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ABSTRACT 
Objective evaluation methods of time history signals are used to quantify how well simulated human body 
responses match experimental data.  As the use of simulations grows in the field of biomechanics, there is a 
need to establish standard approaches for comparisons.  There are two aims of this study.  The first is to 
apply three objective evaluation methods found in the literature to a set of data from a human body finite 
element model.  The second is to compare the results of each method, examining how they are correlated to 
each other, and the relative strengths and weaknesses of the algorithms. 
 
In this study, the methods proposed by Sprague and Geers (Magnitude and Phase error, SGM and SGP), 
Rhule et al. (Cumulative Standard Deviation, CSD) and Gehre et al. (CORrelation Analysis, CORA Size, 
Phase, Shape, Corridor) were compared. A 40 kph frontal sled test presented by Shaw et al. was simulated 
using the Global Human Body Models Consortium mid-sized male full body finite element model (v. 3.5). 
Mean and standard deviation experimental data (n = 5) from Shaw et al. was used as the benchmark.  
Simulated data were output from the model at the appropriate anatomical locations for kinematic 
comparison.  Force data were output at the seatbelts, seat pan, knee, and foot restraints. 
 
Objective comparisons from 53 time history data channels were compared to the experimental results.  To 
compare the different methods, all objective comparison metrics were cross-plotted and linear regressions 
were calculated.  The following ratings were found to be statistically significantly correlated (p<0.01): SGM 
and CORA Size, R2=0.73, SGP and CORA Shape, R2=0.82, and CSD and CORA’s Corridor factor, R2=0.59.  
Relative strengths of the correlated ratings were then investigated.  For example, while correlated to CORA 
Size, SGM carries a sign to indicate whether the simulated response is greater than or less than the 
benchmark signal.  A further analysis of the advantages and drawbacks of each method is discussed. 
 
The results demonstrate that a single metric is insufficient to provide a complete assessment of how well the 
simulated results match the experiments.  The CORA method provided the most comprehensive evaluation of 
the signal.  Regardless of the method selected, one primary recommendation of this work is that for any 



comparison, results should be reported to provide separate assessments of a signal’s match to experimental 
variance, magnitude, phase, and shape.  Future work planned includes implementing any forthcoming ISO 
standards for objective evaluations. 
 

INTRODUCTION 
inite element analysis (FEA) has become an important tool in the field of injury biomechanics.  
Mathematical models have been used in this field for decades (Yang, et al. 2006) with Finite Element 
Models of full human bodies becoming more widespread recently (Robin 2001; Ruan, et al. 2003; Ruan, 

et al. 2005).  Advances in computing power have allowed for more complex models and, as a result, modern 
full human body finite element models (FEMs) have been created with an increased focus on anatomical 
accuracy (Shigeta, et al. 2009; Vavalle, et al. 2013).  Even with accurate anatomical representation, an FEM 
must be rigorously validated against experimental data before it can be used to study injury.  To do this, 
models are often compared to mean responses and corridors created from post-mortem human surrogate 
(PMHS) testing.  Objective comparisons of models are critical when evaluating validation.  A comparison 
made based on mathematics and not human judgment is the preferred method for determining model validity.  
This approach offers the most robust means of evaluating model performance during development (to 
quantitatively track improvements) or validation (to quantify the degree to which a model agrees with 
experimental data). 

A new full body FEM of the mid-sized male (M50) was recently developed by the Global Human 
Body Models Consortium (GHBMC).  The GHBMC model is the result of a collaboration between the 
automotive industry, government agencies, and academia with a goal to create a set of advanced full human 
body FEMs.  The purpose of full body models (FBMs) is to study blunt injury in motor vehicle crashes 
(MVCs) and to be used as a tool for the community to enhance the safety of vehicles.  The development of 
the M50 model, has been discussed in the literature (Gayzik, et al. 2011; Gayzik, Moreno, Danelson, et al. 
2012; Vavalle, et al. 2013) and will be briefly reviewed here.  To obtain accurate anatomical geometry for the 
model a multi-modality medical imaging approach was taken (Gayzik, et al. 2009).  Magnetic resonance 
imaging (MRI), upright MRI, computed tomography (CT), and laser surface scanning with bony landmark 
identification were used to obtain model geometries.   

