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ABSTRACT 

Computer Aided Engineering (CAE) has become 

a vital tool for product development in the auto-

motive industry. Various computer programs and 

models are developed to simulate vehicle crash-

worthiness, dynamic, and fuel efficiency. To 

maximize the effectiveness and the use of these 

models, the validity and predictive capabilities of 

these models need to be assessed quantitatively. 

 

For a successful implementation of CAE models 

as an integrated part of the current vehicle de-

velopment process, it is necessary to develop an 

objective metric that has the desirable metric 

properties to quantify the discrepancy between 

physical tests and simulation results. However, 

one of the key difficulties for model validation 

of dynamic systems is that most of the responses 

are functional responses, such as time history 

curves. This calls for the development of an 

objective metric that can evaluate the differences 

of the time history as well as the key features, 

such as phase shift, magnitude, and slope be-

tween test and CAE curves. 

 

In this paper, four state-of-the-art objective rat-

ing metrics are investigated. Multiple dynamic 

system examples for both tests and CAE models 

are used to show their advantages and limita-

tions. Further enhancements are proposed to 

improve the robustness of these metrics. A new 

combined objective rating metric is developed to 

standardize the calculation of the correlation 

between two time history signals of dynamic 

systems. Multiple vehicle safety case studies are 

used to demonstrate the effectiveness and use-

fulness of the proposed metric for future ISO 

Technical Specification and Standard for the 

TC22/SC10/SC12/WG4 “Virtual Testing” Work-

ing Group. 

INTRODUCTION 

Prototype tests to evaluate safety performance of 

a new vehicle in order to meet current and future 

safety requirements are on the rise. Computer 

modeling and simulations are playing an increas-

ingly important role in reducing vehicle proto-

type tests and shortening product development 

time. To achieve these goals, the validity and 

predictive capabilities of the computer models 

for various vehicle dynamic systems must be 

assessed objectively, quantitatively, and system-

atically.  

 

Model validation is the process of comparing 

model outputs with experimental observations in 

order to assess the validity or predictive capabili-

ties of computer models. The fundamental con-

cepts and terminology of model validation have 

been established mainly by various standard 

committees and professional societies ([1], [2], 

[3], [4], [5]). 

 

One of the critical tasks to achieve quantitative 

assessments of models is to develop a validation 

metric that has the desirable metric properties to 

quantify the discrepancy between functional or 

time history responses from both physical tests 

and simulation results ([6], [7], [8]). However, 

the primary consideration in the selection of an 

effective metric should be based on the applica-

tion requirements. In general, the validation 

metric shall be a quantitative measurement to 

judge whether a computational model is ade-

quate for its intended usage. 

 

In this paper, four validation metrics for dynamic 

responses are investigated and they are: CORre-

lation and Analysis (CORA) metric [9], En-

hanced Error Assessment of Response Time 
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Histories (EEARTH) metric [10], model reliabil-

ity metric [11], and Bayesian confidence metric 

[12]. Several dynamic responses for both test and 

CAE model are used to show some limitations of 

these metrics. Further improvement of the 

CORA corridor rating and EEARTH metric are 

proposed to improve their robustness. Finally, a 

combined objective rating metric based on the 

improved CORA corridor metric and EEARTH 

is proposed to standardize the calculation of the 

correlation between two signals of dynamic 

systems. Multiple vehicle safety case studies are 

used to demonstrate the effectiveness and use-

fulness of the proposed metric for future ISO 

Standard. 

SCOPE 

The scope of ISO TC22/SC10/12/WG4 “Virtual 

Testing” Working Group was to provide a 

validated metric to calculate the level of 

correlation between two non-ambiguous signals 

(e.g. time-history signals) obtained from a 

physical test and a computational model of the 

same test. The defined metric shall be primarily 

aimed at vehicle safety applications.  

 

The objective was to develop a fully documented 

metric instead of the development and provision 

of rating software. 

 

This paper gives a general overview of the recent 

work. It is also an excerpt of the ISO documents 

ISO PDTR 16250 [13] and ISO TS 18751 [14] 

prepared by this expert group. 

