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INTRODUCTION:

The ability of computational models to describe head and neck dynamics depends upon the accuracy
of the mechanical and geometric representation of each of the constituents. While the structure of
the ligamentous cervical spine has been well-studied (Nissan and Gilad, 1984), characterization of
the neck’s muscular geometry, and hence its structural properties, are largely absent. As a result,
many neck models have neglected the effects of the musculature on head-neck dynamics. Cervical
spine studies that do cite muscle geometric data include the works of Weber (1851), Berry (1911),
Eycleshymer and Schoemaker (1911), and Reber (1978). The Berry data, however, contains only
slices from one embalmed cadaver (25 yr. old Aborigines donor) taken every 2 cm from the base
of the skull to C3, and longitudinal sections obtained from a different donor. Eycleshymer and
Schoemaker’s data includes composite artist’s drawings of 50 “Negro” donors presented at
approximately 4/5 scale. Additionally, the authors note that few of the donors appeared average,
and most were obese or severely emaciated. Reber (1978) defined muscle cross-sectional area as
the average of the tendonous origin and insertion of the muscle as shown on a set of “human bones”
from an unknown donor.

Recent efforts have utilized finite element methods to approximate the complex geometry of spinal
structures (Liu, 1986, Saito et al., 1989, Kleinberger, 1993, Dauvilliers et al., 1994, Yoganandan
et al., 1995, Camacho et al., 1997), and provide insight into local stresses and strains. However,
these models have not incorporated the effects of the musculature. A lack of precise volumetric
dimensional data of the cervical musculature has been noted as the primary difficulty in modeling
the human spine precisely (Dietrich et al., 1991). Furthermore, the absence of quantitative data on
muscle behavior has resulted in the need to estimate these properties (Deng and Goldsmith, 1987).
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Unfortunately, analysis of muscle actuated systems has been shown to be profoundly sensitive to
changes in muscle geometry. Hertzog (1992) illustrated that a change of the physiologic cross-
sectional area (PCSA) of one of two synergistic muscles from 27 cm? to 63 cm” produced increases
in muscle force between 134% and 446% depending on the model. Clearly, the lack of data
characterizing skeletal muscle properties and geometry has remained a primary limitation in the
assignment of muscle model constants and the assessment of the effects of cervical musculature on
the cervical spine.

Physiologic cross-sectional area is a common geometric representation of muscles (Lieber, 1992)
and is commonly used in computational models to describe muscle architecture (Li et al., 1997).
Human cadaveric studies have attempted to estimate live human PCSA by the weighing of tissue
(Kambayashi and Richmond, 1997). These studies, however, have not accounted for losses in
muscle volume due to age, peri-mortem atrophy, and post-mortem desiccation. There are also no
known quantitative relationships between PCSA measured in cadaveric specimens and the PCSA
of human subjects. Further, cadaveric studies have been unable to characterize the differences in
the volume geometry that are present between specific segments of the population owing to the poor
quality and limited availability of cadaver tissue. Yet, cross-sectional areas of neck musculature
may vary significantly between distinct anthropometric groups (i.e. 50%ile male, 95%ile male and
5%ile female). :

In contrast, magnetic resonance imaging (MRI) has been used successfully to measure muscle
volumes without the confounding effects of peri-mortem and post-mortem changes. Tuang et al.
(1993) reported PCSA in tenths of cm” from serial MRI sections in lumbar spine imaging studies,
and Reid et al. (1987) characterized lumbar musculature in young athletic subjects using MRI.
Santiguida and McGill (1995) performed a full three-dimensional reconstruction of the psoas muscle
with this technique. MRI, however, is not able to accurately measure fiber length or sarcomere
length and pennation angle can only be estimated using diffusion tensor technology, which is not
readily available. Accordingly, the purpose of this study is to estimate PCSA of distinct
anthropometric groups by the use of both cadaveric dissection and MRI, and provide quantitative
data on cervical spinal musculature suitable for incorporation into structural and finite element
models of cervical dynamics.

