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ABSTRACT  

Statistical methods such as survival analysis 
(parametric and non-parametric) and logistic 
regression, along with other non-parametric methods 
such as Consistent Threshold Estimate and Certainty  
method are used for generating injury risk curves 
from biomechanical data. Recently, much attention 
has been drawn to the question of which statistical 
methodology is more appropriate in the construction 
of risk curves for biomechanical datasets. Most of the 
papers and reports focus on existing biomechanical 
datasets for which they generate various risk curves 
using parametric and non-parametric methods and 
then suggest the use of one method over another 
based on some sort of criteria. The purpose of this 
paper is to look at the same statistical methods, but 
from the “inverse perspective”, e.g. evaluate different 
statistical methods using non-correlated, randomly 
generated data and to see if any of the widely used 
methods would yield a “good” risk curve when they 
are supposed to yield a “bad” risk curve. The 
“goodness” of a risk curve was evaluated based on 
95% confidence intervals, the shape of the curve, and 
“goodness of fit” statistics. If the risk curve had a 
well pronounced S-shape, narrow confidence 
intervals and good “goodness of fit” statistics, then 
the method was concluded to be inappropriate for 
non-correlated datasets as it was expected to yield 
poor S-shape, wide confidence intervals and poor 
“goodness of fit” statistics.  A well-correlated, 
randomly generated dataset was also evaluated using 
the various statistical methods.  It was observed that 
logistic regression was able to clearly identify both 
the non-correlated and well-correlated datasets but 
suffered because of the underlying distribution that 
sometimes resulted in non-zero injury probability at 
zero stimulus level.  Survival analysis with different 
types of censoring and underlying distributions was 
closely studied. Survival Analysis with a Weibull/ 
Log-Logistic/ Log-Normal underlying distribution 
and left- right censored data was not only able to 
clearly identify both non-correlated and well-
correlated datasets, but also gave zero injury 
probability at zero stimulus level. This paper presents 
a new perspective of judging the applicability of the 

various statistical methods and recommends the 
statistical method, censoring technique, and the 
distributions that may be used for generating injury 
risk curves from biomechanical datasets. 
 
INTRODUCTION 
 
Injury risk curves are developed by statistically 
analyzing experimental data (human and/or animal 
data) to find an injury criterion and then developing a 
relationship between this criterion and the type of 
injury (Kuppa et al [1]). In essence, injury risk curves 
define the probability of injury to a certain body 
region as a function of a predictor variable like force, 
deflection etc. Injury risk curves are used to establish 
Injury Assessment Reference Values (IARV) 
(Eppinger et al [2], Mertz et al [3]) that are used for 
assessing occupant injuries in crash tests. Depending 
on the IARV’s, a car can get an acceptable, good, or 
poor rating.  Thus the importance of correctly 
generating the injury risk curves cannot be 
overstated. Various statistical methods such as 
survival analysis (parametric and non-parametric) 
and logistic regression, along with other non-
parametric methods such as Consistent Threshold 
Estimate and Certainty method are used for 
generating injury risk curves from biomechanical 
data (Kuppa et al [1], Eppinger et al [2], Mertz et al 
[4], Petitjean et al [5], , McKay et al [6], Yoganandan 
et al [7], Kent et al [8], Banglmaier et al [9], 
Banglmaier et al [10], Nusholtz et al [11], Domenico 
[12], Wang et al [13], Domenico et al [14]). Much of 
attention has been drawn recently to the question of 
which statistical methodology is more appropriate in 
the construction of risk curves for biomechanical 
datasets (Petitjean et al [5], Kent et al [8], Nakahira et 
al [15]). Some of the papers generate various risk 
curves using parametric and non-parametric methods 
and then suggest the use of one method over another 
based on some criteria (e.g. McKay et al [6], Kent et 
al [8], Banglmaier et al [9], Nakahira et al [15], 
Domenico [12], and Wang et al [13]). 