METHOD 

The work on the new standard started with a 

literature review to determine the state-of-the-art 

metrics in this specific area. Black box ap-

proaches such as commercial rating software 

without fully documented algorithms or algo-

rithms that are protected by intellectual property 

rights were excluded because of the aims of the 

ISO working group. 

Ideal metric characteristics 

There are many ideal metric characteristics that 

would be desirable in model assessment of 

dynamic systems ([6], [7], [8]). The most 

important ones for vehicle safety applications 

are:  

(1) objective – produces same result regardless 

who conducts the assessment,  

(2) generic – reflects differences in the full 

distribution of the simulation and 

experimental outcomes and key features 

like phase, magnitude, and slope,  

(3) robust – produces consistant results with 

different sampling rates,  

(4) symmetric – produces same result when the 

experiment and simulation outcomes 

switch,  

(5) simple – easy to understand and use,  

(6) contains clear physical meaning and 

Subject Matter Experts (SMEs)’ 

knowledge,  

(7) under uncertainty – accounts for data 

uncertainties in both the experiments and 

numerical simulations. 

 

Pre-selected metrics 

Based on the above ideal metric characteristics, 

four different metrics were considered for the 

future standard development by this expert 

group. An intense validation program helped to 

identify the most appropriate algorithms. 

 

Algorithms that only analyze local features of a 

signal, e.g. peak, time of peak etc., are not con-

sidered. The approach of this working group was 

to develop a metric that analyzes complete sig-

nals including its local features. 

 

     CORA     The objective rating tool CORA 

uses two independent sub-ratings, a corridor 

rating and a cross-correlation rating to assess the 

correlation of two signals [9]. 

 

The corridor rating calculates the deviation 

between both curves with the help of user-

defined or automatically generated corridors. 

The cross correlation rating analyzes specific 

curve characteristics, such as phase shift, size, 

and shape of the signals. This combination of 

two completely independent ratings helps to 

compensate for each other’s disadvantages. 

 

The CORA rating tool is also trying to separate 

engineer’s knowledge from the objective rating 

metric by using external parameters. It offers the 

possibility to fine-tune the evaluation to the 

specific needs of the applications by adjusting 

those metric parameters to reflect the SMEs’ 

knowledge of the applications. 
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     EEARTH     The EEARTH metric is based 

on the Error Assessment of Response Time 

Histories (EARTH) [15] that provides three 

independent error measures: phase, magnitude, 

and topological. The phase error deals with the 

overall error in timing between two functional 

responses when considering all the points of the 

responses. Magnitude error is defined as the 

difference in amplitude of the two functional 

responses when there is no time lag between the 

two. Topological error deals with error 

associated with the shape of the functional 

responses, such as the number of peaks, valleys, 

and slope. A very unique feature of the EARTH 

metric is using dynamic time warping (DTW) to 

separate the interaction of phase, magnitude, and 

topological errors. DTW is an algorithm for 

measuring discrepancy between time histories 

and was first used in context with speech 

recognition in the 1960's [16]. The time warping 

technique aligns peaks and valleys as much as 

possible by expanding and compressing the time 

axis according to a given cost function [17]. 

Since the ranges of three errors are quite 

different and no single error can provide a 

quantitative model assessment alone, the original 

EARTH metric employs a linear regression 

method to combine the three errors into one 

score. A numerical optimization method is 

employed to identify the linear coefficients so 

that the resulting EARTH rating can match with 

the SMEs' ratings closely for a specific 

application. However, the resulting linear 

combination of the EARTH metric is mainly 

numerically based and application dependent, 

therefore, it may not be scalable to other 

applications.  