MATERIALS AND METHODS:

Three human cadavers (ages 71, 83 and 79 years), embalmed between 24-48 hrs. post-
mortem, were obtained and dissected at the T4-T5 level. Tissue biopsies were obtained prior to
dissection to ensure adequate preservation of the muscle cellular microstructural architecture.
Specimens were mounted in an upright anatomic position by casting the lower thoracic vertebrae
into an aluminum cup with reinforced polyester resin, and mounting the cast in an aluminum frame.
The rostral end of the specimen was then mounted to the space-frame using a halo fixture. The halo
afforded anteroposterior, rostral-caudal, and sagittal plane angular motion to allow mounting of the
specimen with the Frankfort plane horizontal, and T1 at 25 degrees from horizontal. Each of the
cervical muscles originating above T2 that could be adequately dissected was included in this study.
Muscles that inserted below T2 were dissected sharply at T2 and analyzed by assuming that the
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muscle insertion was at T2. Muscles that had multiple attachments or distinct subvolumes were
divided and analyzed separately.

Dissection of the cadaver was carried out by exposing the origin and insertion of each muscle. A
Microscribe 3-D Digitizer (Immersion Corporation, San Jose, CA) with Hyperspace Modeler
software (Mira Imaging, Salt Lake City, UT) was used to acquire the three-dimensional coordinates
of the origin and insertion. A line of action was traced along the length of the muscle and digitized.
Pennation angle, defined as the angle of orientation of the fascicles relative to the line of action of
the muscle was measured with a protractor. Additionally, as many as 25 evenly spaced sites on each
muscle were designated for sarcomere length measurement and their locations digitally recorded.
Each muscle was then dissected and weighed. Sites designated for sarcomere measurement were
isolated by dissection and stored in an EDTA rigor solution. Muscle lengths were calculated by
using the length of a cotton suture placed at the origin and insertion of the muscle. Fiber length was
obtained by first submerging the muscles in a 20% H,SO, solution for four days to disrupt the
connective tissue. Full muscle fibers were then dissected from one to four representative sites
depending on the muscle geometry and average fiber length measured.

Sarcomere lengths were determined using one of two methods. Single fibers were dissected,
mounted on slides using an EDTA solution, and measured using an inverted microscope system with
phase-contrast objective (Olympus Optical Co., Tokyo, Japan) at a magnification of 40X.
Sarcomere lengths were also measured by directing a 10mW helium-neon laser (Uniphase, Manteca,
CA) through isolated muscle fiber bundles containing less than 10 fibers. The distance to the first
diffraction band was measured and transformed to sarcomere length using a nonlinear scale (Fleeter
et al., 1985).

Following removal of all muscles from the specimen, the vertebral column was defatted and cleaned
of remaining tissue, and skeletal landmarks were digitized. Each vertebral body (C1-T2) was
digitized along its midsagittal superior and inferior borders in addition to the line characterizing the
superior and inferior edges of the transverse and spinous processes. The Frankfort plane was also
digitized, and the distance between the glabella and opisthocranion measured using calipers.

To obtain muscle volume geometry, three human subjects, a 95%ile male, 50%ile male, and 5%ile
female were studied using MRI. Scans were performed on a 2.0 T GE Signa magnet using a 3D-
gradient echo technique and a TR:TE ratio of 35:9. Two sets of scans with 256 x 256 voxels in the
horizontal plane were obtained for each subject. The first scan had a horizontal plane field-of-view
of 20 cm x 20 cm that enclosed the complete neck but truncated the trapezius muscular insertion.
The second scan had a horizontal plane field-of-view of 40 cm x 40 cm that included the trapezius
insertion. Each scan included the skull base superior to the most rostral muscular origin through to
the T4 in 2 mm slices.

Images were downloaded to an IBM PC (Dell Computers, Austin, Texas) and the individual muscle
borders digitized using ImageTool (University of Texas Health Science Center, San Antonio, TX).
A C++ program was written to calculate the area of the digitized contours on each slice. The volume
of each muscle was then calculated by multiplying each corresponding contour area by the slice
thickness, and summing all of the layers comprising a given muscle. Individual muscles, which
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could not be isolated by MRI, were grouped and digitized together. They were assigned individual
volumes by multiplying the group volume by the mass ratios obtained from cadaver dissection of
the same groups.