The method used for risk curve generation 
should be properly evaluated. For example McKay et 
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al [6] obtained uncensored data from their 
experiments using acoustic sensors and generated a 
tibia axial force injury risk curve using survival 
analysis with uncensored/right censored technique 
assuming logistic distribution. A “good” risk curve 
was generated using survival analysis even when 
most of the injury points were to the left of the non-
injury points (McKay et al [6], Figure 14, Page 243). 
Also their risk curve had non-zero injury probability 
at zero tibia axial force. Since McKay et al [6] 
assumed logistic distribution, they obtained non-zero 
injury probability at zero stimulus. For datasets such 
as McKay’s, other variables and confounding factors 
should be considered. Such datasets indicate that 
more testing needs to be done to add more points to 
the dataset before generating the risk curve. Instead 
McKay et al [6] have generated a “good” risk curve 
using uncensored survival analysis. Also Kent at el 
[8] studied the different data censoring schemes and 
distributions for injury risk curve generation. They 
concluded that uncensored/right censored survival 
analysis is an appropriate method for generating risk 
curves when logistic regression and left/right 
censored survival analysis are not able to generate a 
relevant risk curve.  This paper evaluates uncensored 
survival analysis with various distributions, in 
addition to other statistical methods, to assess the 
usefulness of this technique. 
Wang et al [13] concludes that interval censored 
injury data (when an observation is an injury, it is 
treated as interval censored from zero to the 
observed stimulus value instead of left censored 
where injury could occur anywhere from –∞  to 
observed stimulus value) improves the risk curve 
generation. In their study, one of the methods used 
was survival analysis with normal distribution and 
interval censoring as mentioned above. This paper 
also evaluates interval censored survival analysis 
with normal distribution to assess its effectiveness for 
risk curve generation. 
This paper evaluates statistical methods based on an 
“inverse perspective” where non-correlated datasets 
are used for evaluation purposes. Based on the results 
of non-correlated datasets, further study is carried out 
on well-correlated dataset and appropriate statistical 
methods are identified that may be used to generate 
injury risk curves. 

METHODOLOGY 
Prior to describing the methodology, a few 
definitions used in this paper are given below: 

a. Correlation: Relationship between 
independent (X) and dependent variable (Y). 
Correlation is computed using R2, Pearson 
correlation coefficient, Point Biserial 

correlation coefficient and the p-value. A p-
value of > 0.05 was defined to have no 
statistically significant correlation. 

b. Non-correlated dataset: The independent and 
dependent variables have no or very poor 
correlation as determined by R2, Pearson 
correlation coefficient, Point Biserial 
correlation coefficient and the p-value 

c. Well-correlated dataset: The independent 
and dependent variables have strong 
correlation as determined by R2 , Pearson 
correlation coefficient, Point Biserial 
correlation coefficient and the p-value 

d. Point (0, 0): indicates zero injury probability 
at zero stimulus level. 

e. “Goodness of Fit” for Logistic Regression*: 
is tested using Receiver Operating 
Characteristic (ROC) curve, Hosmer-
Lemeshow statistic [16], and “Max 
Loglikelihood”. Greater area under the ROC 
curve, lower value of Hosmer-Lemeshow 
statistic and lower value of “Max 
Loglikelihood” indicate better fit to data. A 
ROC plot shows the false positive rate (1-
specificity) on the X axis and the true 
positive rate (sensitivity or 1 - the false 
negative rate) on the Y axis. The accuracy of 
a test is measured by the area under the 
ROC curve. The closer the curve follows the 
left-hand border and then the top border of 
the ROC space, the more accurate the test; 
the true positive rate is high and the false 
positive rate is low. Statistically, more area 
under the curve means that it is identifying 
more true positives while minimizing the 
number/percent of false positives.  

f. “Goodness of Fit” for Survival Analysis*: is 
computed using “Max Loglikelihood”. 
Lower value of “Max Loglikelihood” 
indicates better fit. 
* The “goodness of fit” statistics described 
above can only be compared for different 
models on the same dataset and not across 
datasets. 

g. “Good” risk curve: Good S-shape curve, 
narrow 95% confidence intervals, and good 
“goodness of fit” statistics. 

h.  “Bad” risk curve: Poor S-shape curve or 
near flat/flat curve, wide 95% confidence 
intervals, and poor “goodness of fit” 
statistics. 
*Shape of the risk curve is purely a 
qualitative factor. 

i. Left censored: An injury point (x, 1) is 
defined as left censored when the injury 
threshold lies in the interval [-∞ , x]. 



