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A problem in safety research is how injury data from accidents, and damage data
from laboratory experiments, should be concisely reduced into a single descrip-
tive formula. Well known is the uncertainty that comes from variability of a sta-
tistical nature in biological subjects and in the physical course of events
producing injuries and damages. A less known source of uncertainty in the
violence and loading data is that they most often are what statisticians call
"censored". This complicates the establishment of a relation between causae and
effect. The purpose of this report is to describe what censoring is and how cen-
sored data can be effactively analyzed. A few examples and possible developments
are prasented. The presentation is somewhat lengthy because we want to make the
reader understand how the mathematics work. ble also want to illustrate the types
of reasoning that are possible with the aid of the presented model. We will employ
the biomechanical terminology proposed in raference <1>1!,

Censored data are data that are biased in one direction or another. The sign of
the bias is known but not the magnitude. This complicates the application of con-
ventional correlation and ragression techniques since these methods assume data
to be free from bias.

The occurrence of censored data is very common in biomechanics. The reason is the
n;gd tolclgssifv the injuries and damages in a few recognized levels in the AIS or
A scales<, A

Consider as an example an experimental test series where a group of human
substitutes are exposed to a range of dynamic loadings, which are measured as
mechanical peak forces. The test specimens are carefully examined for bone
fractures. The actual force in each particular case will probably not be of
such a magnitude that it exactly would cause just a barely observable frac-
ture. All force data have to be assigned to either of two groups. One group
consists of the experiments whare the forces have been too low to cause a
fracture. The other group contains those experiments where fractures are
detected. In the latter group the forces have been sufficient, and probably
even excessively so, for the causation of fractures. Therefore each group now
consists of data which are censored in either direction.

Our attention to the problem with censored data has been raised by discussions
wWwithin the 150/7C22/5C12/Working Group 6. The task for that group is related to
road vehicle crash testing and to "Performance Criteria Expressed in Biomechani-
cal Terms". Several approaches to the treatment and analysis of censored biome-
chanical data have been proposed by biomechanical and traffic safety researchers
€3> <5> <7> <8> <9> <13> <14>, Nobody seems, however, to have presented an unambi -
gously satisfactory method. Knowing that censored data are advantageously handled
by the Maximum Likelihood Method - first presented by Sir Ronald Fisher <4> - wa
have prepared this report to describe the method to the biomechanical communi ty.
Workers in other technical areas, such as explosives testing or toxicology or
reliability engineering have also faced this problem and have worked with sol-
utions similar to what is presented herea. A readable short survey is reference
<11>. An additional source containing some worksheets and formulas is chapter 10
in reference <10>,

1 Numbers within < > refer to a list of references at the end of the report.
2 ADS = Abbreviated Damage Severity, see reference <1>,
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2. The Maximum Likelihood Method

We will present a known statistical method for the treatment of censored data.
The method should be generally applicable to a wide range of biomechanical inter-
asts and studies. For convenience we will describe the method in terms of the
hypothetical laboratory experiment in the above introduction. But the method
might equally well be applied to accident data, or any other cause-effect analyr
sis involving censored data. The interested reader can easily transform the text
to fit his or her particular analysis.
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Figure 1. Experimental data

Figure 1 is a plot of a series of typical experimental data. For low loadings all
experiments gave a non-significant response, while very high loadings always gave
significant damage response. In the mid-range there is obviously some randomness
involved. Here it would be difficult to predict the outcome of any single exper-
iment, but a coarse statement would say that there is about a fifty per cent risk
for a fracture to occur.
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Figure 2. Risk vs. loading

Figure 2 is a useful and concise graphic presentation of this inferred risk for
damage. It rises from zero to one hundred per cent over the range of loadings.
Mathematically the curve is a "cumulative frequency distribution”. Our statis-
tical method will employ all the recorded data to arrive at the best possible rep-
raesentation of the experimental test series. If one dares to generalize from the
observations, one might use the curve as a probability curve and as a prediction
tool.

2.1 Assumptions: The following assumptions are made concerning the experiment and
the data.

. A population of possible laboratory test specimens is assumed to be definea-
ble.
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. Each specimen is exposed to a cartain loading from external physical forces
during the course of a laboratory experiment. All loading forces are meas-
ured and expressed in the same way for the whole population, and all observa-
tions are assigned the same weight. Depending upon the circumstances, the
magni tudas of the loading exposures may be more or less controllable in
advance by an experimenter.