RESULTS:

Twenty-four unique muscle groups could be dissected and measured from three cadavers. Cervical
muscles that were not dissected consisted primarily of muscles located between adjacent vertebrae.
These include the rotatores cervicis longus, rotatores cervicis brevis, multifidous, longus colli, rectus
capitis anterior, rectus capitis lateralis, and interspinalis cervicis. Muscles that were dissected are
summarized in Table 1 with the numbers of specimens collected to date in parentheses. Mean fiber
length was 70.1 + 12.1% of the total muscle-tendon length, with iliocostalis cervicis, longissimus
cervicis and longus capitis having particularly large tendonous regions. Additionally, each of the
muscle groups studied, excluding the trapezius, which has a complex architecture, were found to
be nearly fusiform with pennation angles of less than two degrees. Because of its complex
architecture, the trapezius muscle was divided into two partitions. Fibers running horizontally from
a spinal origin to the scapular insertion were assigned to one partition, while fibers originating from
the base of the skull were assigned to a second partition. Average sarcomere length was 2.61 +
0.271 pm.

Table 1: Cadaver Muscles Dissected

Iliocostalis (2)

Inferior oblique capitis (5)
Superior oblique capitis (3)
Levator scapulae (5)
Longissimus capitis (3)
Longissimus cervicis (3)
Longus capitis (4)
Posterior rectus capitis major (5)

Posterior rectus capitis minor (2)
Rhomboideus major (2)
Rhomboideus minor (3)

Anterior scalene (6)
Middle scalene (5)
Posterior scalene (5)
Splenius capitis (6)
Splenius cervicis (4)

Semispinalis capitis (5)
Semispinalis cervicis (6)
Sternocleidomastoid (4)

Omohyoid (1)
Sternohyoid (1)
Sternothyroid (1)
Thyrohyoid (1)

Using the MRI scanning technique, muscle had a high signal intensity, while the interposed fascia
had a low signal intensity (Figure 1). As a result of this contrast, a total of 21 muscle groups could
be identified on MRI including all of the dissected muscle groups. Muscles that could not be
individually partitioned on MRI included splenius capitis/cervicis, longissimus capitis/cervicis,
longus capitis/anterior scalene, middle scalene/posterior scalene and the hyoid group (sternohyoid,
sternothyroid, omohyoid, thyrohyoid). To date, a total of eight scans have been completed.

Human subject volumes derived from an MRI of a 50%ile male were found to be 66 + 0.47%
greater than the average volumes measured from the three cadavers. Additionally, differences
between anthropometric groups were also large. Specifically, muscle volumes for a 95%ile male
were 62 + 45% greater than those of the 50%ile male, and a 5%ile female was 83 + 32% smaller
than the 50%ile male.

Interestingly, the hyoid muscle group, often neglected in anatomic and biomechanical studies, was
found to have the potential to act as a significant neck flexor. Data from a 50%ile male showed that
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the hyoids possess a volume of approximately 23 cm?® or 27% of the combined volume (84 cm?) of
the other known neck flexors (sternocleidomastoid, longus capitis, longus colli, anterior scalene).
The hyoids, which insert on the sternum and clavicle and originate on the hyoid bone, also possess
a larger moment arm (~ 4cm) when compared to the neck flexors located adjacent to the vertebral
column whose moment arms are less than 1 cm.

Figure 1: A magnetic resonance image of a 20x20 cm field of view showing
high signal intensity muscle bounded by low signal intensity fascia
which allowed for easy identification of muscle boundaries.

DISCUSSION:

The lack of data characterizing cervical musculature geometry has been a primary limitation in the
ability of computational models to describe head-neck dynamics. Existing data have either been
qualitative or have relied on cadaveric measurements to estimate muscle PCSA. Efforts to estimate
PCSA by the weighing of cadaveric tissue cannot account for losses in muscle volume due to age,
peri-mortem atrophy and post-mortem desiccation. The data presented here show that these effects
cause errors in PCSA which are both large and highly variable. Additionally, cadaveric study is
unable to determine the changes in volume geometry that occur between distinct anthropometric
groups within the population owing to the poor quality and limited availability of cadaver tissue.
These preliminary results indicate that these volumetric changes may be as large as 400% when
comparing a 5™ percentile female to a 95" percentile male. In the same light, sarcomere length data,
which influences the isometric tetanic stress generated in a muscle (Lieber, 1992) has been largely
unavailable in the literature. These preliminary results show a range of sarcomere lengths for 2.3
to 3.3 pm which is in agreement with the results recently reported by Kambayashi and Richmond
(1997).
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It has long been recognized that head flexor muscles are weaker than head extensor muscles (Mertz
and Patrick, 1967, 1971). That said, few muscle groups have been identified which have both
adequate mass and moment arms to flex the entire cervical spine. Indeed, recent muscle
optimization studies have failed to agree with measured quasi-static moment (Lietal., 1997). Our
preliminary data suggest that the historically neglected hyoid muscles may be the basis for this
discrepancy, as they appear to have both the mass and moment arm necessary to serve as neck
flexors. Further work to generate meaningful statistical populations and to apply these data to a
comprehensive neck model are required to better study this hypothesis.