  
Hasija 3   

j. Right censored: A non-injury point (x, 0) is 
defined as right censored when the injury 
threshold lies in the interval [x, ∞+ ]. 

k. Interval censored: An injury point (x, 1) is 
defined as interval censored when the injury 
threshold lies in the interval [k, x], where k 
is the point when subject is uninjured and x 
is a point when subject is injured. 

l. Uncensored: An injury point (x, 1) is 
defined as uncensored when the injury 
threshold is equal to x. 

The methodology for evaluating various statistical 
methods is shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Methodology flow chart 
Both the non-correlated datasets and the well-
correlated dataset are considered for the purpose of 
evaluation. For the non-correlated datasets, various 
statistical methods mentioned in Table 1 are used to 
generate risk curves. In addition to the four 
distributions i.e. Weibull, Normal, Logistic and Log-
Normal commonly used for biomechanics risk 
function (Kent et al [8], Banglmaier et al [9], 
Banglmaier et al [10], Wang et al [13]), other 
distributions were also studied (Table 1). It is also 
observed that risk curves are generated using survival 
analysis with Normal distribution where injury data is 
interval censored [0, failure] (Banglmaier et al [9], 
Banglmaier et al [10], and Wang et al [13]). This 
special case of interval censoring was also studied. 

Table 1. 
Statistical methods used for Non-correlated 

datasets 
Method Distribution Injury Non-

Injury 
Survival 
Analysis 

Non-
parametric 

Uncensored Right 
censored 

Survival 
Analysis 

Normal Uncensored Right 
censored 

Survival 
Analysis 

Normal Left 
censored 

Right 
censored 

Survival 
Analysis 

  Weibull Left 
censored 

Right 
censored 

Survival 
Analysis 

Weibull Uncensored Right 
censored 

Survival 
Analysis 

Log-Logistic Uncensored Right 
censored 

Survival 
Analysis 

Log-Logistic Left 
censored 

Right 
censored 

Survival 
Analysis 

Log-Normal   Left 
censored 

Right 
censored 

Survival 
Analysis 

Log-Normal   Uncensored Right 
censored 

Survival 
Analysis 

Logistic Left 
censored 

Right 
censored 

Survival 
Analysis 

Logistic Uncensored Right 
censored 

Survival 
Analysis 

Extreme 
Value 

Left 
censored 

Right 
censored 

Survival 
Analysis 

Extreme 
Value 

Uncensored Right 
censored 

Survival 
Analysis 

 
Normal 

Interval 
Censored   

Right 
censored 

Other Methods 
Logistic Regression 

Consistent Threshold Estimate Method 
Certainty Method 

The various distributions mentioned in Table1 are 
shown in Figures 2-6.  

 

      (1). 
Figure 2. Normal Distribution 
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         (2). 
Figure 3. Logistic Distribution 
 

 

       (3). 
Figure 4: Log-Normal Distribution 
 

 

(4). 
Figure 5: Weibull Distribution 

 

      (5). 
Figure 6: Extreme Value Distribution 
 
First, the statistical methods as listed in Table 1 are 
used for generating injury risk curves for non-
correlated datasets.  For non-correlated datasets, the 
shape of the risk curve, the 95% confidence intervals 
and “goodness of fit” statistics are checked for each 
statistical method. If the risk curve looks “good”, the 
corresponding statistical method is rejected as it 
should have generated a “bad” risk curve for the non-
correlated dataset. Second, analysis is carried out to 
test the applicability of survival analysis with 
uncensored data for risk curve generation. It is our 
understanding that survival analysis with uncensored 
data has an effect of adding extra points to the 
analysis. To show this, two examples are presented 
(1) how uncensored analysis works by adding extra 
points (example 1) and (2) how as few as two injury 
data points and no non-injury points are enough to 
generate a good S-shape risk curve using uncensored 
survival analysis (example 2).  