 

In order to provide one intuitive rating and 

improve the robustness of the metric with 

different sampling rates while maintaining the 

advantages of the original EARTH metric, an 

enhanced EARTH metric called EEARTH is 

developed. The major enhancements include: 

  

(1) developing an integrated calibration 

process to incorporate physical-based 

thresholds and SMEs' knowledge to provide 

phase score, magnitude score, slope score, 

and the combined EEARTH rating all in the 

standard “0” to “1” range; 

(2) using a distance-only cost function for 

DTW instead of both distance and slope-

based cost function in the original EARTH 

to improve the robustness of magnitude 

scores with different sampling rates; 

(3) eliminating DTW on slope curves so that 

the slope error is calculated directly from 

the difference between the two slope curves 

calculated from the shifted and truncated 

test and CAE curves to improve the 

robustness of slope scores with different 

sampling rates. 

  

Hence, the EARTH was enhanced by simplifying 

the algorithms and reducing the influence of the 

signal’s sampling rate on the rating score.  

 

     Model reliability metric     A model reliabil-

ity-based validation metric was developed for 

dynamic system applications [11]. The differ-

ence between CAE and test curves is taken as the 

validation feature. The threshold factor is de-

fined by SMEs' experience, the lower and upper 

bounds of the threshold interval are defined as 

the product of the threshold factor and the abso-

lute maximum amplitude of the reference signal. 

The model reliability metric is represented by the 

probability that the observed difference is within 

the lower and upper bounds of the threshold 

interval. If a pre-defined reliability target is met, 

the model is acceptable. Since this difference 

time-history curve has better normality than 

those of the test and CAE curves, a normal dis-

tribution of the difference can be assumed and 

the model reliability metric can be simply calcu-

lated. 

 

There are only two adjusting parameters: thresh-

old factor and reliability target, and both have 

clear physical meanings. The model reliability 

metric is one of the simplest metrics for dynamic 

system applications, and it is very easy to under-

stand and interpret. 

 

     Bayesian confidence metric     The Bayesian 

interval hypothesis testing method has been 

demonstrated to provide more consistent model 

validation results than a point hypothesis testing 

method [18]. Jiang and Mahadevan [19] derived 

a generalized explicit expression to calculate the 

Bayes factor based on interval-based hypothesis 

testing for multivariate model validation. Similar 

to the model reliability metric, the difference 

curve between the test and CAE curves is select-

ed as the validation feature. After a prior density 

function is assumed, using Bayes’ theorem and 

assumptions given in [20] and [21], the Bayes 

factor for the multivariate case is equivalent to 

the volume ratio of the posterior density of 

testing data under null and alternative 

hypotheses. 

 

The Bayesian measure of evidence that the 

computer model is valid may be quantified by 
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the posterior probability of the null hypothesis. 

Using the Bayes theorem, the confidence in the 

model based on the validation data can be 

obtained. Note that expert’s opinion of the model 

accuracy may be incorporated in the confidence 

quantification in term of a prior ditribution. The 

decision maker or model user has to decide what 

threshold is acceptable.  

Metric evaluation 

Time history signals of forces, moments, accel-

erations, deflections, and angles are the most 

common types of signals obtained in vehicle 

safety applications. Various pairs of signals of 

those physical responses were used to analyze 

the pre-selected metrics in detail. The metrics 

must differentiate between different levels of 

correlation. Furthermore, they should use the 

whole domain of the rating scale, usually be-

tween “0” and “1”. The assessment of the met-

rics was based on SMEs’ experiences. 

Selection of the most appropriate metrics 

The Bayesian confidence metric and the model 

reliability metric can provide overall scores on 

whole time history curves, but they cannot 

identify key features like phase, magnitude, and 

slope. 
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Figure 1. Force obtained in test and 

simulations. 

The limitations of the CORA cross correlation 

and Bayesian confidence rating are shown in 

Table 1. The signals shown in  Figure 1 are 

assessed by using the CORA and Bayesian 

confidence metrics. The signals are defined and 

evaluated in the plotted time domain. 

 

The CORA cross correlation rating cannot 

differentiate between the three CAE signals 

because it requires signals that are defined before 

and beyond the interval of evaluation to calculate 

reasonable results. 

 

Bayesian confidence metric grades the responses 

more dramatically and extremely. This is 

because the Bayesian hypothesis testing 

examines the mean of the difference distribution 

instead of the full difference distribution and the 

standard deviation of the mean of the difference 

is much smaller than the standard deviation of 

the difference. Therefore, it is more likely to 

give “1” score when the mean of the difference 

distribution is within the threshold interval, and 

give “0” score when the mean of the difference 

distribution is outside of the threshold interval. 

