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ABSTRACT 

A number of analysts have attempted to determine 
the effectiveness of passenger vehicle safety belts over 
the past 25 years. One of the more widely used is the 
double pair comparison (DPC) method. This note looks 
at the larger picture of motor vehicle crash data to show 
the limitations of DPC and to present a more general 
method. The author organizes crash data according to 
whether occupants were restrained or not, whether their 
crashes were potentially survivable only with belt use, 
and whether the occupants were actually killed. Based on 
this model, the author develops a virtually exact means of 
calculating restraint use and effectiveness in preventing 
fatalities. Calculations using data from the Fatal Accident 
Reporting System (FARS) show that safety belts may be 
more effective in preventing fatalities than previously 
thought. However, part of the reason for the higher 
calculated effectiveness is that belt use appears to be over 
reported in FARS. Finally, the author discusses the origin 
of uncertainties and errors in the results, and shows how 
the data can be adjusted to give more reasonable results. 

INTRODUCTION 

A number of analysts have attempted to determine 
the effectiveness of passenger car occupant restraints such 
as safety belts. One of the more widely used is the double 
pair comparison (DPC) method. It was developed and 
used primarily by Evans (1986) although he gives credit 
to Park (1984) for its original conception. 

This paper takes a new look at accident data to 
illustrate how we can learn more from it. To do so, we 
develop a more sophisticated formalism and provide 
results for passenger car and light truck occupants. The 
technique permits exploring the effect of correcting data 
to account for misreporting belt use. This technique may 
have applicability to other epidemiologic problems. 

The Universe of Crashes 

Let us imagine that we have perfect knowledge of 
all crashes involving light motor vehicles that occur in the 
U.S. each year. Our unit is a passenger car, light truck, or 
van involved in a crash. 

Figure 1 (see next page) shows a classification of 
those vehicles according whether a driver, a right front 
passenger, or both were killed, whether one or both would 
have survived only if they had been restrained, and 
whether either or both were actually wearing a seat belt. 
Columns in this figure, which define driver 
characteristics, are identified by capital letters and rows - 
passenger characteristics - by Roman numerals. Specific 
cells contain the number of vehicles in which there were 
an actual or potential driver or passenger fatality, or both 
(as indicated by the headings). Cells are identified by a 
capital letter indicating the column with a subscript 
identifying the row: E,, for example. 

We have only limited knowledge of the potential 
consequences of accidents. We can uniquely identify the 
cases in only four of the cells of the resulting matrix: 
those in which both restrained occupants were killed 
(F,), those where a restrained driver was killed and there 
was no right front passenger (F,,), and those in which a 
restrained occupant was killed and an unrestrained 
occupant survived (A, and F,). 

Effectiveness of Occupant Restraints 

The traditional definition of effectiveness is: 

(1) 

Where: R, = rate of loss or injury for the treated 
population, and 

R,, = rate of loss or injury for the untreated 
population. 

This applies to a situation where we measure a 
characteristic (driver crash fatality rates, for example) in 
two randomly parts of a population, one of which is 
treated and one is not. In an ideal experiment, the 
population would be randomly selected, ail other factors 
would be equivalent, and there would be no confounding 
issues. 
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Figure 1. A taxonomy of passenger car crashes. 

With vehicle crashes, we cannot conduct an 
experiment in this fashion. We are only passive and 
imperfect observers of what happens on the road. 
We don’t have two randomly selected groups with 
only one wearing restraints. Rather, the treated 
population is the group that chooses to wear restraints 
while the untreated do not. Thus, we must have a 
more pragmatic definition of effectiveness. 

Within the universe of crashes that occur, 
considering what happens to drivers only, crashes 
can be classified according to severity and restraint 
performance in the following classes: 

1. Crashes in which restraint use has no effect 
because an occupant would survive in any case 
(i.e. a fender-bender that an unrestrained person 
would survive as would a restrained person). 
These are not included in the rates, R, and R,, 
used in determining effectiveness because a 
restraint system could have no actual or 
potential effect on the outcome of any of these 
crashes. In Figure 1, these crashes are in 
column A for unrestrained drivers and in 
column B for restrained drivers. 

2. Crashes in which restraint use makes the 
difference between death and survival (i.e. a 
serious crash that an occupant would survive 
only if restrained). These are important because 
they are the cases where this particular restraint 
system actually makes a difference. These 
crashes are in column C for restrained drivers 

(who survive as a consequence of using 
restraints) and column D (unrestrained drivers 
who are killed). 

3. Crashes that are so severe that a driver 
would not survive even using this restraint. 
Some restraint system might have been 
effective here, but this one (safety belts) 
was not. If we had a 100 percent effective 
restraint system, there would be no crashes 
in this class. Here, column E in Figure 1 
contains the unrestrained drivers (who are 
killed), and F those who are restrained (and 
are also killed despite the restraint). 

Looking at crashes this way also points up the 
fact that restraint effectiveness and use determines 
how crashes are distributed in Figure 1. That is, if a 
restraint system is more effective, the result will be 
that some of the crashes that would have been in 
column E or F move to column D or C, respectively, 
in this figure. The spectrum of crashes, by severity, 
appears to be different for belted drivers than for 
unbelted drivers. This suggests that belted drivers 
may be involved in fewer severe crashes. (If the way 
in which crashes are distributed and characterized in 
this paper is still mysterious, see Appendix A for a 
more detailed discussion.) 

Using the nomenclature of Figure 1 in equation 
1 (that is, A is the sum of all cases in which an 
unrestrained driver survived), we define the 
effectiveness of this restraint system as: 
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/ E+F \ 
A+B+C+D+E+F x100’, 

C+D+E+F 
A+B+C+D+E+F 

(2) 

In other words, if all drivers had been restrained 
(treated), only those in columns C and D would have 
survived, while if none had been restrained, all 
drivers in columns C, D, E, and F would have died. 
See Appendix B for a discussion of this equation. 

