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ABSTRACT 

When test responses from specimens such as 
Post-Mortem Human Surrogates (PMHS), 
anthropomorphic test devices (ATD) or vehicle 
crash events are “perfectly repeatable,” the 
response in terms of transducer time histories is 
similar and the output from any one of the tests 
can be used to represent any other test. However, 
if there is test-to-test variability, the underlying 
fundamental response as obtained by the  
transducer time history is not determined by a 
single test and methods are needed that can use 
multiple tests to reduce the inherent error. This 
paper will explore, using different transducer 
time histories from PMHS, ATD and vehicle 
tests, the effect of signal alignment and signal 
“shape” on the results from  signal addition. New 
procedures for transducer time history alignment 
and signal addition will be introduced and 
discussed, and different methods of obtaining the 
underlying response will be evaluated.   

 

INTRODUCTION 

If measurements subject to random variation 
about some nominal or “true” value, there is 
potential to better understand the nominal 
performance with repeated measurements.  For 
data sets in which each measurement is a single 
scalar value and multiple measurements are 
independent, the central mean theorem implies 
that the mean should be a better estimate of the 
true value of the measurement than any of the 
individual measurements. Comparisons of two or 
more different measurement data sets can be 
accomplished by comparing the means. 
However, it is not clear that this approach is 
valid for comparisons of different sets of finite 
duration time history measurement, such as: 

acceleration, force or displacement time history 
obtained from a human surrogate test or the load 
time history from a barrier load cell array in a 
vehicle crash.  

Although addition of scalar data is 
straightforward, the addition of finite time 
histories is not; for example, defining the 
numerical procedures such as alignment, 
individual or accumulative durations, and 
magnitude of the time histories, to name a few, is 
subject to interpretation and different definitions 
could  result in different end points. 
Consequently, there exist a large number of 
possible methods of signal addition resulting in 
no unique "best" average signal.   Nonetheless, 
there have been several attempts to combine time 
history signals to obtain an “average” or 
“representative” time history [1,2,3,4]. 

This paper presents two different methods for 
obtaining a representative time history  or 
"representative curve" (RC) of finite duration 
time history signals: The first (Procedure A) 
considers both the shape and magnitude of the 
time history and the resulting representative 
signal is constructed  by weighing  each of the 
signals by its magnitude; the second (Procedure 
B) considers only the shape of the signal and the 
resulting representative signal is constructed  by 
weighing  each of the signals equally.  In both 
procedures the signals are shifted to minimize 
the difference between them and they are then 
combined. Using the same signals these two 
procedures can produce different RCs depending 
on the nature of the signals used in the 
construction. 
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Signal Alignment and Representative Curve 
(RC) Generation 

In many cases, signals from a test series taken 
under the same test conditions do not duplicate 
well. Many techniques are available to build a 
RC out of the group. Very often,  alignment is 
necessary to position the signals in time to obtain 
meaningful results.  Figures 1-3 show the 
different means resulted from the same signals 
with different alignment schemes. The shapes 
and curves are different. The magnitude may 
also be different.  

 

Figure 1 - Mean with Signals Aligned at Peak 

 

 

Figure 2 - Mean with Signals Aligned at Time 
Zero 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Mean with Signals Aligned based on 
Maximum Cross-Correlation 

Creating an RC by aligning the time histories so 
that they can be added is not always trivial. In 
many cases, adding the signals, after they have 
been aligned, will distort the "underlying 
response" and reduce the value of the resulting 
average: the representative curve is not 
representative of the curves used to construct it. 
The key question as to the usefulness of the  
information in the RC is whether the differences 
in the signals are dominated by random 
variations or due to deterministic changes. If 
they are deterministic, then the RC may be an 
artifact of the process used and not representative 
of the underlying response. This question will 
not be answered in this paper. Instead it will be 
assumed that there is a  fundamental basis to 
attribute the variation to randomness. 

If the variations can be attributed to randomness  
then statistically speaking, the standard deviation 
of all the signals can be obtained, and 
minimizing the covariance or maximizing the 
correlation will give the best results for 
alignment. The correlations at the aligned state 
can be used as an assessment of the quality of the 
agreement between the signals with emphasis on 
the “phasing” component of the agreement. It 
may be supplemented by a measure similar to 
variance, but normalized at each time step by the 
mean value of the signals (the coefficient of 
variation) to give another evaluation of the 
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agreement that emphasizes more on the 
"magnitude" component of the agreement.  