Table 1. 

Different metric ratings of force curves 

 CAE1 CAE2 CAE3 

CORA  

Total rating 
0.452 0.371 0.577 

CORA  

Corridor 
0.654 0.491 0.903 

CORA  

Cross correlation 
0.250 0.250 0.250 

Bayesian confidence 

rating 
1 1 1 

 

Since EEARTH analyzes the same 

characteristics of signals as the CORA cross 

correlation metric, but without this specific 

limitation, it was chosen as part of the proposed 

ISO metric. 

 

Finally, two unique metrics, the CORA corridor 

metric and EEARTH were chosen for the 

proposed ISO metric. 

PROPOSED ISO METRIC 

 

 Total ISO rating

Corridor Phase Magnitude Slope

 

Figure 2. Structure of the proposed ISO 

metric. 

The approach to the proposed ISO metric is to 

combine different types of algorithms to provide 

reliable and robust assessments of the correlation 

of two signals. The calculated score must 

represent a reasonable assessment for poor and 

for good correlations. As mentioned above, the 
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CORA corridor method and EEARTH are 

chosen. The new metric has been fully validated 

using responses from multiple vehicle passive 

safety applications. 

Table 2. 

Weighting factors of the sub-scores 

Sub-metric Weighting factor 

Corridor 0.4 

Phase 0.2 

Magnitude 0.2 

Slope 0.2 

 

Figure 2 shows the structure of the proposed ISO 

metric. While the corridor method calculates the 

deviation between curves with the help of 

automatically generated corridors of constant 

width, the EEARTH method analyzes specific 

curve characteristics such as phase shift, 

magnitude, and shape. Hence, the proposed ISO 

metric has the advantage to compensate for the 

limitation of one algorithm by the other. 

 

The total score of the proposed ISO rating metric 

adds up the four individually weighted sub-

scores. The four weighting factors are shown in 

Table 2. 

Corridor score 

The corridor sub-metric calculates the deviation 

between two signals by means of corridor fitting. 

The two sets of corridors of constant width, the 

inner and the outer corridors, are defined along 

the test curve (reference). If the evaluated CAE 

curve is within the inner corridor bounds, a score 

of “1” is given and if it is outside the outer 

corridors, the score is set to “0”. The assessment 

declines from “1” to “0” between the bounds of 

inner and outer corridors resulting in three 

different rating zones as shown in Figure 3. This 

transition is set to be quadratic for this proposed 

ISO metric. 

 

The compliance with the corridors is calculated 

at each specific time of the whole interval of 

evaluation, and the final corridor score of a 

signal is the average of all scores at the specific 

times. 

 

The absolute half width of the corridors is 

calculated by using the absolute maximum 

amplitude of the reference signal within the 

interval of evaluation and relative width factors 

of inner and outer corridors. The philosophy of 

the proposed ISO corridor approach is to use a 

narrow inner corridor and a wide outer corridor 

[22]. It limits the number of “1” ratings to only 

good correlations and gives the opportunity to 

distinguish between poor and fair correlations. If 

the outer corridor is too narrow, too many curves 

of a fair or moderate correlation would get the 

same poor rating of “0”, like signals of almost no 

correlation with the reference. 

 

 

Figure 3. Rating zones of the corridor 

metric [9]. 

Phase score 

The phase sub-metric is used to measure the 

phase lag between the two analyzed time 

histories. The maximum allowable percentage of 

time shift is pre-defined. In this step, the initial 

CAE curve is shifted left then right one step at a 

time to the original test curve, and the cross 

correlation between the truncated test curve and 

the shifted and truncated CAE curve is 

calculated until reaching the maximum allowable 

time shift limits. The best phase score is “1”, 

which means there is no need to shift CAE curve 

to reach the maximum cross correlation between 

the initial test and CAE curves. If the time shift 

is equal to or greater than the maximum 

allowable time shift threshold, then the phase 

score is “0”. In between, the phase score is 

calculated by a regression method. 