Let us define the ratio of restrained to 
unrestrained occupants within the two most serious 
classes of crashes: a = F/E, and p = CID. We can 
now write equation 2: 

(1 + ci)E 
(l+P)D+(i+a)E I 

x 100% 

E= 

Ifa=pweget: 

K, x2 

’ - CKJ 

B 

(3) 

x 100% (4) 

where K is killed drivers, D is total drivers, and the 
subscripts indicate belt use: B = belted, U = unbelted. 

This equation is essentially the double pair 
comparison (DPC) method. The DPC restraint use 
ratio is taken from restraint use in a subset of crashes 
that killed the right front passenger all of whom had 
the same restraint status. Within that stratum, this 
ratio is the sum of A, D, and E divided by the sum of 
B, C, and F as defined above. This is approximate 
both because it depends on the equality of a and l3, 
and because it does not use all of the available data 
included in equation 2 (see Appendix C). 

Limitations of Input Data and Other Problems 

The data generally used for estimating fatality- 
prevention effectiveness of safety belts comes from 
the Fatal Accident Reporting System (FARS). FARS 
provides a file of all fatal motor vehicle crashes on 
U.S. public roads. It is based primarily on police 
accident reports. Within Figure 1, solid lines enclose 
groups of crashes that can be differentiated using 
information in FARS. Figure 2 (below) which is in 
the same format at Figure 1, shows the data as it is 
available in FARS. Note that in this figure, the data 
in column K is equivalent to the data in column A of 
Figure 1, the data in column L is equivalent to the 
sum of the data in columns B and C in Figure 1, M is 
the sum of the data in columns D and E, and N is 
equivalent to column F. Similarly, the data in row 1 
is equivalent to the data in row I in Figure 1, row 2 is 
the sum of II and III, row 3 is the sum of IV and V, 
and 6 is equivalent to row VI in Figure 1. 

all drivers who all drivers who 

survived were killed 
I I 

Not in FARS 

Figure 2. Passenger car crashes in the Fatal Accident Reporting System (FARS). 
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The validity of FARS data can be no better than 
the validity of its source data. Many data elements in 
FARS -- whether a person lived or died, the 
descriptions of vehicles, age and sex of people 
involved, and type of roadway, for example -- are 
both reasonably complete and accurate. Belt use 
information in FARS is less so. 

Police officers are almost never at the scene of a 
crash when it happens. Therefore, they must 
determine belt use for occupants from their 
investigation of physical evidence, claims by vehicle 
occupants, and information from emergency medical 
personnel or others who were first at the scene. Belt 
use information is obviously better for occupants 
who are killed in the crash or who are still in the car 
when police or emergency personnel arrive. That 
introduces a further bias in the data. Some police 
officers lack adequate training for judging belt use on 
the basis of secondary evidence. 

For states that have belt use laws, or where belt 
use may be a factor in insurance payments, occupants 
may claim they were using a belt even when they 
were not. Specific evidence of bias in belt use 
reporting came from states that passed belt use laws. 
After belt use laws took effect, there was a greater 
increase in belt use reported in FARS than was 
observed in roadside surveys in such states. This 
suggests that errors in belt use are not random: there 
is probably a bias toward reporting higher belt than 
was actually the case, particularly in data from more 
recent years. Such reporting would affect any 
calculation of effectiveness from FARS. 

The determination of safety belt effectiveness 
may also strongly depend on the size or type of 
vehicle, the age and sex of the occupant, and other 
factors. If this were so, the way in which the data is 
selected from FARS, or differing use rates among the 
range of people by age and sex in various types of 
cars would bias the determination of effectiveness. 

Despite these limitations, FARS is one of the 
few data bases that can be used for evaluating safety 
belt effectiveness in preventing fatalities in serious 
crashes. Therefore, it is worth the effort to develop 
analytic methods that minimize or deal with the 
problems with FARS data. 

A NEW SOLUTION TO THE EFFECTIVENESS 
PROBLEM 

There is a highly accurate formulation of the 
problem that overcomes the limitations of the DPC. 
Consider again Figure 1 and the definition of 
effectiveness in equation 2. Writing out the full 
summations this is: 

/ VII \ 

E= 
T$ (‘i +Di) 

x100% 
VII 

\ 
z CCj+Dj+Ei+FJ 

I 

(5) 

This equation can be used by limiting the 
summations i = I through VI to get the effectiveness 
for drivers who are in crashes while traveling with 
right front passengers, or to i = VII for the 
effectiveness for drivers who are traveling without a 
right front passenger. The effectiveness is likely to 
be different in the two cases because the types or 
severities of the crashes may depend upon whether a 
passenger is in the vehicle. 

To satisfy this equation, one needs the values 
for each individual cell in Figure 1. Unfortunately, 
we cannot readily separate the crashes in column D 
from those in column E, nor those in column C from 
those in column B. That is, we do not have good 
information on which individual crashes are 
potentially survivable only if an occupant is 
restrained. 

We have particularly limited knowledge of 
those crashes in which there was no fatality, but in 
which there would have been one had an occupant 
been unrestrained. Whether an otherwise fatal crash 
would have been survivable if restraints had been 
worn implies a knowledge of the restraint’s 
effectiveness. However, as will be seen, the FARS 
data set itself contains sufficient information to get 
around this apparent circularity. 

Let us partition the data in a way that makes use 
of information about restraint use. First, we link 
restraint use within groups of cells of Figure 1. 
Figure 3 (see below), for example, shows the 
relationship between driver and passenger restraint 
use for the four cells at the lower center portion of 
Figure 1, Cy, Cv,, D, and D,. All of these crashes 
that are counted in these cells posed the same threat 
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to the lives of the drivers involved: they would have 
been killed unless they were restrained. In all of 
these crashes, the right front passengers were killed 
regardless of restraint use. 

G h 
Driver Restrained, Neither Driver Nor 

I Passenger Unrestrained 
I 

Passenger Restrained 
I 

V 

D 

Figure 3. Relationships between driver and 
passenger restraint use for four cells in Figure 1. 
Formulae within each box give the proportion of 
vehicles with drivers and passengers restrained as 
indicated. 