On the other hand, if the difference among the 
signals is determined to be dominated by 
deterministic changes among tests, then the 
above approach does not address the nature of 
the problem. In this case, the goal would be to 
identify a master curve that entails the response 
characteristics of the system, and different curves 
are then to be "scaled" back to this master curve. 
An example of this is the acceleration response 
curves of crash tests of the same vehicle under 
different velocities, where a second order 
differential equation can be utilized to model the 
behavior and "scale" the set of signals. In more 
general cases, the task will essentially be a 
system identification problem to define the 
fundamental characteristics of the system. 

What criteria should be used to align signals and 
to judge the quality of created RCs needs to be  
decided first. For alignment, commonly used 
tools are: "eyeballing," "time zero," minimum 
variance, and maximum correlation.  When 
digital data are absent and correlations are low, 
especially with old data (non-digital) and 
different lab facilities, eyeballing presents itself 
to be the preferred choice. Time zero has the 
advantage of aligning the event in time, an 
example being vehicle crash signals in which 
distinct time zero information is available. 
However, in many cases, due to vehicle build 
variation and other confounding factors, the first 
mode frequencies are often quite different 
causing the overlaid signals to be inconsistent 
with the time integrals (as required by 
conservation of momentum). The variance and 
the correlation approach, on the other hand, often 
yield similar time shifts. The starting times do 
not always line up; however, aligning in many 
cases ensures a consistent RC. 

The following presents two statistical, 
correlation based methods that build upon the 
work incorporated into ISO9790 [1] and the 
Maltese methods [3].  One notable difference is 
that the current methods do not generate 
acceptance corridors.  Instead they examine and 
compare the magnitude, shape, and phase of the 
curves to determine the level of similarity. 

 

 

Procedure A (Maximal Correlation and 
Normalization) - Methodology and 
Characteristics 

"Phase," "shape," and "magnitude" are three 
concepts that have been defined and used in 
previous studies [4]. Procedure A uses these to 
establish an RC from multiple time histories 
which are assumed to have independent random 
phase, shape, and magnitude variations. 

Phase Alignment  

With a set of n time history responses Ri(t) (i=1, 
2, ..., n) for phase alignment, since absolute time 
is immaterial, without loss of generality, the time 
for the first response is picked as the absolute 
time. There are then only n-1 time shifts to be 
found per some requirement. These are denoted 
as hi (i=2, 3, ..., n).  

The coefficient of correlation is used as a 
measure of the phase agreement between a pair 
of similar signals,
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where h1=0. It is noted that cij=1, when i=j. 

At this point, a measure is needed that 
collectively gauges the quality of the matrix [cij]. 
The most straightforward summary measure 
would be the sum of all its elements. Based on 
this, the following normalized alignment 
measure C is constructed: 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛

−
= ∑∑

= =

nhhc
nn

hhhC ji

n

i

n

j
ijn ),(

)1(

1
,...,,

1 1
32

. 

Note that 11 ≤≤− C . (Since the sign of cij is 
significant, the above uses the actual value 
instead of the absolute value or the square of cij). 

The measure C is a gauge of the quality of the 
collection of the time shifts. It is a function of 
the n-1 shifts. Maximizing C with respect to 
these shifts will determine the optimal collective 
phase agreement. In this study, the unconstrained 
nonlinear optimization routine in Matlab® was 
used with minor modifications to avoid local 
trapping associated with discrete signals. 

Shape Extraction 

For each of the n phase-shifted responses 
Xi(t)=Ri(t-hi), its normalized response is defined 
to be, 
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where iX  is a norm defined as  

 ∫= dtXX ii
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The integration is used here for ease of 
expression, and it is to be interpreted as 
summation if the time histories are treated as 
discrete signals. The integral, as all others 
throughout this paper, has limits of (-∞, +∞). All 
time histories here are assumed to be bounded 
(i.e., the norm exists). This condition is 
automatically satisfied by impact test signals 
which start and end at zero magnitude. 