Magnitude score 

The magnitude sub-metric is a measure of 

discrepancy in the amplitude of the two time 

histories. It is defined as the difference in 

amplitude of the two time histories when there is 

no time lag between them. Before calculating the 

magnitude error, the difference between the time 

histories caused by error in phase is minimized 

by using DTW. The best magnitude score is “1”, 

which means there is no difference in the 

amplitudes after phase shift and DTW. If the 

magnitude error is equal to or greater than the 

maximum allowable magnitude error threshold, 

then the magnitude score is “0”. In between, the 
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magnitude score is calculated by a regression 

method. 

Slope score 

The slope sub-metric is a measure of discrepancy 

in slope curves of the two time histories. In order 

to ensure that the effect of global time shift is 

minimized, the slope curves are calculated from 

the truncated test curve and the shifted and 

truncated CAE curve. The best slope score is 

“1”, which means there is no difference between 

the two slope curves. If the slope error is equal 

to or greater than the maximum allowable slope 

error, then the slope score is “0”. In between, the 

slope score is calculated by a regression method. 

Meaning of the results 

The proposed total ISO rating R  ranges from 

“0” to “1”. The higher the rating the better the 

correlation of the two signals. This single-rating 

number can be transferred to a grade that 

represents the goodness of the correlation by 

using a sliding scale (Table 3).  

Table 3. 

Sliding scale of the proposed total ISO rating 

Grade Rating R  

Excellent R >0.94 

Good 0.80< R ≤0.94 

Fair 0.58< R ≤0.80 

Poor R ≤0.58 

 

The thresholds of R  of each grade were defined 

based on SMEs’ experiences and are only valid 

if none of the parameters (e.g. weighting factors, 

regression schemes, sampling rates, etc.) de-

scribed in the proposed ISO metric ([14]) are 

altered. 

 

     Excellent     The characteristics of the 

reference signal is captured almost perfectly. 

 

     Good     The characteristics of the reference 

signal is captured reasonably well, but there are 

noticeable differences between both signals. 

 

     Fair     The characteristics of the reference 

signal is basically captured, but there are 

significant differences between both signals. 

 

     Poor     There is almost no correlation 

between both signals. 

VALIDATION OF THE PROPOSED ISO 

METRIC 

Similar to the evaluation of the four pre-selected 

metrics to be considered for an ISO standard, the 

validation of the proposed ISO metric was 

conducted with similar sets of data. 

Metric parameters 

The proposed ISO metric and its sub-metrics 

offer several parameters to adjust and validate 

the rating results. They were mainly used to 

improve the resolution of the rating domain and 

to improve the differentiation between signals of 

a similar correlation. However, all parameters 

are fixed in the final proposed ISO metric to 

gurantee comparable rating scores. 

 

     Proposed total ISO rating     The weighting 

factors of the four sub-scores (corridor, phase, 

magnitude, and slope) are the only parameters to 

adjust the total score.  

 

     Corridor score     The widths of corridors are 

the most important parameters to adjust this 

rating results. The progression of the transition 

between inner and outer corridors has a consid-

erable influence on the results as well. 

 

The type of the corridors, constant or variable 

width, over whole time domain may change the 

outcome of this sub-metric significantly. 

 

     Phase score     Two parameters are used to 

validate the phase sub-metric: the maximum 

allowable percentage of time shift and the pro-

gression coefficient for the transition between 

“1” and “0” rating scores. 

 

     Magnitude score     Similar to the phase 

score, two parameters are mainly influencing the 

results: the maximum allowable magnitude error 

and a progression coefficient for the transition of 

rating between “1” and “0”. 

 

     Slope score     The maximum allowable slope 

error and a progression coefficient are the two 

parameters to adjust this sub-metric. 

Pre-processing of the signals 

During the evaluation and validation of the 

proposed ISO metric, it was concluded that a few 

basic conditions must be kept in order to obtain 

correct results. This must be done by the user. 
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     Synchronization     Initially, the signals must 

be synchronized by physical meanings and by its 

timing. At each time step of the test signal, a 

value of the CAE signal is required. 

