribution 
alter the loading and kinematics of the dummy.  These findings suggest that both sagittal and coronal plane 
kinematics contribute to increased traumas in small overlap impacts, and the vehicle structure also play a 
role.  Head contact observed in field data was not fully reproduced in full-scale vehicle tests although dummy 
kinematics was such that the head-neck complex moved towards the A-pillar in all cases.  The THOR 
appears to be an appropriate dummy for these impacts because of its more human-like design including the 
anatomical rib cage and neck compliance.  The presence of four crux potentiometers assisted in determining 
the chest deflections to characterize these impacts.  Small overlap impacts induce asymmetric loading and 
timings of attainments of peak deflections differ compared to full frontal impacts. 

CONCLUSIONS 
Emerging field data show injuries in small overlap impacts.  Head contact occurs with the interior 

components such as A-pillar.  Traditional crash metrics are inadequate descriptors of these crashes.  Less 
than full structural engagement contributes to increased vehicle deformations, enhanced occupant motions, 
and injury susceptibility.  Based on chest deflections and head-neck kinematics, the mechanism of head-torso 



injuries can be hypothesized to the asymmetric loading and kinematics of this complex, resulting in occupant 
motion towards the outboard side with less than optimal engagement with the airbag.  Frontal impact airbag 
may not offer the most optimum protection in these crashes. As these Small overlap impacts have not been 
systematically analyzed for injuries, injury mechanisms, occupant kinematics, and dummy measures such as 
multi-point sensing and head-neck trajectories and loads, the present study sheds light in all these areas.  
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