CAD data was distributed to collaborating universities whose goal was to create regional FEMs 
(Beillas, et al. 2012; DeWit, et al. 2012; Fice, et al. 2011; Li, Kindig, Kerrigan, et al. 2010; Li, Kindig, Subit, 
et al. 2010; Mao, et al. 2012; Shin, et al. 2012; Yue, et al. 2011).  The GHBMC seated male full body model 
was constructed by combining five regional models (head, neck, thorax, abdomen, and pelvis/lower 
extremity) (Thompson, et al. 2012).  The version of the model used in this study (v 3.5) contained a total of 
1.3 million nodes, 1.95 million elements, 961 parts, and represents a weight of 75.5 kg.  The focus of this 
paper will be one validation case in which the experiments of Shaw et al. (Shaw, et al. 2009) were simulated.  
This particular case provided 53 channels of data for comparing objective evaluation (OE) methods. 

OE methods to make comparisons between model response and experimental data are gaining favor.  
An ISO workgroup (ISO/TC 22/SC 10/WG 4) is working to standardize their use for FEM simulations, 
indicating a broad need for non-subjective means to calculate the level of correlation observed in the 
validation of FEMs.  The ISO/TR9790  method for evaluating side impact ATDs has been used to evaluate 
the validation of an FEM in the past (Ruan, et al. 2006), but this method has been noted to be too subjective 
(Hsu, et al. 2005).  The National Highway Traffic Safety Administration (NHTSA) also formulated a method 
for creating cadaveric corridors to which lateral impact ATDs can be compared (Maltese, et al. 2002).  This 
method is an improvement over ISO/TR9790 in that it is more automated and less subjective, but there are 
still shortcomings that have been outlined in the literature (Hsu, et al. 2005; Irwin, et al. 2005).  A third 
method for comparing side impact ATD responses to experimental results was developed by Nusholtz et al. 
(Nusholtz, et al. 2007) using cross-correlation.  Rather than creating corridors from PMHS tests, this method 
compares inter-PMHS cross-correlations to cross-correlations between the ATD and each PMHS.   

The methods used in the comparison presented in this study were biased towards those that 
employed averages and standard deviations of PMHS data points.  This decision was made since those data 
are typically presented in the literature and are commonly accessible for computational model comparison.  

F 



Individual test curves are required for the ISO/TR9790, Maltese, and Nusholtz methods.  Individual traces 
are often not published, creating a higher barrier for groups outside of the lab that conducted the experiment 
to employ them.  While these previous three methods are considered beyond the scope of this study, they are 
of great interest and reserved for future investigations.  The overarching objective of the current work was to 
investigate several methods for OE. Since there are a number of methods available in the literature, the first 
aim was to select several commonly used methods and apply them to a robust dataset to determine how the 
methods are correlated, if at all.   Methods proposed by Sprague and Geers (Sprague, et al. 2004), Rhule et al. 
(Rhule, et al. 2002), and Gehre et al. (Gehre, et al. 2009) were implemented.  Correlations were used to 
investigate the relationships of the different metrics and the relative strengths and weaknesses of each 
method.  This work provides an assessment of the method that provided the most complete evaluation of the 
model with regards to the literature data. 

METHODS 

The GHBMC average male seated model (M50) was used in this study.  The subject used as the 
template for the model was a living male volunteer, 26 years old, 174.9 cm, and 78.6 ± 0.77 kg.  The model 
has been validated in lateral (Vavalle, et al. 2013) and frontal impact (Gayzik, Moreno, Vavalle, et al. 2012).  
More details of the model and its development can be found in the GHMBC M50 manual (GHBMC 2011). 