The cells on the left side of Figure 3 contain 
counts of the number of restrained drivers and the 
cells on the right count unrestrained drivers. The 
proportion of all drivers in the four cells who were 
restrained is u (the sum of the numbers in the two left 
cells divided by the sum of the number in all four 
cells). The lower two cells count restrained 
passengers. The proportion of passengers who were 
restrained is w when they are riding with restrained 
drivers (the count in the lower left cell divided by the 
counts in both left cells in Figure 3) and v when 
riding with unrestrained drivers (the cells on the right 
side of Figure 3). This representation can be made of 
any set of four adjacent cells for which the risk to all 
drivers is the same and the risk to all passengers is 
the same but not necessarily the same as to the 
drivers. Note that because U, v, and w are 
proportions, the sum of the proportions in each cell: 
u(I-w) + uw + (I-u)(l-v) + (I-u)v = 1. 

If the values of u, v, and w were known, they 
could be used to determine the partition of data 
between crashes that have the same restraint use 
characteristics but that differ in the severity of the 
crash, such as D,, D, E,, and E,. We could, for 
example, partition D,+E, by noting that 
EvJFv, = (I -u)v/(uw). 

From this point on, we shall use the 
nomenclature of Figure 2 -- K,, L,, and so on -- to 
indicate known values from FARS. Since the sum 
(D,+EJ is a known quantity (M4 from Figure 2) we 
can express D, = M4 - E,. The same type of 
relationship can be used for F, = N4 u{l-w)/uw and 
F,, = NJ - F,. Similarly, Dv, E, and E,,. can be 
expressed using the values of M4, Nj, and Ni, 
respectively by using the appropriate ratios of the 
numbers of people using and not using restraints. 
Then, Dlv is the difference between the total of the 
four cells (D,,+Dy+EIv+E,‘) = M3 and the values of 
the three of these cells that have been determined. In 
this way, values for all nine cells in the lower right 
section of Figure 1 can be expressed as a function of 
known FARS data and values of restraint use U, v, 
and w. 

This bootstrapping technique can be used 
beginning at A V, = K4 to develop expressions for the 
values in the nine cells at the lower left of Figure 1 
and from Fi = N1 to obtain expressions for the nine 
cells at the upper right. Next, A, B,I,, C, and C,[ can 
be expressed in terms of their neighbors, A,, B,, D,, 
and D, respectively, and u, v, and w. C,[, can be 
expressed in terms of either C,, or D,,. In this way, 
we can express values for all of the individual cells in 
Figure 1 except A,, A,I, B, and B,, which are not fatal 
to even unbelted front seat occupants. 

Thus far, we have assumed that u, v, and M; are 
the same for all sections of four cells in Figure 1 that 
have the same outcome severity. There is evidence 
that safety belt use is lower for crashes of increasing 
severity. In particular, we assume the following: 

Since the behavior of the driver has a substantial 
effect on the severity of a crash, driver restraint use 
may take on different values depending on the 
severity of the crash as it affects the driver: u,, if the 
driver survives regardless of restraint use (columns A 
and B), ui if the driver survives only if restrained 
(columns C and D), and u if the driver is killed 
regardless of restraint use (columns E and F). Let us 
further assume that the value ui is the harmonic 
average’ of the restraint use value u,, and the value u. 

’ We use the harmonic average: 2/u, = I/u, + 1 ILL, 

because it has computational advantages (see below). The 
difference between the average and the harmonic average is 
very small as long as u, and u are reasonably close in 
value. The results are not sensitive to this difference. 
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. The values of v and ware assumed to be the 
same throughout the Figure. Note that since 
passenger restraint use is dependent on driver 
restraint use, so that restraint use by passengers 
will actually vary proportionally to driver use 
by crash severity. 

These assumptions give five unknowns 
requiring five equations for solution. These five 
equations come from the intersections between 
quadrants of Figure 1 and the relationship for driver 
restraint use. Specifically, four of the cell groups, 
G,+W(D,v+W G@v,~ Q~,+W4~w+E/v)~ 
F,,,dF,v can be compared using values of restraint use 
independently from their derivation. The five 
equations are: 

erv+ 5 Ui( 1 -w) 
___ = 
D,vf Dv (l-UJI-v) (6) 

Gr U.W 
_=--!-.- 

DVl (1 -K)V 

D,I,+ El,I V 
-=- 

D,v+ E IV 
l-v 

F IN LlW W 
_=-=- 
F IV u(1 -w) I-W 

2uou 
u. = - i uo+u 

(8) 

(9) 

(10) 

For equation 8, E,JE,,= (I-u)v/(l-u)(l-v) = 
v/(1-v), leading to the above result. The solution of 
these equations gives the three values of u and of v 
and w. The complete expressions come from 
substituting for (C,,+C,), (D,“+D&, C,, Dv,, 
(D,,[+E,,J, (D&E,J, F,!, and F,,. For example: 

uou 4 
cl”+ c, = L, - - 

(1 -up K4 

11&l -WI 
- (1 -uo)(l -v) K-+41 

uo( 1-w) 
= L3 - (1-uo)(l-v) % 

(11) 

and: 

c, = L4 - UoW 
- K4 u-up (12) 

Similar expressions can be developed for the 
values in the remaining cells to substitute into 
equations 6 through 10. The four equations that 
result are: 

1 -ui 
u. [L3 - -fk- l-w KJ 

I l-u0 l-v 

= g M3 - l-u N3 
U 

(1-v)M,-vM, = vM3-(I-v)M4 

wN,-(1-w)Nz = (l-w)N,-wN, 

(13) 

(14) 

(15) 

(16) 

One can solve for v in equation 15 and for w in 
equation 16: 

M2+ M4 
v= 

MI+ M2+ M3+ M4 (17) 
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M*+ M4 
v= 

Ml+ M2+ M3+ M4 

Nz’ %  
w= 

N,+ N2+ N3+ N, 

(17) 