. Each specimen is examined for damages resulting from the exposure to the
recorded loading. The examination results in an accurate record of minor and
major damages. Here, we reduce the cantents of that raecord to a single
bi-level response classification: significant or non-significant damage. The
criterion for significance is defined by the analyst, as required by the goal
of the investigation.

. The vulnerability of the spacimens is such that the risk far significant dam-
ages is higher when the loading is higher. The actual loading in each partic-
ular case is, however, seldom of such precise magnitude that it exactly
causes a baraely significant damage. On the cantrary, in most cases the load-
ing exposure is either too small or too excessive for the causation of a sig-
nificant damage. Consequently all loading measures are censored.

i Mathematical notations for the above assumptions and for some use-
ful aids are as follows:

. z is the loading variable with some special values: v is the recorded loading
to each specimen, V is the set of all the recorded loadings, and x is the
"threshold" loading that just barely would result in a damage classified as
significant to each specimen.

. The non-significant damages are indexed i = 1€ wwudd

. The significant damages are indexed F = ASE s

. K is a parameter, or a set of parameters

. P(avent) is the probability for a particular evant to occur

. L is the likelihood function. It is the product of all the independent indi-
vidual probabilities in a complex arrangement.

. F(z;K), or shorter: F(z), is an arbitrary cumulative frequency distribution.
Since z here shall represent the loading to a test specimen, z can only assume
values greater than zero. K is a set of parameters that affect the shape and
location of the distribution. In this case K will have such values that
F(z;K) is defined within the z interval from zero to plus infinity.

. W(z;K), or shorter: W(z), is the notation for a special case of F(z;K). It is
the Weibull cumulative frequency distribution with one variable and three
parameters:

- (0P
W(z;K) = Wziapuy) = |- =)

A summary of the properties of the Weibull function is placed in an Appendix

at the end of this report.

. Q(z;K) is the hazard intensity function, defined as:

o .
QCz;K) = M
1 =-We; k)

It can be shown <6> that a constant value for Q, independent of z, corresponds
to a g value equal to 1. If Q(z;K) increases with 2z, then B is greater than 1.

T P abili arvati : As mentioned abova, the conclusion
from each single experiment can only be that the recorded loading has been too
excessive or too small for the causation of a significant damage. However, each
exposure of a specimen to a loading can be regarded as one statistical experiment
with a response (i.e. damage classification) that is detarmined by a probability
mechanism. A collective treatment of all the probabilistic responses Wwill give
the best overall description of that damage vs. loading mechanism.
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Tentatively we denote the mechanism simply with the aid of the arbitrary function
F(z;K), depicted in Figure 2 on page 2. With P, K, v and x defined as abova, the
probability for a significant damage response of each experiment is written:
P(significant damage, given v) = F(v;K)
or, sinca x <= v implies a significant damage:
P(x <= v) = F(v;K) .
The data for the observed significant damage response experiments give:
P(xj <= v3i) = Flvi;K); m probability expressions

Correspondingly, for each of the non-significant damage experiments with their
complementary responses, we get

P(xi > vi) =1 = F(vi;K); n probability expressions

The m + n probabilities, containing all the censored data, are now treated
according to the Maximum Likelihood Method. The likelihood function L for the
entire test series is:

Llvl v2 v3 . . vijvi . . vmvn) = L(V) = IT PCv)
LCV) = LeViK) = TF Fviskd) * T (1=Fevi;K))

The likelihood function L is thus dependent on the recorded data set V and on the
yet undetermined distribution function F(z;K). Now our next concern is not the
absolute magnitude of L, but the conditions for a suitable set of values for K to
provide a maximum for L.