The model was simulated in a frontal sled test configuration presented by Shaw et al. (Shaw, et al. 
2009).  The simulation was conducted using MPP LS-Dyna R 4.2.1 running on a Red Hat Linux 
computational cluster using 48 cores.  The seat buck was modeled per the data in the above reference and 
adjusted from personal communications with the authors of that study.  The buck was modeled as a rigid 
body.  Belt properties were made to match descriptions of the webbing of the belt reported by Shaw et al. (26 
kN of force for 7% strain).  No pre-tensioners or load limiters were modeled.  Friction was not included 
between the body and the buck.  The model was gravity-settled for 90 ms prior to executing the sled pulse.  
Belts were fit and final adjustments were made for components of the buck (i.e. knee bolster) following the 
settling simulation.  This particular buck was designed to focus loading on the thorax as the knees are in 
contact with rigid bolsters at the outset of the simulation.  This limited forward excursion of the PMHS in the 
experiment.  The 40 kph change in velocity pulse reported in the study was applied as a velocity history to 
the buck in the simulation. 

All data were recorded in binary output files at a sample rate of 10 kHz.  The SAE J1733 coordinate 
system was used for all kinematic output and seat pan reaction forces.  The forces at the upper and lower 
shoulder belt, and outer lap belt correspond to forces along the belt.  Reaction forces at the knee bolsters and 
foot rest were recorded in the global coordinate system and transformed to local coordinate system as 
reported in the literature (Ash, et al. 2012).  All kinematic data was reported in the global coordinate system 
with the exception of chest deflection data, which utilized a local coordinate system defined on T8 (Shaw, et 
al. 2009).  The time history of the model output is available in the literature (Gayzik, Moreno, Vavalle, et al. 
2012).  Data extracted from the model were compared against an average and standard deviation of n = 5 
PMHS tests (Shaw, et al. 2009).  The subjects were all male and had an average mass and age of 75.5 kg and 
54 years.  Since the average mass of the subjects were equal to that of the model, mass scaling was not 
explicitly performed. 



Table 1.  Comparison of objective evaluation methods used in the study. 

Study Name Evaluation Metric Best match value Worst match value Notes 

Sprague and Geers 

Magnitude, SGM SGM = 0, equal magnitude of 
experiment 

SGM = -1 (much less than 
experiment) 
SGM = ∞ (much greater than 
experiment) 

Mean comparison only. 

Phase, SGP 
SGP = 0, no phase differences 
between simulation and 
experiment 

SGP = 1 (180o out of phase of 
experiment) 

Mean comparison only. 
Result is normalized by π. 

Rhule et al. Cumulative Standard 
Deviation, CSD 

CSD = 0, sum of squared 
difference between experiment 
and simulation is zero 

Positive valued only 
CSD = n (n standard deviations 
from the mean) 
CSD = ∞ (many standard 
deviations from the mean) 

Accounts for standard deviation, 
CSD = √R, square root used to 
report results in terms of a 
cumulative standard deviation 
rather than cumulative variance.  
BioRank utilizes √R. 

Gehre et al. 

CORA Corridor, Ccor Ccor = 1, with inner corridor Ccor = 0, outside of outer corridor 
Comparison based on user-
provided inner and outer 
corridors. 

CORA Phase, Cphase 
Cphase = 1, required shift is less 
than user-defined δmin 

Cphase = 0, required shift is greater 
than user-defined δmax 

Mean comparison only. 
Phase shift value is interpolated 
between a min and max 
permissible shift. 

CORA Size, Csize 
Csize = 1, Area under the curve of 
simulated and experimental results 
are equal 

Csize → 0, Area under the curve of 
simulated and experimental results 
are very different 

Mean comparison only. 

CORA Shape, Cshape 
Cshape = 1, Shape of curves is 
similar 

Cshape → 0, Shape of curves is very 
different 

Mean comparison only. 
Utilizes a normalized cross-
correlation. 

