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ABSTRACT 

Pattern recognition techniques, such as neural 
networks, have been appiied to identify objects within the 
passenger compartment of the vehicle, such as a rear 
facing child seat or an out-of-position occupant, and to 
suppress the airbag when an occupant is more likely to be 
injured by the air-bag than by the accident. Neural 
networks have also been applied to sense automobile 
crashes. The use of neural networks is extended here to 
tailoring the airbag inflation to the severity of the crash, 
the size, position and relative velocity of the occupant and 
other factors such as seatbelt usage, seat and seat back 
positions, vehicle velocity, and any other relevant 
information. 

It is well known that a neural network based crash 
sensor can forecast, based on the first part of the crash 
pulse, that the crash wilI be of a severity which requires 
that an airbag be deployed. This is extended here to 
enhance the capabilities of this sensor to forecast the 
velocity change of the crash over the entire crash period. 
Then a pattern recognition occupant position and velocity 
determination sensor is added. Finaiy, an occupant 
weight sensor is inctuded to permit a measure of the 
occupant’s momentum or kinetic energy. The 
combination of these systems in various forms will be 
used to optimize inflation and/or deflation of the airbag to 
create a “‘smart airbag” system. 

Crash sensors can predict that a crash is of a severity 
which requires the deployment of an airbag for the 
majority of real world crashes. A more difficult problem 
is to predict the crash velocity versus time function and 
then to adjust the airbag inflation/deflation over time so 
that just the proper amount of gas is in the airbag at all 
times even without considering the influence of the 
occupant. To also simultaneously consider the occupant 
size, weight, position and velocity renders this problem 
unsolvable by conventional methods. 

use with anticipatory sensing systems to identify 
threatening objects, such as an approaching vehicle about 
to impact the side of the vehicle. Neural networks have 
also been applied to sense automobile crashes for the 
purpose of determining whether or not to deploy an airbag 
or other passive restraint, or to tighten the seatbelts, cutoff 
the fuel system, or unlock the doors after the crash. 
Heretofore, neural networks have not been applied to 
forecast the severity of automobile crashes for the purpose 
of controlling the flow of gas into or out of an airbag in 
order to tailor the airbag inflation characteristics to the 
crash severity. Neural networks have also not been used 
to tailor the airbag inflation characteristics to the size, 
position or relative velocity of the occupant or other 
factors such as seatbelt usage, seat and seat back 
positions, headrest position, vehicle velocity, etc. 

“Pattern recognition” as used herein means any system 
which processes a signal that is generated by an object. or 
is modified by interacting with an object, in order to 
determine which one of a set of classes the object belongs 
to. In this case, the object can be a vehicle with an 
accelerometer which generates a signal based on the 
deceleration of the vehicle. Such a system might 
determine only that the object is or is not a member of one 
specified class (e.g., airbag required crashes), or it might 
attempt to assign the object to one of a larger set of 
specified classes, or find that it is not a member of any of 
the classes in the set. One such class might consist of 
vehicles undergoing a crash of a certain severity into a 
pole. The signals processed are generaIly electrical 
signals coming from transducers which are sensitive to 
either acceleration, or acoustic or electromagnetic 
radiation and, if electromagnetic, they can be either 
visible light, intiared, ultraviolet or radar. The particular 
pattern recognition techniques used here are neural 
networks. 

To “identifjr” as used herein means to determine that 
the object belongs to a particular set or class. The class 
may be one containing all frontal impact air-bag-desired 
crashes into a pole at 20 mph, one containing all events 
where the airbag is not required, or one containing all 
events requiring a triggering of both stages of a dual stage 
gas generator with a 15 millisecond deiay between the 
triggering of the first and second stages. 

SINGLE POINT CRASH SENSORS 
BACKGROUND 

Pattern recognition techniques, such as artificial neural 
networks, are finding increased application in solving a 
variety of problems such as optical character recognition, 
voice recognition, and military target identification. In 
the automotive industry, neural networks have now been 
applied to engine control and to identify various objects 
within the passenger compartment of the vehicle, such as 
a rear facing child seat. They have also been proposed for 

All electronic crash sensors currently used in sensing 
frontal impacts include accelerometers that detect and 
measure the vehicle accelerations during the crash. The 
accelerometer produces an analog signal proportional to 
the acceleration experienced by the accelerometer, and 
hence the vehicle on which it is mounted. An analog to 
digital converter (ADC) transforms this analog signal into 
a digital time series. Crash sensor designers study this 
digital acceleration data and derive therefrom computer 
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algorithms that determine whether the acceleration data 
Tom a particular crash event warrants deployment of the 
airbag. This is usually a trial and error process wherein 
the crash sensor designer observes data from crashes 
where the airbag is desired and when it is not needed, and 
other events where the airbag is not needed. Finally, the 
crash sensor designer settles on the “rules” for controlling 
deployment of the airbag which are programmed into an 
algorithm which appears to satisfy the requirements of the 
crash library. The resulting algorithm is not universal and 
most such crash sensor designers will answer in the 
negative when asked whether their algorithm will work 
for all vehicles. Such an algorithm also merely 
determines that the airbag should or should not be 
triggered. Heretofore, no attempt has been made to 
ascertain or forecast the eventual severity of the crash or, 
more specifically, the velocity change versus time of the 
passenger compartment during the crash from the 
acceleration data obtained from the accelerometer. 

Several papers have been published pointing out some 
of the problems and limitations of electronic crash sensors 
that are mounted out of the crush zone, usually in a 
protected location in the passenger compartment of the 
vehicle (I-6). The crush zone is defined, for the purposes 
herein, as that portion of the vehicle that has crushed at 
the time that the crash sensor must trigger deployment of 
the restraint system. These sensors are frequently called 
single point crash sensors. 