 

     Sampling rate     The proposed ISO metric 

was validated with signals of 10 kHz sampling 

rate. The sub-metrics to evaluate magnitude and 

slope are especially sensitive to the signal’s 

sampling rate. 

 

     Filtering     The algorithms do not modify the 

original signals. It should be considered that the 

calculation of the correlation could be difficult 

when using very noisy signals. 

 

Figure 4 shows an example of the effect of 

filtering. Signals A and B are derived from the 

same unfiltered signal and differ only by the 

applied filter classes. The overall correlation 

rating of signal B increased by 6% compared to 

signal A due to the application of a higher filter 

class. 

 

 

Figure 4. Differently filtered signals [9]. 

 

     Interval of evaluation     The assessment of 

the correlation should be focused on the relevant 

parts of the given signals. Typically, crash 

signals include pre-crash and post-crash phases 

that are usually not of interest and should be 

excluded from the rating. Therefore, an interval 

of evaluation shall be defined which describes 

the part of the signals that needs to be assessed. 

An assessment of using ratings of different sub-

intervals of the same pair of signals is not 

allowed. 

 

Figure 5 depicts an example of this problem. The 

correlation rating increases by 35% when 

extending the interval of evaluation from the 

relevant part to the whole time domain. 

 

 

 

Figure 5. Different intervals of evaluation 

[9]. 

RESULTS 

Four case studies that include different kinds of 

test and CAE signals are used to assess the 

potential of the proposed ISO metric. All cases 

are part of the mentioned ISO documents ([13], 

[14]) and they are defined and assessed in the 

time domain and fulfill all described 

requirements to pre-process the data. 

Case 1 

Figure 1 depicts a force response obtained in a 

test and the corresponding signals of three 

different CAE models. The proposed total ISO 

rating including the results of its sub-scores are 

shown in Table 4. 

Table 4. 

Rating of the force curves 

 CAE1 CAE2 CAE3 

Grade Fair Poor Good 

Proposed total 

ISO rating 
0.711 0.460 0.862 

Corridor score 0.654 0.492 0.904 

Phase score 0.971 0.856 0.954 

Magnitude score 0.738 0.372 0.929 

Slope score 0.540 0.088 0.622 

 

The rating scores reflects the different 

characteristics of the CAE curves. The low slope 

score of CAE2 correlates well with the clear 

shape difference of the signal compared to the 

test curve. The high phase score of all the CAE 

signals is mainly caused by the good agreement 

with the gradients of the signal’s first peak. a 

The high magnitude score of CAE3 is because 

all peaks and valleys of the test curve are well 

captured. The corridor score assesses the 

deviation to the reference signal in the whole 
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time domain. CAE2 resulted in the worst rating 

among the three CAE signals because of the 

clear deviation from the test. Generally, the 

rating differentiates between the different kinds 

of correlation of the three CAE signals. 

Case 2 

Signals of a measured torque are shown in 

Figure 6. The correspondig rating scores are 

listed in Table 5. 
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Figure 6. Moment obtained in test and 

simulation. 

Table 5. 

Rating of the moment curves 

 CAE1 CAE2 CAE3 

Grade Fair Fair Fair 

Proposed total 

ISO rating 
0.657 0.660 0.666 

Corridor score 0.539 0.538 0.556 

Phase score 0.677 0.696 0.962 

Magnitude score 0.840 0.798 0.735 

Slope score 0.691 0.727 0.519 

 

In spite of the different shapes of the three CAE 

signals, their objective rating scores are almost 

identical – “Fair”. The twin peaks of CAE3 

resulted in a low slope score. The high phase 

score of CAE3 is caused by the limited phase 

shift to reach the maximum cross correlation 

between test and CAE, even though the resulting 

maximum cross correlation number is low. 

Case 3 

Figure 7 shows a set of acceleration signals. The 

ratings are shown in Table 6.  

 

The three CAE curves captured the gross charac-

teristics of the test signal, but the peaks deviate. 