Symbolically, this maximum is analyzed as follows. The first derivative dL/dK
and its relation to a maximum is studied in the usual manner. Treating V as con-
stants and K as variables, the equation

d

0= 3% L(V;K)
will give values for K which depend on the recorded data V. That set of roots to
the equation which yield a maximum L is denoted K. It will give the largest possi-

ble credibility to the experimental data. The probability mechanism which best
fits the observations is then written:

PCsignificant damage, given a loading z) = F(z;K)

2.4 A Practical Solution: What remains now is to find a suitable expression for F,
which can cover many possible modes of cumulative distributions. One good choice
is the Weibull distribution which has thes=e possibilities and also some other
interesting features (see the Appendix). Alternate distribution choices will be
discussed later. Raeplacing F(z;K) by W(z;K) and using the short notation W(z2)
gives:

LEVEK) = LCVsenBoy) = TT Wevid) x TJ c1-Wevid)

The calculations become somewhat simpler by taking the natural logarithm of both
members of the equation. The likelihood L has its maximum simultaneously with
InCL).

InCLCV;euPoy)) = § 1n WCv3) + § 1nC1-WCvi))

This equation contains the set of recorded loadings V and it also contains the
three undetermined parameters o, P and y, which we for the moment treat as vari-
ables. Instead of proceeding by taking the traditional derivatives and solving
the resulting three simultaneous equations for the parameter set K, a convenient
alternate way is possible. Computer programme packages are howadays avilable for
the solving of maximum problems. We have employed the NAG subroutine package
<12>, which directly seeks a numerical maximum for In(L) and reports the values
for a, P and y which are associated to that maximum.

The rocts - corresponding to K in the previous section - are denoted by & H and ¥

and inserted in the Weibull function, which now is a good and concise represen-
tation of the experimental data:
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P(significant damage, given a loading z)=N(z;§,§,i)

An experimenter needs of course not go through all the formal steps above in his
routine analysis. The formulas are conveniently programmed into a nearby comput-
er, together with a suitable statistical programme package.

ma a atistical commants

This section will present and discuss some technical comments and developments to
the previously derived cumulative function. The first subsections address par-
ticularly the Weibull distribution and its features. The later ones are of a more
general nature. Some further comments are also included in the Applications sec~-
tion. Some comments are straightforward, others are more tentative and intended
to indicate what a deeper analysis might give if this method is developed and
tested with more actual biomechanical data.

Alternate Distributions: The presented solution is limited to what is possi-
ble to model with a Weibull function. But since its three parameters provide a
wide flexibility, we will get a solution not far from the ideal one. Other dis-
tributions than the Weibull might give still somewhat higher values for the like-
lihood function L. The shape of the Weibull distribution may serve as an initial
indication for a selection of alternate distributions (e.g. normal, lognormal,
gamma, extreme value) to replace F(z;K) in the search for a maximized L. Nel-
son<ll> mentions the possibility to determine a non-parametric distribution. The
possibility of fitting the sum of two distributions might also be considered if
there are physical indications for this.

3.2 Constraints: In order to avoid physically ambigous solutions, some con-
straints are necessary during the search for the maximum L. Obvious are the triv-
ial requirements that o and B shall be greater than zero, and that y shall be
equal to or greater than zero. Houever, some physical reasoning can lead us fur-
ther.

A reasonable assumption is that the risk for a significant damage is relatively
greater in an interval from e.g. 10 to 11 loading units than in an interval from 5§
to 6 loading units. This is equivalent to the statement that the hazard intensity
@(z) is increasing, which also implies > 1, This is also a suitable constraint
to include in the search for a maximum for L. If a lower bound than 1 for B is
contemplated, two remarks are appropriate. A P < 1 would violate the initial
assumptions on the increasing hazard and the vulnerability of the specimens.
Additionally, some literature indicates that certain Maximum Likelihood computer
algorithms may show poor convergence for B < 1

3.3 Treatmen f Unlikel ouvl_Observations: If there are physical reasons for a
possible "always endurable loading”, which must be exceeded before significant
damages can be caused?, this corresponds to a lower bound for f equal to that "en-
durable loading". Technically this corresponds to the removal of a few of the
lowest non-significant damages from the input data. Such a removal must be based
on a thorough understanding of the physics of the event.

A mathematical indication for the removal of some of the lowest data points is as
follows. Assume that the maximizing of L gives a ¥ equal_to the lowest vi value
(the lowest recorded non-significant damage). Then W(z;K) is equal to zero at
2z =vl = y. This is equal to a 100 per cent probability for non-signinficant dam-
age at he loading level vl. The value of tha likelihood function L is not
affected by multiplication by 1, and consequently this lowest vl value may be
removed from the input data to the maximizing programme. A new search is then ini-
tiated and may result in a better fit and a higher L. Several low vi values may be
consecutively removed until the highest L value is found. A Maximum Likelihood
computer programme will need the experimenter's decisions how to treat the input
data in this aspect.