These papers demonstrate, among other things, that 
there is no known theory which allows an engineer to 
develop an algorithm for sensing crashes and selectively 
deploying the airbag except when the sensor is located in 
the crush zone of the vehicle. These papers show that, in 
general, there is insufficient information within the 
acceleration signal measured in the passenger 
compartment to sense all crashes. Another conclusion 
suggested by these technical papers is that if an algorithm 
can be found which works for one vehicle, it will also 
work for all vehicles since it is possible to create any 
crash pulse measured in one vehicle, in any other vehicle. 
Note in particular SAE paper 920 124 (3). 

In spite of the problems associated with finding the 
optimum crash sensor algorithm, many vehicles on the 
road today have electronic single point crash sensors. 
Some of the problems associated with single point sensors 
have the result that an out-of-position occupant who is 
sufficiently close to the airbag at the time of deployment 
will be injured or killed by the deployment itself 
Fortunately, systems are now being developed which 
monitor the location of occupants within the vehicle and 
can suppress deployment of the airbag if the occupant is 
more likely to be injured by the deployment than by the 
accident. At Present, these systems do not provide the 
information necessary for the control of airbag systems 
that have the capability of varying the flow of gas into or 
out of the airbag, and thus to tailor the airbag to the 

position, size and weight of the occupant. More 
particularly, no such system exists which uses pattern 
recognition techniques to match the airbag deployment or 
gas discharge from the airbag to the severity of the crash 
or the size, weight, position, velocity and seatbelt use of 
an occupant. 

Since there is insufficient information in the 
acceleration data, as measured in the passenger 
compartment, to sense all crashes and since some of the 
failure modes of published single point sensor algorithms 
can be easily demonstrated using the techniques of crash 
and velocity scaling described in the referenced technical 
papers, and, moreover, since the process by which 
engineers develop crash sensor algorithms is based on 
trial and error, pattern recognition techniques such as 
neural networks, should be able to create an algorithm 
based on training the system on a large number of crash 
and non-crash events which, although not perfect, will be 
superior to all others. Such a crash sensor has been 
demonstrated which is based on the ability of neural 
networks to forecast, based on the first part of the crash 
pulse, that the crash will be of a severity requiring airbag 
deployment. 

SMART AIRBAG CATEGORIES 

An improvement to this neural network based crash 
sensor carries this process fiuther by using the neural 
network to forecast the velocity change of the crash over 
time so that the inflation and/or deflation of the airbag can 
be optimized. Then by the addition of a neural network 
occupant position and velocity determination system as 
disclosed in (lo,1 I) the occupancy category (forward 
facing human, rear facing child seat, box etc.), position 
and velocity can be obtained. Finally, the addition of the 
weight of the occupant provides a measure of the 
occupants kinetic energy as a further input to the system. 
The combination of these sub-systems in various forms 
can be called “smart airbags” or “smart restraints”. In a 
preferred implementation, the crash severity is not 
explicitly forecasted. Rather, the value of a control 
parameter used to corm-01 the flows of inflator gas into or 
out of the airbag is instead forecasted. 

Smart airbags can take several fbrms which can be 
roughly categorized into four evolutionary stages, which 
will hereinafter be referred to as Phase 1 (2,3,4) Smart 
Airbags, as follows: 
I> Occupant sensors use various technologies to turn off 

the airbag where there is a rear facing child seat 
present or if either the driver or passenger is out-of- 
position to where he/she is more likely to be injured 
by the airbag than from the accident. 

2) Occupant sensors are used along with variable 
inflation or deflation rate airbags to adjust the 
inflation/deflation rate to match the occupant, first as 
to his/her position and then to his/her morphology. 
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The neural network occupant sensors discussed in 
(10,ll) will also handle this with the addition of an 
occupant weighing system. One particular weight 
measuring system, for example, makes use of strain 
gages mounted onto the seat supporting structure. At 
the end of this phase, little more can be done with 
occupant measurement or characterization systems. 

3) The next improvement is to use a neural network as 
the basis of a crash sensor not only to determine if the 
airbag should be deployed, but also to predict the crash 
severity from the pattern of the initial portion of the 
crash pulse. Additionally, the crash pulse can continue 
to be monitored even after the decision has been made 
to deploy the airbag to see if the initial assumption of 
the crash type, based on the pattern up to the 
deployment decision, was correct. If the pattern 
changes indicating a different crash type, the flow rate 
to the airbag can be altered instantaneously. 

4) Finally, anticipatory sensing using neural networks 
can be used to identify the crash before it takes place 
and select the deployment characteristics of the airbag 
to match the anticipated crash with the occupant size, 
position, velocity etc.. 
Any of these phases can also be combined with 

various methods of controlling the pretensioning, 
retraction or energy dissipation characteristics of the 
seatbelt. Although the main focus here is the control of 
the flows of gas into and out of the airbag, the control of 
the seatbelt can also be accomplished and the condition of 
the seatbelt can be valuable input information into the 
neural network system. 

The smart airbag problem is complex and difficult to 
solve by ordinary mathematical methods. Looking first at 
the influence of the crash pulse, the variation of crash 
pulses in the real world is vast and quite different from 
the typical crashes run by the automobile industry as 
reported in the referenced technical papers. It is one 
problem to predict that a crash is of a severity level to 
require the deployment of an airbag. It is quite a different 
problem to predict exactly what the velocity versus time 
function will be and then to adjust the airbag 
inflation/deflation control system to make sure that just 
the proper amount of gas is in the airbag at all times, even 
without considering the influence of the occupant. To 
also simultaneously consider the influence of occupant 
size, weight, position and velocity renders this problem, 
for all practical purposes, unsolvable by conventional 
methods. 

On the other hand, if a neural network is used and 
trained on a large variety of crash acceleration segments, 
and a setting for the inflation/deflation control system is 
specified for each segment, then the problem can be 
solved. Furthermore, inputs from the occupant position 
and occupant weight sensors can also be included. The 
result will be a training set for the neural network 
involving many millions, and perhaps tens of millions, of 

data sets or vectors as every combination of occupancy 
characteristics and acceleration segment is considered. 
Fortunately, the occupancy data can be acquired 
independently and is currently being done for solving the 
occupant position sensing problem of Phase I smart 
airbags. The crash data is available in abundance and 
more can be analytically created using the crash and 
velocity scaling techniques described in the referenced 
papers. The training using combinations of the two data 
sets, which must also take into account occupant motion 
that is not adequately represented in the occupancy data 
can then be done by computer. 