 



The model and simulated case are critical background for this study.  However, the focus was to 
compare and contrast various OE techniques using this simulation.  To that end, it is necessary to briefly 
describe the three methods of quantitative comparison that were used.  Equations are readily available in the 
literature for these methods so a general overview of each method will be provided instead.  A summary of 
the differences in these methods is found in Table 1.  The first of these methods, introduced by Sprague and 
Geers, utilizes two metrics; Magnitude and Phase error factors (Sprague, et al. 2004; Vavalle, et al. 2013).   
The Magnitude factor (SGM) is insensitive to phase shifts and the Phase factor (SGP) is insensitive to 
magnitude.  Both are functions of the definite integrals of time valued functions for a given output.  These 
factors only take into account information from the experimental mean (i.e. no information on the 
experimental variance is used). 

The cumulative standard deviation or CSD, introduced by Rhule et al. (Rhule, et al. 2002) is the 
second OE method used.  Unlike the S&G values, it does take into the account the spread of the experimental 
data by normalizing the sum of squared difference between a model and an experimental mean by the 
experimental variance.  Since the CSD is the square root of that ratio, it can be interpreted as the number of 
standard deviations the simulated response is from the mean of the experimental data (Rhule, et al. 2002). 

The final method used in the comparisons of OE methods is a suite of comparison metrics known as 
CORA (Gehre, et al. 2009).  This is a set of algorithms that takes into account corridor fit, phase shift, size 
and shape differences.  Among these, only the corridor evaluation takes into account experimental variance.  
However the method acknowledges that there are a number of different relevant criteria that are required to 
make a comprehensive assessment of the signal alignment.  CORA v. 3.5 was used in this study.  All defaults 
were used for parameters that control the evaluation except the phase range.  The range for interpolation 
between perfect (1) and poor (0) phase match is suggested to be 3 to 12% of the time span of the signal.  This 
was changed to 5 to 15% for this analysis (i.e. less than 5% time shift of the signal scored a 1 whereas greater 
than 15% time shift scored a 0).  For the corridor analysis, the inner corridors were set at one standard 
deviation, and the outer corridors were set at two standard deviations. 

The kinematic and kinetic results of the model simulation were run through each of the OE methods 
identified above (n = 7 metrics).  A total of 53 time valued signals were extracted from the simulation.  For 
each of these signals, corresponding experimental data from the literature (Shaw, et al. 2009) were available 
for comparison.  The S&G Magnitude and Phase factors, as well as the CSD factor by Rhule et al. were 
programmed in Matlab v. 11 (The Mathworks, Natick, MA).  The values from CORA were obtained from 
release 3.5 of the CORA software.  

The results of this phase of the study were 7, 53x1 vectors with the coefficients of the OE methods.  
Each of these was then cross-plotted to determine if there was a linear correlation between the results.  Table 
2 below provides a schematic of the cross plots that were conducted.  No comparisons along the diagonal of 
the test matrix were conducted as they would yield a perfect correlation, and only the upper off-diagonal 
terms were considered as the lower terms would be equivalent.  Linear regressions were conducted in Matlab 
v. 11.  The coefficient of determination, R2, was used to evaluate regressions.  The p-value for all regressions 
was also determined from the F-test and a significance value of α = 0.01 was used to assess significance due 
to the relatively large sample size.  

Table 2. Cross plot matrix for comparison study. 

 
Sprague and Geers Rhule et al. Gehre et al. 