It must, however, again be pointed out that a possible assignment of zero damage
probability to some data must be based on an understanding of the physics. The
mathematics will only suggest how the data could be modified to give a better fit

3 Example: Vehicle retardation must exceed a certain magnitude before a
restrained occupant hits the dashboard.
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to a chosen distribution model! The situation has philosophical aspects, see for
instance chapter 17, "Rejection of outlying observations" in reference <10>.

3.4 Reliability of the Solution: The risk distribution which has been determined
from the data is representative only for this particular sample of specimens.

Probability inferences about other possible samples or individuals from the same

population can be made if confidence limits are calculated for the Weibull param-

eters and distribution. The confidence limits available from median rank tables”
are conservative. Narrower limits are available by more advanced methods, see for

instance references <2> and <11>.

&. ggg;jgatlong

We will illustrate the use of the Maximum Likelihood method and the Weibull dis-
tribution for three data sets. The examples give opportunity for special comments
to the experimental and analysis procedures. The data sets are taken as exercise
examples and we have no intentions®'here to go into biomechanical details or
judgements on the sampled specimens behind the data.

4.1 Accident Data: A set of injury data from a traffic accident data file has been
selected for analysis. The injuries are AIS data for the legs of 725 drivers who
have been involved in severe car accidents. The accidents were all classified as
frontal collisions, and the released energy in the collisions is represented by a
Relative Deformation Index (RDI) for the cars. This type of data has many uncer-
tainties in the deterministic relation between the loading measure and the inju-
ry, but it is often the only data that are available. The figures below show the
number of recorded casas for each AIS and RDI category.

RDI AIS=0 AIS=1 AIS=2 AIS=3 AIS=0-3
00 2 0 0 0 2
05 40 4 0 0 44
10 110 4 1 0 115
15 140 20 2 0 162
20 116 22 1 0 139
25 73 19 3 1 96
30 56 9 4 0 67
35 29 5 5 5 44
40 16 6 4 0 26
45 4 1 2 1 8
50 1 3 0 2 6
55 2 1 2 1 6
60 0 0 0 1 1
65 0 0 2 1 3
70 0 1 0 0 1
75 0 0 0 0 0
80 0 2 0 0 2
85 0 0 1 0 1
90 0 0 0 1 1
95 - 0 1 0 0 1

The analysis is performed for three groupings of the data: AIS=3 AIS=2,3 AIS=1-3,.
The resulting risk distributions are shown in Figure 3 on page 7.

The curves show the risk for for injury vs. RDI number for the different AIS
groupings. One can see how the risk curve is displaced rightwards as the criteri-
on for significant injury is increased. The number of observations for the RDI
intervals 0 - 20 - 40 - 60 - 80 - 100 are noted in the boxes below the curves. The
curves show three different features as follows. In the RDI interval 0 - 60 the
observations are plenty and the credibility can be assumed to be high. In the
interval 60 - 100 the observations are much fewer and the curves must then be of a
more approximate nature. Above RDI 100 no obsarvat[oqs px1at anq the shape of the
curve does not have much meaning. This type of cred1b:11ty_for different segments
of a risk curve should be possible to illustrate by some kind of confidence band.
A suitable way to calculate such a band remains to be developed.
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A Risk for injury
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Figure 3. Risk distributions for leg injuries

4.2 HIC Data: The document that initiated our work was the WG6 "U.S. Position
Paper" <13>. It included an analysis of 54 cadaver head impact data from three
research laboratories. The paper analyzed cranial fractures vs, HIC numbers for
the heads with the aid of the Mertz-Weber method <9>. That method assumes a Nor-
mal distribution to be applicable and such a distribution is fitted between the
end points of an "overlap range", i.e. from the lowest damage point to the highest
non-damage point. The risk values for the end points of the range ara taken from a
median rank table for 43 observations (the number of data in the overlap range).
That distribution is plotted with a solid line in Figure 4 on page 8. One can sea
how that fit shows a risk for fracture exceeding 95 per cent at the two non-frac-
tures recorded at 2138 and 2351 HIC units.