CRASH SEVERJTY FOR!XIASTIlW 

When a crash commences, the vehicle starts 
decelerating and an accelerometer located in the 
passenger compartment begins sensing this deceleration 
and produces an electronic signal that varies over time in 
proportion to the magnitude of the deceleration. This 
signal contains information as to the type of the crash that 
can be used to identify the crash. A crash into a pole 
gives a different signal than a crash into a rigid barrier, for 
example, even during the early portion of the crash before 
the airbag triggering decision has been made. A neural 
network pattern recognition system can be trained to 
recognize and identify the crash type from this early 
signal, and other available information such as vehicle 
speed, and further to forecast ahead the velocity change 
versus time of the crash. Once this forecast is made, the 
severity and timing of the crash can be predicted. Thus, 
for a rigid barrier impact, for example, an estimate of the 
eventual velocity change of the crash can be made and the 
amount of gas needed in the airbag to cushion an 
occupant as well as the time available to inject that 
amount of gas into the airbag can be determined and used 
to control the airbag inflation. 

Alternately, consider a crash into a highway energy 
absorbing crash cushion. In this case, the neural network 
based sensor determines that this is a very slow crash and 
causes the airbag to inflate more slowly thereby reducing 
the incidence of collateral injuries such as broken arms 
and eye lacerations. 

In both of these cases, the entire decision making 
process takes place before the airbag deployment is 
initiated. In another situation where a soft crash is 
preceded by a hard crash, such as might happen if a pole 
were in front of a barrier, the neutral network system 
would first identify the sofi pole crash and begin slowly 
inflating the airbag. However, once the barrier impact 
began, the system recognizes that the crash type has 
changed and recalculates the amount and timing of the 
introduction of gas into the airbag and sends appropriate 
commands to the inflation control system of the airbag to 
increase the introduction of gas into the airbag. 
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VARIABLE INFLATORS 

There are many ways of controlling the inflation of the 
airbag and several are now under development by the 
inflator companies. One way is to divide the airbag into 
different charges and to initiate these charges 
independently as a function of time to control the airbag 
inflation. An alternative is to always generate the 
maximum amount of gas but to control the amount going 
into the airbag, dumping the rest into the atmosphere. A 
third way is to put all of the gas into the airbag but control 
the outflow of the gas from the airbag through a variable 
vent valve. For the purposes herein, all controllable 
apparatus for varying the gas flow into or out of the 
airbag over time will be considered as a gas control 
module whether the decision is made at the time of initial 
airbag deployment, at one or more discrete times later or 
continuously during the crash event. 

INTEGRATION 

The use of neural networks in crash sensors has 
another significant advantage in that it can share the same 
hardware and software with other systems in the vehicle. 
Neural networks have proven to be effective in solving 
other problems related to airbag passive restraints. In 
particular, the identification of a rear-facing child seat 
located on the front passenger seat, so that the deployment 
of the airbag can be suppressed, has been demonstrated. 
Also, the use of neural networks for the classification of 
vehicles or objects about to impact the side of the subject 
vehicle for use in anticipatory side impact crash sensing 
shows great promise. Both of these neural network 
systems, as well as others under development, can use the 
same computer system as the crash sensor and prediction 
system. Moreover, both of these systems will need to 
interact with, and should be part of, the diagnostic module 
used for frontal impacts. It would be desirable for cost 
and reliability considerations, therefore, for all such 
systems to use the same computer system. This is 
particularly desirable since computers designed specially 
for solving neural network problems, such as neural- 
computers, are now available. 

THE NEURAL NETWORK SYSTEM 

The neural network crash sensor described is capable 
of using information from three accelerometers, each 
measuring acceleration I?om an orthogonal direction. As 
will be described in more detail below, other information 
can also be considered by the neural network algorithm 
such as the position of the occupants, noise, data horn 
anticipatory acoustic, radar, inbed or other 
electromagnetic sensors, seat position sensots, seatbelt 
sensors, speed sensors, or any other infmation present in 
the vehicle which is relevant. Since the algorithm is 

trained on data from real crashes and non-crash events, it 
can handle data Corn many different information sources 
and sort out what patterns correspond to airbag-required 
events in a way which is nearly impossible for an 
engineer to do. For this reason, a crash sensor based on 
neural networks, for example, will always perform better 
than one devised by engineers. The theory of neural 
networks including many examples can be found in 
several books on the subject including (7-9). 

The process can be programmed to begin when an 
event occurs which indicates an abnormal situation such 
as the acceleration in the longitu~mal direction, for 
example, exceeding the acceleration of gravity, or it can 
take place continuously depending on the demands on the 
computer system. The digital acceleration values from the 
ADC may be preprocessed, as for example by filtering, 
and then entered successiveiy into the neural network 
algorithm which compares the pattern of values on nodes 
1 through N with patterns for which it has been trained. 
Each of the input nodes is connected to each of the second 
layer nodes h-l,...,hn, called the hidden layer, either 
electrically as in the case of a neural computer, or through 
mathematical functions containing multiplying 
coefficients called weights. 

The weights are determined during the training 
phase while creating the neural network as described in 
detaii in the text references. At each hidden layer node, a 
summation occurs of the values Tom each of the input 
layer nodes, which have been operated on by functions 
containing the weights, to create a node value. Similarly, 
the hidden layer nodes are comected to the output layer 
nodes, which in this example is only a single node 
representing the control parameter to be sent to the gas 
control module. If this value exceeds a certain threshold 
the gas control module initiates depIoyment of the airbag. 