SGM SGP CSD Ccor Cphase Csize Cshape 
SGM        
SGP        
CSD        
Ccor        
Cphase        
Csize        
Cshape        



RESULTS 

The frontal sled event was conducted in two separate simulations.  A 90 ms settling event was 
simulated and required 16 hours to run on 48 cores. The full body sled test was then simulated using output 
from the settling run to determine initial nodal locations.  The simulation of this 150 ms event required 29 
hours on 48 cores.  A time sequence of the sled event modeled is shown in Figure 1, with an oblique view of 
the model, a lateral view of the spine and posterior view of the spine.  The model showed good robustness 
with hourglass energy remaining below 12.4% of the sum of kinetic and potential energy in the model 
(including the buck).  The peak of this hourglass energy ratio occurred at 127 ms, which closely matched the 
maximum forward excursion of the model, which occurred at approximately 130 ms. 

 
Figure 1. Time lapse images showing the kinematics of the GHBMC M50 model.  The top row indicates 
overall body motion with the second and third rows showing spine kinematics from the side and back, 

respectively. 

Following simulation of the event, 53 time history traces were extracted and compared to the 
experimental data.  The results of these comparisons were OE metrics for each of the three methods tested.  
Cross plots and linear regressions of the metrics resulted in the correlations summarized in Table 3. The four 
coefficients of determination shown with dark gray backgrounds were found to be statistically significant at 
the selected significance level of α = 0.01.  To summarize, the study’s findings indicate that the following 
metrics were correlated. SGM was correlated to CORA Size (R2 = 0.73), SGP was related to CORA Shape 
(R2 = 0.82), and CSD was correlated to CORA Corridor (R2 = 0.59).  Additionally, statistically significant 
relationships, though with mild correlations, were found between SGP and CORA Phase (R2 = 0.31) and 
CORA Shape and CORA Phase (R2 = 0.21).  Coefficients in bold demonstrated R2 values greater than 0.5, 
the linear regressions of which are plotted below in Figure 2. 

Table 3. Results from the 21 regressions conducted with the statistically significant correlations highlighted.  
The three pairs with R2 > 0.5 are shown in bold. 

 
Sprague and Geers Rhule et al. Gehre et al. 

SGM SGP CSD Ccor Cshape Csize Cphase 
SGM 

 
0.00 0.09 0.06 0.02 0.73 0.01 

SGP 
  0.00 0.00 0.82 0.03 0.31 

CSD 
   0.59 0.01 0.09 0.01 

Ccor 
    0.02 0.08 0.02 

Cshape 
     0.04 0.21 

Csize 
      0.01 

Cphase 
       



 
Figure 2.  Cross-plots of the three best correlated metric pairs. 

DISCUSSION 

Objective evaluation methods are becoming increasingly important in modeling.  A comprehensive 
set of simulation results including seatbelt loads, reaction forces and kinematic data, were used to evaluate 
three common OE techniques.  The findings of this study show which of these methods are correlated.  They 
are also of use to researchers familiar with one of these techniques, as these results enable users of one 
technique to more accurately evaluate results in the literature that employ one of the other techniques tested.  
There are other intrinsic values to using OE methods not just in validation, but in the modeling process.  
These methods provide the most robust means of tracking model improvement during the model 
development process.  A quantitative means of evaluating model performance also provides a means for 
comparing the results of two different FEA models that have been used to simulate the same event. 

Three pairs of metrics were found to have statistically significant correlations and have R2 values 
greater than 0.5; SGP and CORA Shape, SGM and CORA Size, and CSD and CORA Corridor.  These 
relationships are consistent with the relationships between the mathematical formulations of the metrics.  The 
correlations between SGP and CORA Phase and CORA Shape and CORA Phase were also found to be 
statistically significant, but with R2 = 0.31 and R2 = 0.21, respectively.  It is clear from these coefficients of 
determination that no two metrics were identical.  SGM and CORA Size, though related, encompass different 
ranges.  SGM ranges from -1 to +∞ while CORA Size ranges from 0 to 1.  This difference is highlighted by 
Figure 3, in which the bar chart shows many of the SGM values were less than 0 while all of the CORA Size 
values were greater than 0.  To reiterate from Table 1, a negative SGM indicates that the model response is, 
on average, smaller than the experimental mean.  This is an advantage of the SGM, since the user can quickly 
evaluate whether the model is under predicting or over predicting the experiment.  Because it does not carry 
the sign, the CORA Size metric does not offer this advantage.  An additional difference between these 
metrics is that a perfect match between model and experiment would receive SGM = 0 and CORA Size = 1.  
Again, this is shown in Figure 3 as many of the smaller SGM values correspond to larger CORA Size values. 