(18) 

In equations 13 and 14, the variables 
representing driver restraint use, u, u,, and u all 
appear in the form: (1 -u)/u. Now define two new 
variables, x = (1 -u,)Iu, and y = (1 -u)Iu, so that 
(1-u,)/u, = (x+JJ)/~. Equations 13 and 14 can then be 
restated by incorporating values for x and y giving 
two equations in two unknowns. Equation 14 can be 
solved for y in terms of x: 

“‘L4 -w 
V 

x CK4+2M4) 
Y= 

w K4 - x (L4+ 2N4, 
(19) 

- 
V 

The result can be substituted into equation 13 
giving a quadratic equation in x: 

x 2  (L3N4 -L,NJ 

- x @M&N4 +L,) +N4W3 +K,)) 

-;(M4(N3+L3) +N,W ,+K,Nl (20) 

- $~(K+v~-K~MJ = 0  

This equation is easily solved for x using FARS 
data. One of the roots is negative giving a 
meaningless value of restraint use. The remaining 
root gives unique values for driver restraint use. 
From the solution both driver and passenger restraint 
use can be determined. Using the relationships 
developed from Figure 3, the specific values in all 
cells of Figure 1 can be found, and equation 5 will 
give restraint effectiveness. 

Somewhat the same procedure can be used for 
drivers who are traveling alone. The problem is that 
we have no equations similar to equations 6 through 
10 above for this case. If restraint use is dependent 
on crash severity, we have two unknowns: u and ui, 

using the nomenclature developed above. Note, 
however, that E, = F,(l-u)/u, D, = M, - E,,,,, and 
C,, = D,zrJ(I-ui). Making these substitutions in 
equation 5 and assuming that usage is the same for all 
drivers who are traveling alone when they are 
involved in fatal crashes gives: 

(1 -“$y (1 -u) 
E = l- ^- I-- 

uMs+(u-ui)Ns UM (21) 

The second expression is exact if restraint use is 
independent of the severity of the crash (i.e. u, = u). 
However, we must still obtain restraint use from 
other sources. This equation shows that the higher 
the observed use rate, the higher the derived 
effectiveness. 

RESULTS 

Table 1 (see following page), taken from FARS, 
shows the number of passenger cars in which a driver 
or right front occupant was killed in the U.S. from 
1985 through 1992. It is in the same format as 
Figure 2. It includes all cases for which safety belt 
use is known. W ithin each cell, the numbers are 
listed with 1985 data at the top and 1992 data at the 
bottom. Note that for those cells where both a driver 
and a right front passenger were killed, Mj, IV&, N.,, 
and Nd, each count represents two fatalities. Table 2 
(see second following page) provides the same data 
for 1985 through 1992 for cases involving light 
trucks in which belt use is known. Belt use is 
unknown for about 15% of all cases. Ignoring the 
unknown cases is equivalent to assuming that belt use 
among cases in which it is unknown is the same as in 
the known cases. This may slightly overestimate belt 
use. 
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Table 1. 
Numbers of fatally injured passenger car occupants according to the characteristics of the crash. 

Data in each cell is shown for 1985 (at the top) through 1992 (at the bottom). 

right front 
passengers 

who survived 

right front 
passengers who 

were killed 

survivable 

survivable 
if belted 

not 
survivable 

1813 50 
1843 58 

Not in FARS 1871 95 
unbelted 1864 102 I 

1779 82 
1683 89 
1412 98 
1213 100 

belted 

112 218 
188 404 
1.54 588 
327 657 2 
319 691 
356 727 
304 786 
303 788 

I 

unbelted 

6400 828 
6713 1450 

Not in FARS 6985 1810 
no right front passenger 7368 2155 5 

7212 2339 
6745 2501 
6059 2699 
5586 2861 

K L M  N 

belted 

1780 
1849 
1801 
1834 
1733 
1581 
1437 
1320 

44 
63 
89 
107 
96 
78 
90 
97 

164 
254 
319 
384 
341 
378 
388 
388 

286 
505 
663 
804 
884 
913 
946 
960 

805 
884 
818 
844 
812 
801 
706 
648 

29 
37 
44 
69 
71 

2 
69 

31 
45 
37 
70 
62 
64 
59 
87 

98 
169 
215 
327 
304 
303 
351 
359 

3 

4 
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Table 2. 
Numbers of fatally injured light truck occupants according to the characteristics of the crash. 

Data in each cell is shown for 1985 (at the top) through 1992 (at the bottom). 

right front 
passengers 

who survived 

survivable 

survivable 
if belted 

right front 
passengers who 

were killed I 

not 
survivable 

no right front passenger 

unbelted 

belted 

belted 

all drivers who survived all drivels who were killed 
I I 

survivable 
I 

survivab 

belted : unbelted 1 

Not in FARS 

I 
463 23 
508 43 
613 75 
641 106 
595 107 
648 101 
562 126 
523 126 

4 28 
3 47 
8 62 

17 90 

Not in FARS 

K L 

f belted not s 

unbelted 

567 
569 
596 
678 
681 
702 
630 
555 

28 
36 
54 
87 

100 
101 
104 
107 

166 
171 
206 
190 
165 
224 
203 
175 

6 
7 

12 
18 
6 

12 
IA 

1858 
2071 
2394 
2626 
2676 
266 I 
2597 
2509 

M 

43 
68 
78 2 
94 

113 
108 
109 

4 
8 

13 
IO 3 
12 
10 
20 
15 

8 
12 
39 
15 4 
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Table 3 (see below) shows the data on all 
passenger car fatalities for the years 1985 through 
1992 fully partitioned according to the procedure 
outlined above. The effectiveness calculated for 
drivers traveling with right front passengers, the sum 
of columns C and D divided by the sum of columns 
C through F, is 63 percent. For right front 
passengers, the effectiveness is the sum of rows III 
and IV divided by the sum of rows III through VI 
which is 57 percent. This calculation found that, 
when traveling together, reported belt use averaged 
49 percent for drivers and right front passengers, was 
86 percent for right front passengers riding with 
belted drivers, and was 12 percent for right front 
passengers riding with unbelted drivers. According 
to this calculation, for the eight year period, 14,000 
drivers and 12,400 right front passengers were saved 
by wearing safety belts. However, an additional 
14,100 drivers and 13,000 right front passengers 
could have been saved if they had been belted. 