During the training phase, an output node value 
is assigned for every setting of the gas control module 
corresponding to the desired gas flow for that particular 
crash as it has occurred at a particular point in time. As 
the crash progresses and more acceleration values appear 
on the input nodes, the vahe of the output node may 
change. In this way, as long as the crash is approximately 
represented in the training se$ the gas flow can be varied 
at each one OF two milliseconds depending on the system 
design to optimally match the quantity of gas in the airbag 
to the crash as it is occurring. Similarly, if an occupant 
sensor and a weight sensor are present, that information 
can additionally be fed into a set of input nodes so that the 
gas module can optimize the quantity of gas in the airbag 
taking into account both the crash deceleration and also 
the position, velocity, size and weight of the occupant to 
optimally deploy the airbag to minimize airbag induced 
injuries and maximize the protection to the occupant. The 
details of the neural network process and how it is trained 
are described in referenced texts and will not be presented 
in detail here. 
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A time step such as two milliseconds is selected as the 
period in which the ADC preprocesses the output from 
the accelerometers and feeds data to input node 1. Thus, 
using this time step, at time equal to 2 milliseconds horn 
the start of the process, node 1 contains a value obtained 
from the ADC and the remaining input nodes have a 
random value or a value of 0. At time equal 4 
milliseconds, the vaIue which was on node 1 is transferred 
to node 2 and a new value Tom the ADC is fed into node 
1. In a similar manner, data continues to be fed from the 
ADC to node 1 and the data on node 1 is transferred to 
node 2 whose previous value was transferred to node 3 
etc.. Naturally, the actual transfer of data to different 
memory locations need not take place but only a 
redetinition of the location which the neural network 
should find the data for node 1. For one case, a total of 
one hundred input nodes were used representing two 
hundred milliseconds of acceleration data. At each step, 
the neural network is evaluated and if the value at the 
output node exceeds some value such as .5 then the 
airbags are deployed by the remainder of the electronic 
circuit. In this manner, the system does not need to know 
when the crash begins, that is, there is no need for a 
separate sensor to determine the start of the crash or of a 
particular algorithm operating on the acceleration data to 
make that determination, 

In the example above, one hundred input nodes were 
used, twelve hidden layer nodes and one output layer 
node. In this example, accelerations liom only the 
longitudinal direction were considered. If other data such 
as accelerations from the vertical or lateral directions 
were also used, then the number of input layer nodes 
would increase. If the neural network is to be used for 
sensing rear impacts, or side impacts, 2 or 3 output nodes 
might be used, one for each gas control module. The 
theory for determining the complexity of a neural network 
for a particular application has been the subject of many 
technical papers and will not be presented in detail here. 
Determining the requisite complexity for the example 
presented here can be accomplished by those skilled in 
the art of neural network design and is discussed briefly 
below. In another implementation, the integral of the 
acceleration data is used and it has been found that the 
number of input nodes can be significantly reduced in this 
manner. 

The particular neural network described and illustrated 
above contains a single series of hidden layer nodes. In 
some network designs, more than one hidden layer is used 
although only rarely will more than two such layers 
appear. There are of course many other variations of the 
neural network architecture illustrated above which 
appear in the literature. 

OCCUPANT MOMTORWG SYSTEM 

Fire 1. Occupant monitoring system 

Figure 1 illustrates an occupant monitoring system that 
is capable of identifying the occupancy of a vehicle and 
measuring the location and velocity of human occupants. 
This system is now being developed for implementation 
on a production vehicle. In one implementation, four 
ultrasonic transducers are used to provide accurate 
identification and position monitoring of the passenger of 
the vehicle. Naturally, a similar system can be 
implemented on the driver side. The system is capable of 
determining the pre-crash location of the critical parts of 
the occupant, such as his/her head and chest, and then to 
track their motion toward the airbag with readings as fast 
as once every 10 milliseconds. This is sufficient to 
determine the position and velocity of the occupant during 
a crash event. The implementation described can 
therefore determine at what point the occupant will get 
sufficiently out-of-position so that deployment of the 
airbag should be suppressed as in solving the standard 
occupant sensing problem. Alternately, the information is 
used to determine how fast to deploy the airbag. If the 
weight of the occupant is also known, the amount of gas 
which should be injected into the airbag and perhaps the 
out flow resistance can be controlled to optimize the 
airbag system not only based on the crash pulse but also 
the occupant properties. This provides the design for 
Phase 3 Smart Airbags. 

Although the system illustrated uses ultrasonic 
transducers, other systems use a variety of other 
technologies including electromagnetic (optical, passive 
or active infrared, radar), capacitive, seatbelt switch, seat 
and seatback location transducers, weight sensors and in 
fact any sensing system which can provide relevant 
information. The neural network is the ultimate “sensor 
fusion” technology and can use any type of sensors and 
will provide the system designer with a quantitative 
measure of the importance of any of the sensors. The 
optimum combination of four sensors, for example, might 
be one active infrared sensor, two ultrasonic sensors and a 
single strain gage weight sensor. The initiaI investigation 
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might have included, four ultrasonic sensors, two active 
infrared sensors fwr weight sensors, a scat position 
sensor, a seatback position sensor, and a seatbelt buckle 
sensor. A cost benefit analysis can easily be performed to 
determine the effect of adding any particular additional 
sensor to the system. 

ANTfCIPATORY SENSING 

Figure 2. Side impact anticipatory sensor system. 

Figure 2 illustrates a side impact anticipatory sensor 
system using transducers that are situated in different 
locations on one side of the vehicIe, using the same 
computer system as discussed above. These sensors can 
provide the data to permit the identification of an object 
that is about to impact the vehicle at that side as well as 
its velocity. An estimate can then be made of the object’s 
weight and therefore the severity of the pending accident. 
This provides the information for the initial inflation of 
the side airbag before the accident begins. If additional 
information is provided from the occupant sensors, the 
deployment of the side airbag can be tailored to the 
occupant and the crash in a similar manner as described 
above. Figure 2 also illustrates additional inputs that, in 
some applications, provide useful information in 
determining whether an airbag should be deployed. 
These include inputs from a t?ont crash sensor mounted 
on the vehicle radiator, an engine speed sensor, and a 
wheel speed sensor, as used in the antilock braking 
system sensor. 