The following time history y is defined as the 
shape representation of the set of time histories: 
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In other words, y is the normalized version of the 
average of the normalized responses. The 
average of its correlation with each of the 
original signals is found as: 
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which is the norm of the average of the signals. 

p is named the “shape similarity factor” of the 
original set of signals, as it reflects the overall 
shape similarity quality based on all the signals.  

A special property of p is: 
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or, 10 ≤≤ p . The inequality in the above 
relationship is based on the Minkowski’s 
inequality which basically says that the norm of 
the sum is no more than the sum of the norms; 
and the last equality in the expression is because 
xi is already normalized. 

Magnitude Scaling 

The normalized optimal shape y established 
above needs to be scaled back to the physical 
measurement space to carry an appropriate 

magnitude. Given that each signal has a 
magnitude factor, assuming it is randomly 
distributed, then its sample average is an 
unbiased estimate of the mean of the magnitude. 
Therefore, the final representative curve is: 
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Procedure B (Mean-To-Mean Approach) - 
Methodology and Characteristics 

The Mean-To-Mean (MTM) methodology is 
based on a number of available statistical and 
numerical analysis methods. The major ones are 
the normalized cross correlation assessment 
known as cross correlation coefficient of a pair 
of signals [5]. An approach using an iterative 
improvement of solution of non-linear equations 
is also implemented in the procedure (Appendix 
A).  

For the set of signals to be aligned using the 
cross correlation coefficient, two signals in the 
group that are most correlated are identified. The 
pair is aligned using maximum cross correlation 
process and its sample means calculated. The 
mean is grouped with the rest in the signal set 
again replacing the two most correlated signals. 
All the signal subsets associated with that group 
pair should be shifted based on the alignment of 
the pair. This process continues until all signals 
in the set are aligned using the same procedure.  

Additional optimization steps are incorporated in 
the MTM algorithm, including a prescreening 
process to identify signal pairs with mutual 
maximal cross correlation coefficients (CCC).  
The process is as follows: for a signal set with n 
signals, CCCs between each signal and another 
signal in the set are calculated. For each signal, 
there will be n-1 CCCs. The maximal CCC for 
each signal is identified. The maximal CCCs for 
all signals are listed according to their values, 
from maximum to minimum. Signal pairs with 
mutual maximal CCC are taken out and put in  
separate groups. This is a way of identifying the 
signals with the most influence early in the 
alignment process and at the same time reducing 
the effects of any individual signals on the 
overall performance of the alignment process.   

A numerical procedure is generated based on this 
algorithm. The key element in this algorithm is 
to evaluate only two signals at a time.  
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To explain the methodology, an example is 
shown here with 6 signals: A, B, C, D, E and F. 

 

 

Figure 4 – Time Domain Signals 

 

First, the cross correlation coefficients are 
obtained with respect to each other in order to 
identify the pair of signals with the highest cross 
correlation coefficient. The pair is aligned based 
on the maximal CCC.  

 

 

Figure 5 - Procedures for Signal Alignment 

 

Suppose that signals C and D have the highest 
cross correlation coefficient. They are aligned  
based on time lag of the maximum cross 
correlation and their mean obtained as follows: 

 2
ss DC
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+

=  

where CS and DS are the shifted signals of C and 
D. The mean, Mean, then replaces CS and DS in 

the subsequent analysis. The whole process is 
repeated until a final mean is obtained. 
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Further improvement of the final mean or the 
representative curve is achieved with additional 
iterations of the process as follows, 

• Obtain initial solution 

• Repeat the alignment process 

• Subtract the error from the solution 

• Obtain the improved solution 

• Repeat until convergence achieved 

 

 

Figure 6 – Flowchart for Signal Alignment 

 

Examples 

The methods discussed have application 
limitations.  A variety of data sets, taken from 
NHTSA' database, has been selected to provide 
some examples of its range of applicability. The 
specific units used in the graphs and tables 
shown are purposely left out, they are for 
illustrative purposes only and not for direct 
comparison to real test events. Time is plotted as 
steps depending on the sampling rate used and 
cannot be directly related to real time.  
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PMHS Tests:  

PMHS tests are used to characterize  the 
response of the  human body to impact. Similar 
tests carried out on different  PHMSs in different 
labs can  result in signals with marked contrasts, 
creating a  challenge to aggregate such 
contrasting signals and obtain a unique 
representative signal for the set.  