Table 4 (see following page) shows the same 
partition of data for light trucks. The effectiveness 
calculated for drivers is 76 percent and for right front 
passengers is 73 percent. Belt use, according to this 
calculation, averaged 37 percent for drivers and right 
front passengers, 80 percent for passengers with 
restrained drivers, and 10 percent for passengers with 
unrestrained drivers. We calculated that belts saved 
3,300 light truck drivers and 2,800 right front 
passengers, and could have saved an additional 5,500 
drivers and 5,000 passengers. 

For drivers who were alone in passenger cars 
and in light trucks, we have no independent way to 
estimate belt use. According to the 19 Cities Study, 
the average passenger car driver belt use for 1985 
through 1994 was about 40 percent. Using a more 
conservative figure of 35 percent would give an 
effectiveness of 42 percent for passenger cars 
according to equation 2 1. We have no equivalent 
observations for light truck drivers. Belt 
effectiveness may be as high as 69 percent for light 
truck drivers traveling alone if their belt use was only 
30 percent for this period. Using a more 
conservative figures of 25 percent for belt use of 
drivers alone in light trucks, their belt effectiveness 
would be 60 percent. 

Table 3. 
Numbers of passenger car occupants in fatal crashes from 1985 through 1992 

partitioned according to the severity of the crash and restraint use by occupants. 

right front unbelted 
passengers who not 5,075 801 162 I,05 I 2,173 344 V 

were killed survivable 
belted 664 4,957 1,004 138 297 2,126 VI 

no right front passenger I 1,932 22,160 30,908 16,643 VII 

A B C D E F 
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Table 4. 
Numbers of light truck occupants in fatal crashes from 1985 through 1992 

partitioned according to the severity of the crash and restraint use by occupants. 

all drivers who survived all drivers who were killed 

I survivable 1 survivable ifbelted 1 not survivable 1 

I I I 
unbelted belted unbelted belted i= 

I I I I I I I 
unbelted 537 4,038 940 130 I 

right front survivable 
passengers 2,161 433 101 523 [I 

who survived belted 
390 1,876 304 61 23 119 111 

survivable 
if belted 3,638 466 76 568 214 30 IV 

right front unbelted 
passengers who 915 I17 48 361 358 49 V 

were killed not 
survivable belted 98 472 193 39 38 199 VI 

no right front passenger 3,342 10,025 8,376 2,789 VII 

I * I B I c I D I E I F I 
These belt use figures show that approximately 

11,900 passenger car drivers traveling alone, and 
3,300 solo light truck drivers were saved. An added 
22,100 passenger car drivers and 10,000 light truck 
drivers traveling alone could have been saved had 
they been wearing belts. 

The grand total indicates that more than 47,000 
people were saved by wearing safety belts in the 
eight years from 1985 through 1992. It is 
unfortunate that more than 69,000 were killed who 
could have been saved by buckling up. 

Two surprising results come from this 
procedure. The first is that we found driver belt use 
to be somewhat higher than was observed in the 19 
cities observations. The second is that the 
effectiveness found for safety belts is significantly 
higher than has been found by previous methods: 
nearly 60 percent for passenger car occupants and 
over 70 percent for light truck occupants. 

DISCUSSION 

The various equations and relationships 
developed here are exact and are derived using only 
algebra with which a good high school student would 
be familiar. This is in no way a statistical 
calculation, and no statistical approximations are 
involved. The approximations and sources of error 
involved in solving the equations are as follows: 

The FARS data on restraint use is not necessarily 
accurate as discussed above. Some people who 
survive fatal crashes may be out of their vehicles 
by the time the police officer arrives. Those who 
are interviewed by the officer may claim that 
they were using belts when they were not. 
Injured victims may have been unbuckled or 
removed from the vehicle by rescue personnel 
before the officer had an opportunity to 
determine belt use. 

Cases with unknown belt use have been ignored. 
If belt use in these cases is significantly different 
from belt use that was observed, it might skew 
the results. 

To a more limited extent than in the DPC 
method, we assumed that safety belt use is 
similar in crashes of differing risk. For example, 
the values of v and of w (passenger belt use with 
belted and unbelted drivers, respectively) were 
assumed to be the same in all eight sets of four 
cells. The values of u (driver belt use) vary with 
the seriousness of the crash as indicated by the 
risk to the driver. 

When this methodology is applied to small data 
sets, such as one year of data on light trucks, it is 
likely to give spurious results because 
uncertainties and inaccuracies in the data 
become much more important for such sets. The 
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result may be that none of the roots of equation 
22 are valid, that values for the individual cells 
in Figure 1 may be negative, or that the 
effectiveness values derived may be completely 
unrealistic. See Appendix D for a discussion of 
this uncertainty. 

The higher safety belt use found in the 
calculations probably comes from over-reporting of 
safety belt use to police officers, particularly in an era 
of safety belt use laws in many states. The higher 
effectiveness value may be due to the fact that this is 
the first attempt to define safety belt use from first 
principles that include all available real world data. 

It is possible that safety belt effectiveness has 
improved over time as a consequence of improved 
design of both vehicles and belt systems. However, 
when the effectiveness of safety belts was calculated 
for the individual years from 1985 through 1992, 
there were no trends toward improved effectiveness 
in later years, indicating that this is not the case. 

This analysis was not carried out beyond 1992 
both because cars with air bags and automatic belts 
were becoming a significant fraction of the fleet by 
that time. 