This anticipatory sensor can act in concert with or in 
place of the accelerometer-based neural network crash 
sensor described above. In the preferred case, both 
sensors are used with the anticipatory sensor forecasting 
the crash severity before the collision occurs and the 
accelerometer based sensor confirming that forecast. 

Collision avoidance systems currently under 
development use radar or laser radar to locate objects 
such as other vehicles that are in a potential path of the 
subject vehicle. ln some systems, a symbol is projected 
onto the windshield in a heads-up dispIay signifying that 
some object is within a possible collision space with the 
subject vehicle. No attempt at present is made to 

determine what that object is and to display an image of 
the object. Neural network pattern recognition systems 
have that capability and Wure collision avoidance 
systems may need this capabifity. Naturally, as above, the 
same neural network computer system which is proposed 
herein for sensing crashes can also the used for collision 
avoidance neural network as well as anticipatory sensing. 

OPERATION OF THE SYSTEM 

1. Obtain data from staged crashes and other 
non-crash events pius occupant position 
weight, size, velocity etc. from sled tests 

J 
2. Analytically derive additional crash and 

event data from staged crashes and 
analytically determine occupant motion. 

J 
3. Design candidate neural network. 

5. Test the neural network using different data. 

7. Output neural network algorithm 

Figure 3. Smart airbag system development block 
diagram 

The neural network algorithm which forms an integral 
part of the crash sensor described herein can be 
implemented either as an algorithm using a conventional 
microprocessor or through a neural computer which is 
now available. ln the former case, the training is 
accomplished using a neural pattern recognition program 
and the result is a computer algorithm fiquentIy written 
in the C computer language. ln the latter case, the same 
neural computer can be used for the training as used on 
the vehicle. Neural network software for use on a 
conventional microcomputer is available horn several 
commercial sources. 

A block diagram of the neural network computer 
method of obtaining a smart airbag algorithm is illustrated 
in Figure 3. ln the first step, one or more vehicle models 
are crashed under controlled conditions where the vehicle 
and crash dummies are fully instrumented so that the 
severity of the crash, and thus the need for an airbag, can 
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be determined. An occupant sensor is also present and in 
use so that occupant motion data can be obtained. The 
acceleration during the crash is measured at all potential 
locations for mounting the crash sensor. Normally, any 
position which is rigidIy attached to the main structural 
members of the vehicle is an adequate mounting location 
for the sensor. 

The following crash event types, at various velocities, 
are representative of those which should be considered in 
establishing crash sensor designs and calibrations for 
frontal impacts: 

Frontal Barrier impact 
Right Angle Barrier Impact 
Left Angle Barrier Impact 
Frontal Offset Barrier Impact 
Frontal Far Offset {Outside of Rails) Barrier Impact 
High Pole on Center Impact 
High Pole off Center Impact 
Low Pole (below bumper)Impact 
Frontal Car-to-Car Impact 
Partial Frontal Car-to-Car Impact 
Angle car-to-car Impact 
Front to Rear car-to-car Impact 
Front to Side Car-to-Car Impact, Both Cars Moving 
Bumper Underride Impact 
Animal Impact - Simulated Deer 
Undercarriage Impact (hangup on railroad track type 

of object) 
Impact Into Highway Energy Absorbing Device 

(Yellow Barrels, etc.) 
Impact Into Guardrail 
Curb Impacts 
The following non-crash event types are representative 

of those considered in establishing crash sensor designs 
and calibrations: 

Hammer Abuse (shop abuse) 
Rough Road (rough driving conditions) 
Normally, a vehicle manufacturer will only be 

concerned with a particuIar vehicle model and instruct the 
crash sensor designer to design a sensor for that particular 
vehicle model. This is in general not necessary when 
using the techniques described herein and vehicle crash 
data from a variety of different vehicle models can and 
should be included in the training data. 

Since the system is being designed for a particular 
vehicle model, static occupant data needs to be obtained 
for that particular model. Although crash data from one 
vehicle can be used for the training purposes for other 
vehicles, occupant data cannot in general be interchanged 
from one vehicle model to another. Dynamic position 
data for an occupant will be in general be analytically 
derived based on his/her initial position and rules as to 
how the body translates and rotates which will be 
determined from sled and crash tests. This is not as 
complicated as might first appear since an unbelted 
occupant will usually just translate forward as a free mass 

and thus the initial position plus the acceleration of the 
vehicle allows a reasonably accurate determination of 
his/her position over time. The problem is more 
complicated for the belted occupant and the rules 
governing occupant motion must be learned from 
modeling and verified by sled and crash tests. 
Fortunately, belted occupants are unlikely to move 
significantly during the critical part of the crash and thus 
the initial position at least for the chest is a good 
approximation. 

The vehicle manufacturer will be loath to conduct all 
of the crashes listed above at several different velocities 
for a particular vehicle since crash tests are expensive. If, 
on the other hand, a particular crash type that occurs in 
the real world is omitted from the library, there is a 
chance that the system will not perform optimally when 
the event occurs later resulting in death or injury. One 
way to partially solve this dilemma is to use crash data 
from other vehicles as discussed above. Another method 
is to create data using the data obtained from the staged 
crash tests and operating on the data using various 
mathematical techniques which permits the creation of 
data which is representative of crashes not run. One 
method of accomplishing this is to use velocity and crash 
scaling as described in detail in the referenced papers and 
particularly in reference (1) page 8 and reference (2) 
pages 37-49 . This is the second step in the process 
illustrated in Figure 3. Also included in this step is the 
analytical determination of the occupant motion discussed 
above. 

The third step is to assume a candidate neural network 
architecture. A choice which is moderately complex is 
suggested. If the network is too simple, there will be 
cases for which the system cannot be trained and, if these 
are important crashes, the network will have to be revised 
by adding more nodes. If the initial choice is too 
complex, this will usually show up after the training with 
one or more of the weights having a near zero value. In 
any event, the network can be tested later by removing 
one node at a time to see if the accuracy of the network 
degrades. Alternately, genetic algorithms are used to 
search for the optimum network architecture. 