Figure 7 shows the original PMHS data that 
serve as a base for  both methodologies. Figures 
8-10 show the results from Method A, Method B 
and their comparison. Table 1 shows the time 
shifts (in number of time steps) using the 
alignment schemes of Method A and Method B. 

 

 

Figure 7 - Original PMHS Signals 

 

Figure 8 - PMHS Signals Processed (Method A) 

 

 

Figure 9 - PMHS Signals Processed (Method B) 

 

 

Figure 10 - PMHS Signals Processed (Overlay) 

 

Signal ID Method A Method B
Difference

 (A vs. B)

1 -98 -98 0

2 -98 -98 0

3 -98 -98 0

4 -98 -98 0

5 -99 -100 -1

6 -98 -98 0

7 -98 -98 0

8 -96 -96 0
  

Table 1 - Time Shifts Comparison (PMHS) 

 

Vehicle Crash ( NCAP) Tests:  

Vehicles available in NHTSA crash database [6] 
are classified into compacts cars, sedans, SUVs, 
minivans and trucks. Frontal rigid barrier forces 
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from NCAP tests were downloaded from the 
database and summed over the total number of 
cells in the rigid barrier to obtain the total force 
of impact for each test. Method A and Method B 
are used to align and extract a representative 
curve for the set. Figures 11-14 and Table 2 
show the results from the study. 

 

 

Figure 11 - Original NCAP Signals 

 

 

Figure 12 - NCAP Signals Processed (Method 
A) 

 

 

Figure 13 - NCAP Signals Processed (Method B) 

 

 

Figure 14 - NCAP Signals Processed (Overlay) 
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Signal ID Method A Method B
Difference

 (A vs. B)

1 867 867 0

2 1161 1166 5

3 898 898 0

4 1062 1064 2

5 873 872 -1

6 711 708 -3

7 867 869 2

8 957 965 8

9 993 996 3

10 1019 1022 3

11 718 717 -1

12 1000 1000 0

13 853 848 -5

14 805 804 -1

15 1089 1098 9

16 725 722 -3

17 999 997 -2

18 856 852 -4

19 1097 1097 0

20 607 604 -3

21 859 860 1

22 1 0 -1
  

Table 2 - Time Shifts Comparison (NCAP) 

 

CONCLUSIONS 

Two signal alignment methods are presented and 
used to analyze different types of time domain 
data. One scheme aligns the signals based on the 
cross correlation coefficients and normalizes the 
signals to form a representative curve (RC). The 
other aligns the signals based on cross 
correlations and then averages the signals.    

The methods are aimed at  minimizing  the 
differences between the resultant RC and the 
signals used to generate the RC. Assuming that 
the variations from test to test for the transducer 
time histories are the result of randomness and 
not deterministic, these methods may be  useful 
for obtaining the underlying response 
characteristic. The representative curve obtained 
from these methods may be used for different 
types of analysis such as determining the 
biofidelity metrics for ATD design, comparing 
different ATD responses under similar impact 
conditions and analysis of different vehicle crash 
characteristics.  
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Set of n 

signals 

Cross correlation coefficient (CCC)s 

between any two signals calculated. 

Most correlated signal pairs for each 

signal (w. max. CCC) identified. 

Numerical average (NA) calculated 

and replaces the pair in the group. 

The amount of shifting done by each 

average is applied to their the rest 

of the signals. 

NA is the 

representative signal 

List each signal, its max CCC pair 

according  to CCC values. 

A new group formed. Mutual max. CCC? 

The signal pair with the highest CCC 

is aligned. 

Yes 

No 

Repeat till only one signal left 

The signal group pair with the 

highest CCC is aligned. 

Numerical average (NA) calculated 

and replaces the pair in the set. 

The amount of shifting done by each 

average is applied to their the rest 

of the signals. 

Repeat till only one signal left 

Appendix A: MTM Flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 