Finally, the statistical methods that pass the 
non-correlated dataset are used for generating injury 
risk curves for the well-correlated dataset. For the 
well-correlated dataset, the shape of the risk curves, 
95% confidence intervals, “goodness of fit” statistics 
and the injury probability at zero stimulus level are 
considered. The statistical methods that satisfy the 
conditions of a “good” risk curve and point (0, 0) are 
accepted and identified as appropriate methods that 
may be used for generating injury risk curves from 
biomechanical data. 
 
Datasets  
Three datasets were used for evaluation purposes:  
Dataset 1 and Dataset 2 (Non-Correlated) 
The first dataset was obtained from the cadaver tests 
conducted by University of Virginia, where the 
number of rib fractures was used as a dependent 
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variable and  the body mass index (BMI) given for 
each tested cadaver was used as an independent 
variable. Therefore our first dataset (Dataset 1) was 
number of rib fractures vs. BMI. The linear 
regression line given on Figure 7 shows the poor 
correlation between the two selected variables. 

 
Figure 7.  Dataset 1 (BMI vs. # of Rib Fx’s) 

Since Dataset 1 had the problem of limited range for 
the independent variable (BMI), a random 
independent variable was generated with the values 
bounded between 0 and 50 as shown in Figure 8 to 
obtain Dataset 2. Again the regression line on Figure 
8 shows the poor correlation between the dependent 
and independent variable. 

 
Figure 8.  Dataset 2 (Random Variable vs. # of Rib 
Fx’s) 
 
For each dataset (Dataset 1 and Dataset 2) the 
following injury scenario was considered: 

• Injury =1 when the number of rib fractures 
were greater than six (Fx >6). 

For both Dataset 1 and Dataset 2, the Pearson 
correlation coefficient, Point Biserial correlation 
coefficient and p-value (Table 2) were calculated 
between the independent variable (X) and the 
dependent variable (Y).  

        

      Table 2. 
Correlation Coefficients and p-value for Dataset 1 

and Dataset 2 
 

Dataset 
 

N 
Pearson 

Corr. 
Coefficient 

Point 
Biserial 

Coefficient 

 
p-value 

1 83 0.147 0.146 0.185 
2 83 0.0084 0.0084 0.94 

Both Dataset 1 and Dataset 2 have a very low 
Pearson correlation coefficient and Point Biserial 
Correlation coefficients indicating very weak or no 
correlation between the independent variable and 
binary outcome. Dataset 1 and Dataset 2 also show p-
values > 0.05 indicating that the correlation is not 
statistically significant. 

Dataset 3 (Well-Correlated) 
For the well–correlated dataset, the independent 
variable (X) was randomly generated between zero 
and sixty and dependent variable (Y) was calculated 
by multiplying the independent variable by a random 
number. The regression line on Figure 9 shows that 
Dataset3 has strong correlation between the 
dependent and independent variable as compared to 
Dataset1 and Dataset 2.  
 

 
Figure 9. Dataset 3   
For the purpose of injury analysis, the dependent 
variable was assumed as injured (equal to 1) when its 
value was greater than six (equivalent to the other 
datasets with Fx>6).  For Dataset 3, the Pearson 
correlation coefficient, Point Biserial correlation 
coefficient and p-value (Table 3) were also 
calculated.  

Table 3. 
Correlation Coefficients and p-value for Dataset3 

 
Dataset 

 
N 

Pearson 
Corr. 