The training data must now be organized in a fashion 
similar to the way it will be seen on a vehicle during a 
crash. Although data from a previously staged crash is 
available for the full time period of the crash, the vehicle 
mounted system will only see the data one value at a time. 
Thus, the training data must be fed to the neural network 
computer, or computer program, in that manner. This can 
be accomplished by taking each crash data file and 
creating 100 cases from it, assuming that the time period 
chosen for a crash is 200 milliseconds and that each data 
point is the preprocessed acceleration over two 
milliseconds. This data must also be combined with the 
occupant data derived as discussed above. The first 
training case contains the first crash data point and the 
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remaining 99 points are zero, or random small values for 
the crash data nodes, and the segmented occupant position 
data for the occupant nodes. 

The second crash data case contains the fust two 
data points with the remaining 98 points set to zero or 
random low values etc. For the tenth data file, data point 
one will contain the average acceleration at twenty 
milliseconds into the crash, data point two the average 
acceleration at eighteen milliseconds into the crash, and 
data point ten will contain the data from the first two 
miiiiseconds of the crash. This process is continued until 
the one hundred data cases are created for the crash. Each 
case is represented as a line of data in the training file. 
This same process must be done for each of the crashes 
and non-crash events for which there is data. A typical 
training set will finally contain on the order of 50,000 
crash data cases and 500,000 occupant static data cases. 

In the pure neural network crash sensor case, it was 
possible to substantially trim the data set to exclude all 
those cases for which there is no defmite requirement to 
deploy the restraint, and the same is true here. For a 
particular 30 mph frontal barrier crash, for example, 
analysis of the crash has determined that the sensor must 
trigger the deployment of the airbag by 20 milliseconds. 
It is therefore not necessary to use data from that crash at 
less than 20 milliseconds since we are indifferent as to 
whether the sensor should trigger or not. Although data 
greater than 20 milliseconds is of little value from the 
point of view of a neural network crash sensor which only 
needs to determine whether to deploy the airbag since that 
would represent a late deployment, such is not the case 
here since, for some gas control modules, the 
inflation/deflation rate can be controiled after the decision 
to deploy. Also, the 20 millisecond triggering 
requirement is no longer applicable since it depends on 
the initial seating position of the occupant. For cases 
where the airbag should not trigger, on the other hand, the 
entire data set of 200 data files must be used. Finally, the 
training set must be balanced so that there are about as 
many no-trigger cases as trigger cases so that the output 
will not be biased toward one or the other decision. This 
then is the fourth step in the process as depicted in Figure 
3. 

In the fifth step, the neurat network program is run 
with the training set. The program uses a variety of 
techniques, such as “‘back propagation”, to assign weights 
to the connections from the input layer nodes to the 
hidden layer nodes and horn the hidden layer nodes to the 
output Iayer nodes to try to minimize the error at the 
output nodes between the value calculated and the value 
desired. For example, for a particular crash such as a 30 
mph fiontai barrier impact, an analysis of the crash and 
the particular occupant has yielded the fact that the sensor 
Must trigger in 20 milliseconds and the data file 
representing the first 20 milliseconds of the crash would 
have a desired output node value which would instruct the 

gas module to inject a particular amount of gas into the 
airbag. For another crash such as an 8 mph barrier crash 
where airbag deployment is not desired, the desired 
output value for all of the data lines which are used to 
represent this crash (100 lines) would have associated 
with them a desired output node value of 0 which 
corresponds to a command to the gas control module not 
to inject gas into the airbag. The network program then 
assigns different weights to the nodes until all of the 
airbag-deployment-not-desired cases have an output node 
value nearly equal to 0 and similarly all of the airbag- 
deployment-desired cases have an output value close to 
that which is required for the gas control module to inject 
the proper amount of gas into the airbag. The program 
finds those weights that minimize the error between the 
desired output values and the calculated output values. 

The term weight is a general term in the art used to 
describe the mathematical operation which is performed 
on each datum at each node at one layer before it is 
inputted into a node at a higher layer. The data at input 
layer node 1, for example, will be operated on by a 
function that contains at least one factor which is 
determined by the training process. ln general this factor, 
or weight, is different for each combination of an input 
node and hidden layer node. Thus, in the example above 
where there were 100 input nodes, 12 hidden layer nodes 
and 1 output node, there will in general be 1,2 12 weights 
which are determined by the neural network program 
during the training period. An example of a function used 
to operate on the data from one node before it is input to a 
higher level node is the sigmoid function: 
In the usual back propagation trained network, let 

0, be the output of node j in layer i, 
then the input to node k in layer i+l is 
wh~~l&~c~j Y&(i) Qj 

is the weight applied to the connection 
betw:en node j in layer i and node k in layer i+ 1. 

Then the output of node k in layer i+l is found by 
transforming its input, for example, with the 
sigmoid function: 
OiLI&= l/(l+e’“+‘~“) 

and this is used in the input to the next, i+2, layer. 
If the neural network is sufficiently complex, that is if 

it has many hidden layer nodes, and if the training set is 
small, the network may “memorize” the training set with 
the result that it can fail to respond properly on a slightly 
different case from those presented. This is one of the 
problems associated with neural networks which is now 
being solved by more advanced pattern recognition 
systems including genetic algorithms which permits the 
determination of the minimum complexity network to 
solve a particular problem. Memorizing generally occurs 
only when the number of vectors in the training set is not 
sufficiently large or varied compared to the number of 
weights. The goal is to have a network which generalizes 
from the data presented and therefore which wi1I respond 
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properly to a new case which is similar to but only 
slightly different from one of the cases presented. The 
network can also effectively memorize the input data if 
many cases are nearly the same. It is sometimes difficult 
to determine this by looking at the network so it is 
important that the network not be trained on all available 
data but that some significant representative sample of the 
data be held out of the training set to be used to test the 
network. It is also important to have a training set that is 
very large and varied (one hundred to one thousand times 
the number of weights or more is desirable). This is the 
function of step five, to test the network using data that it 
has not seen before, i.e., which did not constitute part of 
the training data. 