We have fitted two Weibull distributions to these data, also plotted in Figure 4.
The fit denotad "A" employs all the recorded data from the lowest 175 to the high-
est 3400 HIC units giving the risks 0 and 88 Per cent, respectively. The Maximum
Likelihood fit shows a continous increase in risk vs., HIC number in contrast to
the suggested Normal distribution, which has a more "sudden" transition from zero
to one hundred per cent in the range from 1000 to 2000 HIC units.

The median at 50 per cent risk corresponds to 1400 and 1470 HIC units for the Nor-
mal and the Weibull distributions, respectively. In order to establish the medi-
an, an experimenter usually tries to select his experimental conditions so that
every second specimen receives significant damages. In a way, this is similar to
Dixon's Up-and-Down Staircase design, see chapter 10 in reference<10>.

During research work towards the estblishment of Performance Criteria Limits <15,
the goal of an investigation might be to determine a loading level that has a risk
of, say, 25 per cent to give significant damages. The experimenter should then
strive at a yield of 25 per cent significant damages among his test specimens. He
has then no interest in the right tail of the risk distribution.

We have made a simulation of such an investigation by removing all observations
with HIC >= 1500 from the cranial fracture data. This left us 42 observations to
analyze, and curve "B" in Figure 4% was the result. Above 1500 HIC units there is
a marked diffarence between curves "A" and "B", which of course is due to the lack
of data for "B" in this range. However, below 1500 the curves follow each other
within plus minus 1.5 per cant. This indicates that the twelve specimens above
1500 HIC could have been spared - or exposed to lower loadings - if loadings above
1500 HIC units had been believed to be unnecessary for the establishment of the 25
per cent risk lavel.
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A Response
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Figure 4. Risk distributions for head damages

Thus it seems possible to use the Maximum Likelihood method in the analysis of one
tail of a risk distribution, and in the planning of experimental schemes.

AP close to 1 indicates that this particular Waibull distribution is close to an
exponential distribution. Such a distribution is often interpreted to represent a
random failure mechanism with no relation between accumulated loading level and
risk for failure“. MWould this indicate that the recorded HIC loading values for
these particular cadavers bear little deterministic relation to the occurence of
fractures? If so, something may be missing in today's supposed HIC vs. injury
determinism. Another possible reason for the low might, however, be the exper-
imental scheme itself. Perhaps ample observations at the low end and few at the
high end of a loading range will tend to give low ﬂ values? A third possibility is
that the Weibull distribution is not flexible enough and that alternate distrib-
ution models should be sought. More experimental data sets need to be analyzed
before a possible use of B as a diagnostic parameter can be employed in biomachan-
ics.

4.3 Airbag Data: A third example is taken from reference <9>, where Mertz and Web-
er introduced the above "overlap range" fitting of a Normal distribution. In a
research programme a number of pigs, baboons and anthropomorphic dummies werse
exposed to deploying airbags. The chosen example is a test series where the load-
ing was measured as maximum rate of chest compression, in km/h. The response was
classified in a six-interval Threat-to-Life scale, based upon clinical examina-
tion of the damages. -

4 C.f. the chance for your telephone to ring next minute. It is generally inde-

pendent of how long time you have been within hearing range. See also the
Appendix for some possible interpretations of B.
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The authors fitted a Normal distribution to their data as described in the previ-
ous section. Their result is plotted as a solid line in Figure 5 on page 9. .Thalr
distribution assigns a risk level of 95 per cent at 35 km/h, in spite of their two
low data points at this velocity.
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Figure 5. Risk distributions for chest damages

The Weibull parameters for these data have been determined to: &= 33.8 km/h, g -
2.28, 7 = 0.0 kms/h. The resultant Weibull cumulative function is plotted with
long dashes in Figure 5.

One might be willing to assign zero damage probability to some of the lowest data,
for some possible physical or medical reasons3. The maximizing procedure then
suggests the following Weibull parameters: & = 29.3 km/h, P = 1.46, ¥ = 5.99 km/h.
That is, the highest likelihood value L is available when five of the lowest val-
ues are discarded. This distribution is more skewed to the right and is plotted
with short dashes in Figure 5. A numarical comparison betueen the two Weibull
distributions gives a difference of less than 3 per cent between them over the
range of observations. Both Weibull distributions give higher risk than the Nor-
mal distribution up to 20 km/h. Above this velocity the Normals are higher, and
the Weibull risks increase at a slower pace.