Coefficient 

Point 
Biserial 

Coefficient 

 
p-value 

3 50 0.597 0.597 <0.0001 
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Dataset 3 shows relatively high Pearson correlation 
coefficient and Point Biserial correlation coefficient 
as compared to Dataset 1 and Dataset2 indicating 
moderate to reasonably strong correlation between 
the independent variable and binary outcome. Also, 
Dataset 3 shows p-value of < 0.0001 indicating that 
the correlation is statistically significant. 
Break-Down Data for Example 1 
For evaluating example 1, Dataset 3 was used to 
generate Break-Down data as follows: 

• Injury data is uncensored i.e. it is exactly 
known at what stimulus the sample breaks. 
So, for each injury point, ten extra injury 
points are added to the right of the 
corresponding data point and ten extra non-
injury points are added to the left of the 
corresponding data point as shown in Table 
4 (original point in red).  

      Table 4. 
Break-Down data 

1 60 
1 57.4 
1 54.8 
1 52.2 
1 49.6 
1 47 
1 44.4 
1 41.8 
1 39.2 
1 36.6 
1 34 
0 30.6 
0 27.2 
0 23.8 
0 20.4 
0 17 
0 13.6 
0 10.2 
0 6.8 
0 3.4 
0 0 

• For each non-injury point, ten additional 
non-injury points are added to the left of the 
corresponding data point as shown in Table 
5 (original point in red). 

        
        Table 5. 
Break-Down of data 

0 15 

0 13.5 
0 12 
0 10.5 
0 9 
0 7.5 
0 6 
0 4.5 
0 3 
0 1.5 
0 0 

 
A program was written to add extra points to the 
dataset. The interval at which additional injury points 
were added is given by Equation 6.  
 
                              

10
60 stimulus−                             (6). 

where 60 represents the maximum stimulus.  
 
The interval at which additional non-injury points 
were added is given by Equation 7.  
                                

10
0−stimulus                             (7). 

where 0 represents the minimum stimulus. 
 
Break-Down of Dataset 3 in this manner led to a total 
of 900 data points from 50 points.Statistical analysis 
was conducted on Dataset 3 (original data) and 
Break-Down data as shown in Table 6. 

Table 6. 
Statistical Methods used for Break-Down Data 

 
                           Methods 

Survival analysis on original data with normal 
distribution + uncensored injury points and right 
censored non-injury points. 

Logistic regression on Original data 

Logistic regression on Break-Down data.  

 
Dataset for Example 2 

For evaluating example 2, a hypothetical dataset 
(Table 7) was generated where three different 
laboratories test a sample and come up with their set 
of injury points  

Table 7. 
Injury points 

Lab Injury Stimulus Value 
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 Lab1- Set1 1 40 
  1 45 
      

 Lab2-Set 2 1 35 
  1 40 
      

 Lab3-Set 3 1 45 
  1 50 

 
Uncensored survival analysis is studied with this 
dataset (Table 7) 
 
SAS [17] was used to run the statistical analysis. The 
PROC RELIABILITY procedure in SAS was used to 
run survival analysis with different data censoring 
schemes and with various distributions as listed in 
Table 1. PROC LOGISTIC was used to run logistic 
regression and generate ROC curves. Non-parametric 
Survival analysis was carried out in SAS using 
PROC LIFETEST Apart from the statistical methods 
mentioned in Table 1; other non-parametric methods 
i.e. Certainty method and Consistent Threshold 
Estimate method were also used for risk curve 
generation. These methods were programmed in 
Visual Basic and interfaced with MS Excel. 
 
RESULTS 
 
Dataset1: This dataset was evaluated using all 
statistical methods (Table 1) and showed a similar 
trend as Dataset 2. For more clarity, all results are 
presented for Dataset 2 but only the injury risk curves 
generated using Certainty and CTE methods are 
shown for Dataset 1. Figure 10 and Figure 11 show 
the injury risk curves obtained using the Certainty 
and Consistent Threshold Estimate (CTE) methods 
respectively.  
 