Step six involves redesigning the network and then 
repeating steps three through five until the results are 
satisfactory. This step is automatically accomplished by 
some of the neural network software products available 
on the market. 

The final step is to output the computer code for the 
algorithm and to program a microprocessor, or a neural 
computer, with this code. One important feature of this 
system is that the neural network system chosen is very 
simple and yet, because of the way that the data is fed to 
the network, ail relevant calculations are made with a 
single network. There is no need, for example, to use an 
additional network to translate a prediction of a vehicle 
velocity change, and thus the crash severity, into a setting 
for the gas controller. In fact, to do this would be difficult 
since the entire time history would need to be considered. 
The output from the network is the setting of the gas 
controller in the preferred system design. 

OPERATION OF THE NEURAL NETWORK 
CRASH SENSOR - AN EXAMPLE 

In Figure 4, the results of a neural network pattern 
recognition algorithm for use as a single point crash 
sensor are presented for a matrix of crashes created 
according to the velocity and crash scaling techniques 
presented in the referenced papers. The table contains the 
results for different impact velocities (vertical column) 
and different crash durations (horizontal row). The 
results presented for each combination of impact velocity 
and crash duration consist of the displacement of an 
unrestrained occupant at the time that air-bag deployment 
is initiated and 30 milliseconds later. This is presented 
here as an example of the results obtained from the use of 
a neural network crash sensor that forms the basis of the 
smart airbag system. In Figure 4, the success of the 
sensor in predicting that the velocity change of the 
accident will exceed a threshold value is demonstrated. 
Here this capability is extended to where the particular 
severity of the accident is indirectly determined and then 
used to set the flow of gas into or out of the airbag to 

optimize the airbag system for the occupant and the crash 
severity. 

Airbags have traditionally been designed based on the 
assumption that 30 milliseconds of deployment time is 
available before the occupant, as represented by a dummy 
corresponding to the average male, has moved five 
inches. An occupant can be seriously injured or even 
killed by the deployment of the airbag if he or she is too 
close to the airbag when it deploys and in fact many 
people, particularly children and small adults, have now 
been so killed. It is known that this is particularly serious 
when the occupant is against the airbag when it deploys 
which corresponds to about 12 inches of motion for the 
average male occupant, and it is also known that he will 
be uninjured by the deploying airbag when he has moved 
less than 5 inches when the airbag is completely 
depIoyed. These dimensions are based on the dummy that 
represents the average male, the so-called 50% male 
dummy, sitting in the mid-seating position. The threshold 
for significant injury is thus somewhere in between these 
two points and thus for the purposes of this table, two 
benchmarks have been selected as being approximations 
to the threshold of significant injury. These benchmarks 
are, based on the motion of an unrestrained occupant, (i) 
if the occupant has already moved 5 inches at the time 
that deployment in initiated, and (ii) if the occupant has 
moved 12 inches by the time that the airbag is fully 
deployed. Both benchmarks really mean that the 
occupant will be signiticantly interacting with the airbag 
as it is deploying. Other benchmarks could of course be 
used; however, it is believed that these two benchmarks 
are reasonable lacking a significant number of test results 
to demonstrate otherwise, at least for me 50% male 
dummy. 

The tables shown in Figures 4 and 5, therefore, 
provide data as to the displacement of the occupant 
relative to the ah-bag at the time that deployment is 
initiated and 30 milliseconds later. If the first number is 
greater than 5 inches or the second number greater than 
I2 inches, it is assumed that there is a risk of significant 
injury and thus the sensor has failed to trigger the airbag 
in time. For these cases, the ceil in the table has been 
outlined. As can be. seen in Figure 4, which represents the 
neural network crash sensor, none of the cells are outlined 
so the performance of the sensor is considered good. 

The table shown in Figure 5 represents a model of a 
single point crash sensor used on several production 
vehicle models in use today. In fact, it was designed to be 
optimized for the crashes shown in the table. As shown in 
Fig. 5, the sensor fails to provide timely airbag 
deployment in a significant percentage of the crashes 
represented in the table. Since that sensor was developed, 
several manufacturers have developed crash sensor 
algorithms by trial and error which probably perform 
better than that of Figure 5. It is not possible to ascertain 
the success of these improved sensors since the 
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algorithms are considered proprietary. Some algorithms 
have recently been published in the patent literature and 

can now be analyzed using the above methods. 

SCALED 

VELOCITY 

8 MPH 

10 MPH 

12 MPH 

14 MPH 

16 MPH 

18MPH 

20 MPH 

22 MPH 

24 MPH 

26 MPH 

28 MPH 

30 MPH 

32 MPH 

34 MPH 

BARRIER SCALING FACTOR 

1 1.2 14 16 18 2 

NT NT NT NT NT NT 

NT 0.7R 9 0.913 1 1 o/3 0 NT NT 

0 011 1 08/35 09/35 1 o/3 4 1 4/3.9 2 014 7 

0 Oil 2 0 914.1 1Ot38 1 w.0 I.314 0 1.714.5 

00/l 4 09144 1 o/4.0 1 l/4.0 1.414.3 1714.6 

0011 6 0 814 2 0 713 6 1 214.5 1614 8 1 8f4.9 

DO/l 8 0 714 3 0 714 0 11143 1.314.4 1 O/3.8 

00/l 9 05i39 0 714 0 0 Q/4 1 12146 11142 

OORl OlR3 0 814 4 08/42 1 3150 ? 414 8 

OOR3 OlR5 0 5/4 0 0 Q/4 5 1 o/4 4 12/46 

OOR5 OORI 01124 0 714 2 0 8/4 1 0 5132 

0 o/2 7 OOR3 0 l/2 6 0 l/2 3 0 814 4 1215 0 

OOR8 OOR4 0 l/2 8 0 1125 0 914 7 1 l/49 

0 o/3 0 OOR3 OORO 00118 0 614 2 12/53 

SCALED 

VELOCITY 

8 MPH 

10 MPH 

12 MPH 

14 MPH 

16 MPH 

18 MPH 

M MPH 

22 MPH 

24 MPH 

26 MPH 

26 MPH 

30 MPH 

32 MPH 

34 MPH 

Figure 4. Neural network single point sensor performance. 