The phase and magnitude scores are the highest 

while the corridor scores show good correlation. 

The slope scores are low due to the noisy signals 

of the CAE curves. 
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Figure 7. Acceleration obtained in test and 

simulation. 

Table 6. 

Evaluation the acceleration curves 

 CAE1 CAE2 CAE3 

Grade Fair Fair Fair 

Proposed total 

ISO rating 
0.785 0.648 0.790 

Corridor score 0.793 0.647 0.784 

Phase score 0.971 0.909 0.989 

Magnitude score 0.871 0.793 0.849 

Slope score 0.498 0.246 0.546 

 

This example shows that the combination of the 

four sub-metrics ensures reasonable ratings even 

if the signals are somehow difficult to handle for 

one of the sub-metrics. 

Case 4 

Figure 8 shows a set of displacement signals and 

Table 7 shows the corresponding rating scores. 

 

The general characteristics of the four signals are 

almost identical. Therefore, the scores of phase, 

magnitude and slope are very high. The corridor 

metric does not differentiate between CAE2 and 

CAE3 because both signals are almost complete-

ly within the inner corridor that gives a score of 

“1”. 
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Figure 8. Displacement obtained in test and 

simulation. 

Table 7. 

Evaluation of the displacement curves 

 CAE1 CAE2 CAE3 

Grade Good Excellent Excellent 

Proposed total 

ISO rating 
0.917 0.980 0.981 

Corridor score 0.889 1.000 0.999 

Phase score 0.911 0.962 0.937 

Magnitude score 0.978 0.981 0.995 

Slope score 0.918 0.957 0.976 

CONCLUSION 

This paper gives a brief overview of the capabili-

ties of the proposed ISO metric. It is shown that 

the algorithms can handle different kinds of non-

ambiguous signals of different qualities. The 

rating scheme is consistent and enables 

differentiated assessments of signals of different 

levels of correlation. 

 

More detailed information and step-by-step pro-

cedures to implement the described metric in a 

software package are given in [13] and [14]. A 

set of ASCII curves to verify the implementation 

of the proposed metric is also provided with both 

ISO documents. 

LIMITATIONS 

The application of the developed metric requires 

some basic conditions:  

(1) The metric is limited to non-ambiguous 

signals obtained from all kinds of tests 

associated with vehicle safety applications 

and the corresponding numerical 

simulations (CAE). The most commonly 

used signals in this field are time-history 

curves;  

(2) The defined sliding scale to classify the 

proposed ISO rating score is only valid for 

the comparison of two signals. Any 

modification to the metric’s parameters 

such as weighting factors, sampling rates, 

etc. requires a revision of the grade’s 

thresholds;  

(3) This proposed ISO metric is defined to 

calculate the level of the goodness of 

correlation between two signals only. If 

more than one pair of signals (e.g. whole 

set of signals from various channels of a 

test) is considered, the defined thresholds 

of the sliding scale are no longer valid. 

REFERENCES 

[1] Department of Energy – DOE; “Acceler-

ated Strategic Computing Initiative (ASCI) Pro-

gram Plan®”; Department of Energy; DOE/DP-

99-000010592; Washington D.C.; USA; 2000. 

[2] American Institute of Aeronautics and 

Astronautics – AIAA; “Guide for the Verifica-

tion and Validation of Computational Fluid Dy-

namics Simulations”; American Institute of 

Aeronautics and Astronautics AIAA-G-077-

1998; Reston; VA; USA; 1998. 

[3] Department of Defense – DOD; “Verifica-

tion, Validation, and Accreditation (VV&A) 

Recommended Practices Guide”; Department of 

Defense; Alexandria; VA; USA; 1996. 

[4] American Society of Mechanical Engi-

neers – ASME; “Guide for Verification and 

Validation in Computational Solid Mechanics”; 

American Society of Mechanical Engineers; 

ASME V&V 10; USA; 2006. 

[5] American Society of Mechanical Engi-

neers – ASME; “V&V 20-2009 Standard for 

Verification and Validation in Computational 

Fluid Dynamics and Heat Transfer”; available 

from ASME Codes & Standards website (June 

28th 2012). 