 
Figure 3.  On Left: Bar chart showing that SGM can be less than zero while CORA Size is always positive.  

On Right: A) a case where SGM is negative since, on average, the model response is smaller than 
experimental mean.  B) a case where both SGM and CORA Size are positive.  Both the SGM and CORA 

Size factor do not consider the phase shift that is apparent in either A or B. 

Other interesting differences exist in the correlated pairs of metrics, such as between CSD and 
CORA Corridor.  Both values measure how well a model response fits within the corridors of experimental 
data.  However, similar to the case of SGM and CORA Size, CSD can range from 0 to +∞ while CORA 
Corridor can range from 0 to 1.  This is illustrated in Figure 4 which shows a histogram of the CSD and 
CORA Corridor values obtained.  Note that the range of the CSD value is much greater than the CORA 
value, since it is not normalized.  The advantage to this range is that the value of CSD corresponds to the 
number of standard deviations the model results are (on average) from the mean experimental results, and is 
therefore more easily interpreted by the engineer.  Of course, it should be noted that the choice of corridors 
strongly influences the rating that a model response receives.  With respect to CSD, if the standard deviation 
is narrow (i.e. the data have a low coefficient of variation) a model response that is a number of standard 
deviations from the mean may not amount to a large relative difference.  Conversely if the standard deviation 
is large, a better CSD value is to be expected.  While CSD always uses the experimental standard deviation, 
CORA uses an inner and outer corridor.  It is common to use a constant corridor width for both the inner and 
outer corridors (Gehre, et al. 2009), however an alternative to this is to use plus or minus one standard 
deviation for the inner corridor and plus or minus two standard deviations for the outer corridor.  The latter 
approach was used in this study since standard deviation curves were readily available for the experimental 
data.  Of course, the same issues related to the effect of tight or narrow standard deviations also apply to the 
CORA output. 

 
Figure 4.  Histogram comparing the range of CSD to the range of CORA Corridor 



It was found that Sprague and Geers Phase was more highly correlated to CORA Shape than to 
CORA Phase.  While both correlations were found to be statistically significant, the correlation to 
CORA Shape was more than twice that of the correlation to CORA Phase.  The small correlation between 
CORA Shape and CORA Phase combined with a strong correlation between SGP and CORA Shape is the 
likely cause of the mild correlation between SGP and CORA Phase.  This stands to reason considering the 
method to calculate CORA Phase.  This metric reflects the amount of time shift needed to align the signal to 
the experiment.  It also “caps” the value of the time shift by allowing the user to input a minimum and 
maximum shift.  If the calculated shift is less than the minimum, the Phase rating is automatically set to 1, if 
it is larger than the maximum; it is automatically set to 0.  This artificial cap likely decreases the correlation 
with other techniques whose results are continuous functions of the time series data.  SGP and CORA Shape, 
on the other hand, both use more complex calculations involving a cross-correlation of the signals.  As 
evidenced from this result, the names of these metrics can lead to incorrect assumptions and the mathematical 
formulae should be familiar to the user. 