BARRIER SCALING FACTOR 

22/76 27i79 3 4/a 5 42193 NT NT 

2 2/8.0 2 8/a 7 3 wwi 42197 5.0110.5 178R75 

2on.9 31193 3.719 7 43112 5 0110.9 5 g/11 7 

1 o/5 3 2 718 9 391104 43109 52/115 5 9/12 2 ---. 

514 2 16165 39/108 481116 541120 6 1112 8 

414 1x7 20/6a I-~ 4 WI1 5 5 6113 64/135 

414 1 6l40 16/66 zg---zy-~~~;~ j 

414 2 340 8142 

3/4 2 514 1 717 2 2.117 0 2 6/74 3 4/a 4 

3/4 0 514 2 714 3 914 5 26175 4 o/9 6 

Figure 5. Optimized standard single point sensor performance. 
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GAS FLOW CONTROLLER 

One issue that remains to be discussed is the 
derivation of the relationship between the gas controller 
setting and the desired volume or quantity of gas in the 
airbag. Generally, for a low velocity, long duration 
threshold crash, for a small light weight out-of-position 
occupant, the airbag should be inflated slowly with a 
reiatively small amount of gas and the out flow of gas 
from the airbag controlled so a minimum value, constant 
pressure is maintained unit1 the occupant just contacts the 
vehicle interior at the end of the crash. Similarly, for a 
high velocity crash with large heavy occupant, positioned 
far from .the airbag before deployment is initiated, but 
with a significant forward relative velocity due to pre- 
crash braking, the airbag should be deployed rapidly with 
a high internal pressure and an out flow control which 
maintains a high pressure in the airbag as the occupant 
exhausts the airbag to the point where he almost contacts 
the interior vehicle surfaces at the end of the crash. These 
situations are quite diff‘erent and require significantly 
different flow rates into and out of the airbag. As crash 
variability is introduced such as where a vehicle impacts a 
pole in front of a barrier, the gas flow decisions will be 
changed during the crash. 

In theory the neural network crash sensor has the 
entire history of the crash at each point in time and 
therefore knows what instructions it gave to the gas 
controller during previous portions of the crash. It 
therefore knows what new instructions to give the 
controller to account for new information. The problem is 
to determine the controller function when the occupant 
parameters and the crash forecasted severity are known. 
This requires the use of an occupant crash simulation 
program such as MadymoTM from TN0 in Del& The 
Netherlands, along with a model of the gas control 
module. A series of simulations are run with various 
settings of the controllable parameters such as the gas 
generation rate, gas inflow and gas outllow restriction 
until acceptable results are obtained and the results stored 
for that particular crash and occupant situation. In each 
case, the goal may be to maintain a constant pressure 
within the airbag during the crash once the initial 
deployment has occurred. Those results for each point in 
time are converted to a number and that number is the 
desired output of the neural network used during the 
training. A more automated approach is to couple the 
simulation model with the neural network training 
program so that the desired results for the training are 
generated automatically. Thus, as a particular case is 
being prepared as a training vector, the MadymoTM 
program is run which automatically determines the 
settings for the particular gas control moduIe, through a 
trial and error process, and these settings are converted to 
a number and normalized which then become the desired 

output value of the output node of the neural network. 
Naturally, the above discussion is for illustration purposes 
only and there are many ways that the interface between 
the neural network system and the gas controller can be 
designed. 

The gas flow controller can also make use of 
additional inputs including in particular the pressure 
within the airbag. All such information inputs can be 
handled within the neural network or, in the case of the 
airbag pressure input, within the control mechanism itself. 
in this case the output from the neural network would be 
the desired airbag pressure. 

The descriptions above have concentrated on the 
control of the gas flows into and out of an airbag, 
Naturally, other parts of the occupant restraint system can 
also be controlled in a similar manner as the gas flows. In 
particular, various systems are now in use and others are 
being developed for controlling the force applied to the 
occupant by the seatbelt. Such systems use retractors or 
pretensioners, others use methods of limiting maximum 
the force exert by the seatbelt, while still others apply 
damping or energy absorbing devices to provide a 
velocity sensitive force to the occupant. Also, the crash 
accelerometer and occupant sensors have been the main 
inputs to the neural network system as described above. 
Although not described in detail, the neural network can 
make optimum use of other sources on information such 
as seatbelt use, seat position, seat back position, vehicle 
velocity etc. as additional inputs into the neural network 
system for particular applications depending on the 
availability of such information. 

CONCLUSION 

The system described herein uses a neural network, or 
neural-network-derived algorithm, to analyze the digitized 
accelerometer data created during a crash and, in some 
cases, occupant size, position, seatbeit use, weight and 
velocity data, and, in other cases, data from an 
anticipatory crash sensor, to determine not only if and 
when a passive restraint such as an airbag should be 
deployed but also to control the flow of gas into or out of 
the airbag. 

Generally, the present device provides a smart airbag 
system that optimizes the deployment of an occupant 
protection apparatus in a motor vehicle, such as an airbag, 
to protect an occupant of the vehicle in a crash. The 
system includes an accelerometer mounted to the vehicle 
for sensing accelerations of the vehicle and producing an 
analog signal representative thereoc an electronic 
converter for receiving the analog signal from the sensor 
and for converting the analog signal into a digital signal, 
and a processor which receives the digital signal. The 
processor includes a neural network and produces a 
deployment signal when the pattern recognition system 
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determines that the digital signal contains a pattern 
characteristic of a vehicle crash requiring occupant 
protection and further produces a signal which controls 
the flow of inflator gas into or out of the airbag. In some 
cases, the system also includes an occupant position and 
velocity sensor which outputs a signal that is also used by 
the processor in producing the signal which controls the 
flow of gas into or out of the airbag. 
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