Adjustments to FARS Data 

A criticism of the preliminary results of this 
work was that the effectiveness values that were 
found were unrealistically high. Belt use reported in 
FARS, particularly by people who survive fatal 
crashes, is also thought to be unrealistically high. As 
a consequence, some analysts have adjusted the 
effectiveness calculated using the DPC method 
downward to compensate. The present method offers 
a more direct means of addressing this question. 

To better understand the consequences of over- 
reporting of belt use, we arbitrarily reclassified some 
of the FARS cases to reflect more realistic values of 
belt use. First, 30 percent of the passenger car cases 
indicating that both driver and right front passenger 
were wearing belts and where one or the other was 
killed were reclassified: 25 percent became cases in 
which neither driver nor right front passenger were 
wearing belts, and the remainder were classified as 
either driver or right front passenger only wearing 
belts. Fifteen percent of the cases where both driver 
and right front passenger were belted and killed were 
reclassified with ten percent becoming both unbelted 

and the remainder becoming cases in which one or 
the other was belted. 

Table 5 (see next page) shows the redistribution 
of cases from the new solution of equation 22. The 
result of this change was to decrease overall belt use 
to a more realistic 39 percent and to decrease the 
calculated effectiveness for drivers from 63 to 57 
percent, and for right front passengers from 57 to 54 
percent. For drivers traveling alone, belt use can still 
be assumed to be 35 percent regardless of this 
process of redistribution. At this use rate, the 
calculated belt effectiveness rises substantially from 
42 percent to 56 percent (which is consistent with 
effectiveness when there is a driver and right front 
passenger) with the reclassification. 

For light trucks, the same procedure reduces 
belt use to 29 percent and effectiveness to 73 percent 
for drivers and 71 percent for right front passengers. 
For light truck drivers traveling alone, at 25 percent 
belt use the effectiveness would be 60 percent. 

There is no formal basis for this reclassification 
of cases. A general justification is that the belt use 
calculated from this methodology is higher than 
observed belt use. The reclassification resulted in 
much more realistic overall belt use (the 19 Cities 
Study gives average driver usage of somewhat over 
40 percent for this period). It also resulted in a 
modest reduction in the calculated safety belt 
effectiveness of roughly 5 percentage points. This 
gives some confidence that the effectiveness of safety 
belts is at least 55 percent for passenger car 
occupants and 65 percent for light truck occupants. 

The error from misclassification of belt use is 
probably less than 10 percent, indicating that 
misclassification was not primarily responsible for 
these present results being higher than previous 
estimates. There is no error due to approximations 
(there are no significant approximations) nor are 
there any statistical errors (FARS is a census). This 
gives strong evidence that previous methods of 
determining safety belt effectiveness, such as those 
used in the 1984 decision by the Department of 
Transportation on occupant crash protection, may 
have underestimated it. 
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Table 5. 

A recalculation of the numbers of fatally injured passenger car occupants for 1985 through 1992, 
completely partitioned according to the characteristics of the crash and the state of restraint of driver and 
right front passenger. For this calculation, the numbers of unrestrained drivers and right front passengers 

were reduced by 30 percent where only one was killed, 15 percent where both were killed, and ten percent for 
drivers alone who were killed. These were reclassified as neither being restrained except that 5 percent were 

reclassified as only driver or right front passenger restrained. 

Eli= 
unbelted 1,414 9,223 5,529 795 I 

right front survivable 
5,768 1,196 717 3,113 II 

passengers 
belted 

who survived survivable 1,109 5,349 1,300 299 73 288 III 

if belted 
8,553 1,367 332 2,309 562 74 IV 

right front unbelted 
not 6,272 1,002 64 444 3,322 435 V 

passengers who 
survivable 

were killed belted 813 3,923 250 58 431 1,701 VI 

no right front passenger 17,053 31,670 24,727 13,314 VI1 

A B C D E F 

Statistical Validity 

Although this paper uses no statistical 
techniques and does not develop any statistical 
formalism, it raises a problem that must be addressed 
with statistical techniques. The problem is that 
although FARS is a census of crashes, there is clearly 
a smallest FARS data file that will provide reliable 
results. For example, if one were attempting to 
determine the effectiveness of safety belts in Rolls 
Royces, there would be at most only a handful of 
cases in FARS from which to make that 
determination. They would not permit a meaningful 
calculation of effectiveness using the technique 
developed above. 

In performing these calculations, the author 
found data sets that were too small to provide 
meaningful results, such as one year of data on light 
trucks. Appendix D is a pragmatic attempt to define 
the smallest data sets that can be accurately analyzed 
using this formalism. It shows that FARS data sets 
must have at least 30,000 vehicles with both a driver 
and right front passenger in order to provide 
reasonably accurate results. 

CONCLUSION 

The primary purpose of the research reported 
here was to develop a more exact and useful 
formalism for the determination of effectiveness. 
The fact that effectiveness values calculated using 
this formalism were found to be reasonable and 
consistent gives confidence that the formalism is 
valid. 

One of the major contributions of this 
methodology is that it give a detailed picture of how 
many crashes were in each cell defined in Figure 1. 
Thus, for example, we can see the number of cases in 
which a crash would have been survivable if driver 
and passenger had both worn belts, and how many 
people actually survived. 

It is the author’s hope that this methodology will 
be used more extensively and that this work will 
stimulate refinements and further development of the 
formalism, and a striving to obtain better input data 
in FARS, restraint use, and other data sets. This 
would result in more refined values for restraint 
effectiveness, which is particularly important as the 
variety of systems increases. This approach might 
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also prove useful for estimating the effectiveness of 
restraints in reducing non-fatal injury and of other 
safety equipment such as automatic safety belts and 
air bags when sufficient data are available. 
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APPENDIX A: A Further Explanation of the 
Mathematical Formalism used in this Paper 

The mathematical formalism used in this paper 
does not go beyond highschool algebra. What may 
be confusing to the reader is the nomenclature in 
which various variables are used to describe similar 
elements of the problem. The author apologizes for 
this complexity, but attempts to find simpler 
expressions failed. Thus, in this appendix, we shall 
attempt to clearly state what all of the variables stand 
for and the relationship between them. 