[6] Oberkampf, W. L.; “Overview of verifica-

tion, validation and predictive capability”; San-

dia National Laboratories; SAND2005-1824P; 

Albuquerque; NM; USA; 2005. 

[7] Ferson, S., Oberkampf, W. L., Ginzburg, 

L.; “Model validation and predictive capability 

for the thermal challenge problem”; Computer 

Methods in Applied Mechanics and Engineer-

ing; 197 (29-32), pp. 2408-2430; 2008. 



 

Barbat 10 

[8] Fu, Y., Zhan, Z., Yang, R.-J.; “A study of 

model validation method for dynamic systems”; 

SAE 101DM-0080; Detroit; MI; USA; 2010. 

[9] Gehre, C., Gades, H., Wernicke, P.; “Ob-

jective Rating of Signals Using Test and Simula-

tion Responses”; Paper Number 09-0407; 21
st
 

ESV Conference; Stuttgart; Germany; 2009. 

[10] Zhan, Z., Fu, Y., Yang, R.-J.; “Enhanced 

Error Assessment of Response Time Histories 

(EEARTH) Metric and Calibration Process”; 

SAE 2011 World Congress; SAE 2011-01-0245; 

Detroit; MI; USA; 2011. 

[11] Zhan, Z., Fu, Y., Yang, R.-J., Peng, Y.; 

“Development and Application of a Reliability-

Based Multivariate Model Validation Method”; 

International Journal of Vehicle Design; 60 

(3/4), pp. 194-205; 2012. 

[12] Zhan, Z., Fu, Y., Yang, R.-J., Peng, Y.; 

“An Enhanced Bayesian Based Model Valida-

tion Method for Dynamic Systems”; ASME 

Journal of Mechanical Design; Vol.133, Issue 4, 

041005; USA; 2011. 

[13] International Organization for Standardi-

zation (ISO); “Road vehicles – Objective rating 

metrics for dynamic systems”; ISO/PDTR 

16250; 2012. 

[14] International Organization for Standardi-

zation (ISO); “Road vehicles – Objective rating 

metric for non-ambiguous signals”; ISO/TS 

18571; draft; 2013. 

[15] Sarin, H., Kokkolaras, M., Hulbert, G., 

Papalambros, P., Barbat, S., Yang, R.-J.; “Com-

paring Time Histories for Validation of Simula-

tion Models: Error Measures and Metrics”; 

Transactions of the ASME – Journal of Dynamic 

Systems: Measurement and Control; Vol. 132, 

No. 6, 061401; 2010. 

[16] Rabiner, L. R., Huang, B. H.; “Fundamen-

tals of Speech Recognition”; Prentice Hall; 

1993. 

[17] Lei, H., Govindaraju, V.; “Synchroniza-

tion of batch trajectory based on multi-scale 

dynamic Time Warping”; Proceedings of the 

Second International Conference on Machine 

Learning and Cybernetics; Xi'an; 2-5 November 

2003. 

[18] Jiang, X., Mahadevan, S.; “Bayesian risk-

based decision method for model validation 

under uncertainty”; Reliability Engineering and 

System Safety; 92 (6), pp. 707–718; 2007. 

[19] Jiang, X., Mahadevan, S.; “Bayesian 

wavelet method for multivariate model assess-

ment of dynamical systems”; Journal of Sound 

and Vibration; 312 (4-5), pp. 694-712; 2008. 

[20] Kass, R., Raftery, A.; “Bayes factors”; 

Journal of the American Statistical Association; 

90 (430), pp. 773–795; USA; 1995. 

[21] Migon, H. S., Gamerman, D.; “Statistical 

Inference-An Integrated Approach”; Arnold, a 

Member of the Holder Headline Group; London; 

UK; 1999. 

[22] Kim, S.-A.; “Bewertung der Korrelation 

von Meßsignalen – Sensitivitätsanalyse der 

Steuerparameter der Bewertungssoftware 

CORA“; Master‘s thesis; TU Berlin; Germany; 

2011. 