During the final preparation of this paper we became aware of some investigators
<3> <7> <8> who had proposed the "Probit Method" for biomechanical analyses, see
chapter 10 in reference <10>. That method does take account to censored data.
However, the data are collected into groups, thereby loosing some precision.
There must also be a statistically sufficient number of data and groups. Also,

s At least one possible experimental artefact might ba a TL-2 damage at 0 km/h.
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the symmetric Normal distribution is often assumed without possibilities to
search for a shape parameter. Lowne <8> has analyzed the data in <9> and for the
series here he has found the distribution plottad with dots in Figure 5. It comes
closer to our Weibull distributions up to 25 km/h. Then, due to its inherent sym-
metry it has to increase more rapidly towards the hundred per cent level.

The Likelihood has tha following values for the di fferent distribution models.

Fitting method Distribution In(L) - e
Max Likelihood Weibull §=5.99 =-12.14 0.676
Max Likelihood Weibull ;=0 -12.22 0.674%
Probit Normal =-12.3% 0.672
Overlap Range Normal -14.42 0.628

For the two latter distributions the values for ln(L) have been calculated from
the Normal distributions plotted in <8> and <9>. One can see that our method,
4hich has taken maximum account of the recorded numerical information gives the
highest likelihood. Therefore we believe the Weibull model to be a good represen-
tation of the test series.

The rightmost column in the table shows a quantity that intuitively can be used to
judge how well the model interpretes the data. It will approach unity for a per-
fect fit. It remains to analyze whether the quantity can be developed into a use-
ful indicator for the quality of models and data sets.

mma ] usions

de have shown how the Maximum Likelihood method can be used for the fitting of a
deibull cumulative risk function to censored biomechanical data. We have found
that the method is easy to handle with the aid of available computer programmes.
de believe that the three parameter Waibull distribution provides a result that
gives a better representation of censored data than earlier methods used in bijom=
echanics. Several of a selection of data sets have shown a marked right skewnass,
ahich speaks against the usual application of the Normal distribution.

Reasons for unexpected behaviour of data may be a physical mechanism, the
selection of test subjects, the experimental scheme, or the analysis model. We
have therefore formulated some tentative questions and comments concerning the
behaviour and meaning of biomechanical data. The questions should be possible to
analyze when the method is developed more and applied to more bimechanical data
sets. We encourage other interested researchers to analyze their data with this
method and see which conclusions that are possible to draw. The successful appli-
cation of statistical models will come when there is a close cooperation between
the experimentalist and the statistician. This would benefit injury research as
wall as the development of proper protection measures.

6. Appendix on the Weibull Distribution

The Weibull cumulative frequency distribution with one variable and three parama-
ters is defined as:
(=2
W(z;K) = WizsaPry) = 1-€ X
where

z is the independent variable, defined from y to infinity
o is the scale parameter, aluays greater than zero

B is the shape parameter, always greater than zero

y is the location parameter

The three parameters permit a wide flexibility when modeling distributions for
various purposes as shown in Figure 6 on page 11
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Figure 6. Various forms of the Weibull distribution

The Weibull distribution has found wide use in reliability engineering <6>, where
failures or other significant events occurring in technical systems and compo-
nents are studied. The variable z then denotes a suitable accumulating load vari-
able like: age, distance traveled, number of oparating cycles, time to next call
in a telephone switchboard, time to performe a maintenance task, etc.

The parameter B is of special interest, because it has been possibla to associate
it with different types of physical failure mechanisms. In reliability engineer-
ing the following age related failure types have been identified:

p <1 Decreasing hazard intensity, inherent physical deficiency and weakness
;:asing to highest risk in early life, sometimes called "infant mortal-
ity™,

P =1 Constant hazard intensity, exponentially random failures. No relation
between risk and accumulated life. Often several independent failure mech-
anisms.

p >1 Increasing hazard intensity, wearout failures at highar loads. Preventivae
measures (inspection and maintenance) can be scheduled before high load
(age) failures occur.

B 1-3 Distribution skewed right.

P 3-4 One dominant wearout mechanism centers an approximately symmatric (Nor-

mal) distribution on average failure age.

B >4 Distribution skewed left.
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