All of the variables refer to the data and 
characteristics of drivers and right front passengers 
shown in figure 1. This figure introduces the names 
A, through F, to describe the driver (capital letter) 
and right front passenger (subscript). The six states 
of either a driver or passenger are: 

people who survived an actual crash which are 
listed in FARS only if someone else was killed 
in the crash (A, B and C for drivers and I, II and 
III for right front passengers) 

people who were killed in an actual crash, and 
therefore were listed in FARS (D, E and F for 
drivers and IV, V and VI for right front 
passengers) 

people who wore safety belt restraints when they 
were in a crash (B, C and F for drivers and II, III 
and VI for right front passengers) 

people who were unrestrained when they were in 
a crash (A, D and E for drivers and I, IV and V 
for right front passengers) 

people who were in crashes that could have been 
survived regardless of belt use (A and B for 
drivers and I and II for right front passengers) 

people who were in crashes that could only have 
been survived if the occupant was wearing a 
safety belt (C and D for drivers and III and IV 
for right front passengers) 

people who were in unsurvivable crashes 
regardless of restraint use (E and F for drivers 
and V and VI for right front passengers) 

The number VII is used to indicate that there 
was no right front passenger in the vehicle at the time 
of a crash. 

Since the FARS data does not indicate whether 
a crash was survivable or not, we cannot make the 
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distinctions shown in the last three bullets above 
unless an unrestrained driver or right front passenger 
survived (A and I) or a restrained driver or right front 
passenger was killed (F and VI). FARS data can tell 
us whether an occupant was restrained or not, and 
whether he or she was killed or not. Thus, FARS 
tells us the sum of B and C (but not B or C 
individually), the sum of D and E, the sum of II and 
III, and the sum of VI and V. Therefore, we chose to 
rename the data elements as follows: 

K=A I=1 

L=B+C 2 = II -t III 

M=D+E 3=1v+v 

N=F 4 = VI 

and 5 = VII 

Next, the variables u, v, and w were introduced 
to provide further relationships that can be used to 
derive the data in the individual cells of the matrix 
shown in Figure 1. They take on values of 0 (if no 
one in a particular cell was wearing belts) to 1 (if 
everyone in a cell was wearing belts). In particular, 
u, is used to designate the belt use rate of drivers in 
survivable crashes and u (without subscript) is used 
to designate the belt use rate of drivers in crashes that 
could not be survived regardless of belt use. For 
those drivers in crashes that are survivable only if the 
belts are used, we designated belt use as ui and 
assumed that it is a harmonic average of u, and u: 

l/u, = 24 + 2/u or ui = 2uu,/(u, + u) 

The new variables v and w indicate the belt use 
rate of right front passengers when drivers are belted 
and unbelted, respectively. It is well known that 
passenger belt use tends to follow driver belt use, so 
that v is close to zero and w is close to unity. 

The final transformation is made solely for 
mathematical purposes. We found that passenger 
belt use could be expressed in terms of known values 
from the FARS file, so no further specification was 
necessary for them. However, to transform the 
equations involving u, and u into solvable equations, 
we defined new variables x and y so that: 

x=(1 -ll,)/ll, and y = (1 - u)/u 

That transformation put equations involving u,, 
u, and the FARS data into quadratic form with the 
variables x and y that can be exactly solved. From 
values of x and y, we can derive values of u, and u, 

and can determine values for all of the individual 
cells in Figure 1. This not only permits an exact 
calculation of safety belt effectiveness, it provides 
remarkably detailed information about what 
happened to the people involved in real world 
crashes. It is a far more powerful solution than the 
double pair comparison method which is only a 
special case of the present methodology. 

More importantly, this method permits a kind of 
experimentation that can explore uncertainty in 
certain variables in the FARS tile. FARS is virtually 
exact in showing whether occupants of a vehicle 
lived or died by seating position. It is less reliable in 
showing safety belt use, particularly for occupants 
who survived and were capable of getting out of the 
vehicle before emergency personnel arrive. 

The experiments that can be performed are of 
the “what if’ variety: what if safety belt use for 
surviving drivers is overestimated by 10 percent? 
We need only increase u by 10 percent and we can 
see the effect on the calculated effectiveness. 

APPENDIX B. The Equation for Effectiveness 

Equation 2 may seem inconsistent with equation 
1 at first glance. One might be tempted to write 
equation 2 as: 

E 

/ B+C 

= l-B+C+F 
A 

\ A+D+E 

- x100% 1 (22) 

The numerator represents the proportion of 
cases where drivers were wearing safety belts who 
survived. The denominator represents the proportion 
of cases where drivers who were not wearing belts 
survived. 

The first problem with this expression is that we 
have no way of knowing how many people were in 
crashes where there were no fatalities and would not 
have been even if belts had been worn. The second 
problem with the expression is that it ignores the 
problem that belted drivers may have a substantially 
different spectrum of crashes by severity. 
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The expression of equation 2 is derived by 
assuming that we could determine how many drivers 
would have been killed if the entire population of 
vehicles involved in potentially fatal crashes even if 
all had been belted (columns E and F). This becomes 
the numerator in the expression. For the 
denominator, we assume that we could determine 
how many drivers would have been killed if none 
had been belted (columns C, D, E, and F). Thus, 
equation 2 is fully consistent with equation 1. 

APPENDIX C: The Double Pair Comparison 
Method 

Evans defines what he calls the “true 
effectiveness” of belts for drivers as the ratio of the 
number of unbelted drivers who would have been 
saved had they been wearing belts to the total number 
of unbelted drivers who were actually killed. For 
drivers, referring to Figure 1, this is column D 
divided by the sum of columns D plus E. This is a 
more limited definition than the one described above 
(which is equivalent to columns C plus D divided by 
columns C plus D plus E plus F), so that Evans’ label 
“true” is a substantial overstatement. 