CONCLUSIONS:

This preliminary report demonstrates that MRI has adequate resolution to identify most of the
cervical muscle groups and to provide quantitative muscle volume data from specific anthropometric
groups of the population. Using MRI, the average error in PCSA determined from cadaver
dissection was found to be 66% for the 5™ percentile female. Further, variations in muscle volume
between the 50" male and the 95" male and 5" female were found to be +62% and -83%,
respectively. Based on this geometric study alone, the hyoid muscle group appears to have the
potential to act as a significant neck flexor.
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DISCUSSION

PAPER: Measurement of Human Neck Muscle Volume Geometry, and Physiologic
Cross Sectional Area in 5™, 50", and 95™ Percentile Subjects Using
Cadaveric Dissection and MRI

PRESENTER: Kurt Knaub, Duke University

QUESTION: Guy Nusholtz, Chrysler Corporation

Why do you think there was a difference between the volume in the MRI and the cadaver
subjects?

ANSWER: Well, we’ve done roughly three or four cadaver dissections now, and most of them
were elderly. Many of them spent months in the hospital beforehand and the muscles were
atrophied. The mean age was eighty, and you can’t really sit down and do a full dissection in a
single day and accurately record the properties. A lot of times, just desiccation of the muscles,
even though we tried to keep them as wet as possible especially for weighing. You are just pretty
much unable to do it. So, I think for the most part, those are the reasons why the muscle volumes
go down.

Q: Alright, thank you.

Q: Michael Kleinberger, NHTSA

I’d like to follow up on that a little bit. Are you stating here that the differences you see
are not necessarily part of the postmortem or embalming process, but are due to the subjects
being elderly and hospital bound rather than normal, young, healthy subjects?

A: Yes. I'm not sure that the embalming process or post mortem has a significant effect on it. I
think the only real difference you’re seeing is in desiccation. Muscles, even if you re-wet them,
have significantly less volume. So, yes, I would say prior to death is where you are losing most of
the volume. We are also unable to specifically target populations which have healthy muscles, and
exercise regularly.

Q: It might be interesting to document this if you can get a fresh cadaver specimen and then do
pre and post embalming measurements, or over some time period. That might be interesting.

Q: (From the floor)

Can I make a comment there? There is a big difference with somebody that is alive
because you have tissue profusion, which is not present in the cadavers and that can make a large
difference.

A: Right, the blood in the muscle makes a big difference.
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Q: Dave Meany, University of Pennsylvania

Just a question I guess related to that. It seems with measuring the microstructure; you at
least have some sense down the road of using it that some point, whether it is looking at more
subtle types of injuries, for example, to the muscle group. My question is when you see these
differences in cadaveric versus MR at the more macro level, that is, basically volume geometry
changes, how do you think it is going to scale down to the micro level. Do you think you could
make a transition? It is more just asking for thoughts. There is no right answer.

A: I’'m not sure. As far as scaling from macro to micro, I’m really not sure.

Q: Dr. Myers

It is an interesting question. It will be fun once we have more of this data to be able to ask
questions like what are the exposures of the muscles once we have reasonable representations
under the kinds of kinematics that we know we can see. One comment to an earlier question was
the influence of embalming on muscle volume. Agents like formalin, when you are doing
histologic preparations, produce distortions of about 1%, so the act of embalming is not causing
the volume error. The errors are desiccation and premortem changes, so it is not actually
embalming that is a problem.

Q: OK. Thank you, Kirk.
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