Relative strengths and weaknesses of each method were examined to determine the most 
comprehensive of the three.  The Sprague and Geers method is able to distinguish between magnitude and 
phase contributions to the model’s error from the experimentally determined responses.  Separating these 
contributions can be helpful in determining how model response can be improved.  However, this method 
does not consider experimental variance, which can play a substantial role in injury biomechanics data due to 
human variation.  A main part of the Rhule et al. BioRank method is calculating the Cumulative Standard 
Deviation (CSD), which represents how many standard deviations the model is from the experimental data, 
on average.  The variance of the experimental data is clearly taken into account using this calculation.  But, if 
the model response is simply out of phase, and would otherwise be a good match, it results in a poor CSD 
value because only a point-by-point comparison is made and no phase shift is incorporated.  The methods of 
Gehre et al., known as CORrelation and Analysis (CORA), provide size, phase, shape, and corridor ratings.  
This method is the most comprehensive of the three examined in this study.  Significant correlations were 
found between each of the metrics in the two other studies and the metrics of CORA.  Furthermore, no strong 
correlations were found between the four metrics within the CORA approach, indicating that each metric 
provides independent data regarding the model to experiment comparison.  While the correlation between 
CORA shape and CORA phase was statistically significant, an R2 = 0.21 does not indicate a strong 
correlation. 

All three of these methods rely on average experimental data and two methods require data on the 
experimental variance.  How the average and standard deviations from the experiments are determined is 
important and has obvious implications on the data reported in this study.  While this is a limitation of the 
analysis, it is considered beyond the scope of this study since the same data were used for all three 
comparison methods.  The topic of averaging biomechanics data is an area of much research as well (Hsu, et 
al. 2005; Irwin, et al. 2005; Maltese, et al. 2002; Nusholtz, et al. 2009).  Additionally, while only one study 
was used to conduct this comparison, it was chosen for a number of reasons.  First, there was a large amount 
of data collected (53 data channels used in the comparison), second the breadth of the results cover 
kinematics and kinetics of the PMHS and finally, the subjects were reasonably close to the anthropometry of 
a 50th percentile male.  A further limitation of the work is that standards from the ISO/TC 22/SC 10/WG 4 
have not been evaluated in this work.  To the author’s knowledge these standards are forthcoming and will be 
evaluated once they become available. 

Regardless of which method is chosen, this analysis shows that it is useful to keep metrics separate 
rather than combining them into a single biofidelity score.  While having one number associated with the 
validation of a model can be convenient, this can oversimplify the analysis.  Each of the types of metrics that 
are calculated in the methods has different meanings.  Much can be learned from investigating each metric 
separately and this can guide further model improvements.  For example, a reaction force that shows the 
proper magnitude but a poor phase may indicate that the interaction of the model with the buck is the 
principal source for the discrepancy between model and experiment.  But, combining these scores could 
result in the loss of that insight, and lead to counterproductive efforts to address problems that may not even 
exist in the model.   



Future work in this area may include implementing and applying the Nusholtz et al. (Nusholtz, et al. 
2007) cross-correlation method to this set of data.  An advantage of this method is that it does not use a mean 
or corridor of the experimental data.  Rather, it compares the inter-PMHS cross-correlations to the cross-
correlations of the model to the individual tests.  Scores are then assigned to magnitude, shape, and phase for 
each body region.  Finally, there is a need to establish standards for regional weighting of OE metrics in full 
body model analysis so that the most pertinent data is given the greatest consideration. 

CONCLUSIONS 

This study examined three methods commonly used to objectively compare model response to 
experimental data.  A simulation of a full body frontal sled was conducted, from which 53 outputs were 
compared to experimental data using three methods of objective evaluation.  It was found that the following 
three methods were both statistically significant and had an R2 of greater than 0.5 – Sprague and Geers Phase 
and CORA Shape; Sprague and Geers Magnitude and CORA Size; and Rhule et al. Cumulative Standard 
Deviation and CORA Corridor.  Based on the findings in this study, it is recommended to use an approach 
similar to CORA for full body model evaluation since it gives the most comprehensive evaluation of the 
results tested.  The four metrics provided as part of the CORA analysis package were found not found to be 
correlated, indicating that each one provides independent data.  Advantages for the other methods tested are 
reviewed as well.  This work will additionally serve to clarify how these methods are related and facilitate 
comparisons between their results. 
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