More importantly, Evans recognized that there 
is no direct way to measure which unbelted drivers 
would have been saved had they been wearing belts 
(or, as Evans formulated the problem, how many 
unbelted drivers would have been killed even if they 
had been wearing belts). 

Evans procedure was to use known quantities 
from FARS to estimate what he called the “true 
effectiveness.” Specifically, for belt effectiveness in 
protecting drivers, using the nomenclature of Figure 
2, he proposed the equation: 

E = (I-R)xlOO% 
= I_ (a+c)'@+c) x 100% 

ti+Mk+l) 
(23) 

where: 

a = number of crashes killing a belted driver but not 
an unbelted passenger, 

b = number of crashes killing an unbelted passenger 
but not a belted driver, 

c = number of crashes killing both a belted driver 
and an unbelted passenger, 

j = number of crashes killing an unbelted 
driver but not an unbelted passenger, 

k = number of crashes killing an unbelted 
passenger but not an unbelted driver, and 

I= number of crashes killing both an unbelted 
driver and an unbelted passenger. 

Figure 2 shows what parts of the crash spectrum 
are defined by these letters. Note that a+c andj+l 
are all crashes killing a belted or unbelted driver, 
respectively, who was with any unbelted passenger. 
Similarly, b+c and k+Z are all crashes involving any 
unbelted or belted driver, respectively, who is with 
an unbelted passenger who was killed. This is the 
belt use ratio defined as a or p above. (For 
completeness, similar relations can be developed 
involving only belted passengers in order to use more 
of the data available in FARS. One can also make 
the parameters relating to the right front passengers 
the dependent variables in such equations.) 

In using this formulation, Evans is substituting 
the number of belted drivers who are killed (cells 
F,+F3+F4 in Figure 1) for unbelted drivers who 
would have been killed even if they were belted (the 
part ofj+l that would have been killed even if they 
were belted or cells E,+E3+E4 in Figure 1) in his 
“true effectiveness” equation. Since the ratio of these 
numbers is equal to the ratio of belted to unbelted 
drivers involved in unsurvivable crashes, he 
multiplies the number of belted drivers who are 
killed by the ratio of the total number of unbelted to 
belted drivers who are with passengers who are 
killed. To the extent that belt use is consistent in 
crashes that are sufficiently serious to kill either a 
driver or a right front passenger, this gives a 
reasonable approximation of Evans’ “true 
effectiveness.” 

This substitution does not address the more 
fundamental limitation of Evans’ definition of “true 
effectiveness,” nor does it make complete use of the 
available data. The most general formulation of the 
DPC is as follows: 
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E= 

6 

.$ (Fi) F  (A;+Dj+EJ 
I- z (Bi+cj+Fi) 

$ (Di +EJ 
(24) 

Xl00 

The elements of this equation are all known from 
FARS. While this is still an approximation, it can 
give a reasonable estimate of effectiveness. 

APPENDIX D: Estimating The Minimum Data 
File Size for which this Method Provides Valid 
Results 

The analysis developed in this paper does not 
use statistical methods in any way. However, the 
author recognizes that with small data files, 
uncertainties or variations in the input data -- the 
numbers of crashes in any one cell -- may introduce 
errors in the results of using this methodology. 
Because the numbers in the ceils of Figure 1 are a 
complicated function of the numbers in the cells of 
Figure 2, the author has found no elegant method of 
analyzing how uncertainties in the numbers in each 
cell affect the answers provided by this methodology. 

Fortunately, the computer provides a technique 
for experimentally exploring the effect of variation in 
the input data on the results of the analysis. First, let 
us assume that each of the numbers in each cell of 
Figure 2 is a Poisson distribution. That is, the injury 
consequences in each vehicle is effectively 
independent of all others. This is not strictly true 
because in a two vehicle collision, each vehicle may 
be in a different cell of Figure 2, and therefore the 
consequences for the occupants of one vehicle may 
be dependent on what happens in the other. 
Nevertheless, for our purposes, this is a reasonable 
assumption. 

In a Poisson distribution, the standard deviation 
is defined as the square root of the mean. If we have 
144 cases, the standard deviation of that number is 
12. What this means is that we can assume that if we 
took a sample X times larger (where X is much larger 
than unity) and divided the number of cases in that 
larger sample by X, the result has a high probability 
of being between 132 and 156. 

Let us now look at the figures in Tables 1 and 2. 
Note that the smallest numbers occur in the cells in 
which a driver was restrained and a passenger was 
not or vice versa: K,, L,, MZ, N,, M,, and N,. In 
particular, if we look at the data in Tables 1 and 2, 
the smallest numbers are in just four cells, K,, N,, 
M,, and Nx. Variations in any of the numbers in 
these four cells probably govern the validity of the 
results of the analysis. 

We set up a spread sheet with data in the form 
of Figure 2 using the analysis of this paper to fill in 
results in Figure 1 and to provide driver and right 
front passenger restraint use (u, v, and w) and 
effectiveness. Next, we varied the values in the four 
cells with the smallest numbers to see the effect of 
such variation on the results. 

Note that a standard deviation is larger for 
smaller numbers. For example, if the number of 
cases in a cell is 25, a standard deviation is 5 which is 
20 percent of the value in the cell. If the number of 
cases is 100, the standard deviation is 10 which is 10 
percent of the value. 

The results were relatively insensitive to large 
variations in M, and N,. Thus, variations in I& and 
N, govern the validity of the results. We found that a 
variation of 10 percent in these values substantially 
distorts the results, in some cases giving values of use 
that are either greater than one or less than zero 
which is clearly unrealistic, or values in cells of 
Figure 1 that are negative which is also unrealistic. 
We found that variations within 5 percent did not 
produce abnormal results, but that variations of 10 
percent definitely did. From this, we conclude that 
the smallest numbers in cells K, and N, that produce 
reliable results are around 400 (standard deviation 20 
which is 5 percent of the number of cases in the cell). 

The tiles on which this analysis is based, this 
suggest that a minimum data file size of about 30,000 
cases in which there is both a driver and right front 
passenger is necessary to provide accurate results. 
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