 
Figure 10. Certainty method 
 

 
Figure 11. CTE method 
 
Dataset 2: Figures 12-27 show the injury risk curves 
for dataset 2 using statistical methods mentioned in 
Table1. 

 
Figure 12. Certainty method 
 

 
Figure 13. CTE method 
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Figure 14. Logistic regression and non-parametric 
survival analysis 
 

 
Figure 15. Logistic regression and survival 
analysis (Left/Right censoring +Normal 
Distribution) 
 

 
Figure 16. Logistic regression and survival 
analysis (Uncensored/Right Censored +Normal 
Distribution) 
 
 

 
Figure 17. Logistic regression and survival 
analysis (Left/Right censoring +Log-Normal 
Distribution) 
 

 
Figure 18. Logistic regression and survival 
analysis (Uncensored/Right Censored + Log-
Normal Distribution) 
 

 
Figure 19. Logistic regression and survival 
analysis (Left/Right Censoring +Weibull 
Distribution) 
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Figure 20. Logistic regression and survival 
analysis (Uncensored/Right Censored +Weibull 
Distribution) 
 

 
Figure 21. Logistic regression and survival 
analysis (Left/Right Censoring +Logistic 
Distribution) 
 

 
Figure 22. Logistic regression and survival 
analysis (Uncensored/Right Censored +Logistic 
Distribution) 
 

 
Figure 23. Logistic regression and survival 
analysis (Left/Right Censoring +Log-Logistic 
Distribution) 
 

 
Figure 24. Logistic regression and survival 
analysis (Uncensored/Right Censored + Log-
Logistic Distribution) 
 

 
Figure 25. Logistic regression and survival 
analysis (Left/Right Censoring +Extreme Value 
Distribution) 
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Figure 26. Logistic regression and survival 
analysis (Uncensored/Right Censored + Extreme 
Value Distribution) 
 

 
Figure 27. Logistic regression and Survival 
analysis (Interval Censored /Right Censored + 
Normal distribution) 
 
Figure 28, Table 8 and Table 9 show the fit statistics 
for logistic regression and survival analysis 
corresponding to Figures 14-27. 
 

 
Figure 28. ROC Curve for Dataset 2. 
 

Table 8. 
Fit Statistics for Dataset 2 (Logistic Regression) 

 
 
Logistic 
Regression 
(Figures 14-27) 

Hosmer-
Lemeshow 

Goodness-of-Fit 

Max 
Loglikelihood 

7.27 -56.797 

 
Table 9. 

Fit Statistics for Dataset 2 (Survival Analysis) 
 

Survival Analysis Max 
Loglikelihood 

Figure 15 Normal +LC/RC -56.79 
Figure 16 Normal + UC/RC -203.76 
Figure 17 Log-Normal +LC/RC -56.78 
Figure 18 Log-Normal +UC/RC -73.38 
Figure 19 Weibull +LC/RC -56.78 
Figure 20 Weibull +UC/RC -69.25 
Figure 21 Logistic +LC/RC -56.79 
Figure 22 Logistic +UC/RC -204.57 
Figure 23 Log-logistic +LC/RC -56.78 
Figure 24 Log-logistic +UC/RC -70.5 
Figure 25  Extreme Value +LC/RC -56.79 
Figure 26  Extreme Value +UC/RC -212.12 
Figure 27  Normal +IC/RC -84.85 
 
Based on the results of non-correlated datasets, the 
uncensored/right censoring scheme was eliminated 
from contention for risk curve generation as the 
uncensored analysis generates “good” risk curves 
even for non-correlated data (Figures 16, 18, 20, 22, 
24 and 26). The interval censoring scheme (with 
injury interval defined from [0, failure]) with normal 
distribution also was not considered for further study 
for the same reason (Figure 27).  
Example 1: The results obtained using statistical 
methods (Table 6) on original data (Dataset 3) and 
Break-Down data are shown in Figure 29. It can be 
seen that logistic regression on Break-Down data 
converges to survival analysis on original data i.e. 
analyzing data using survival analysis with 
uncensored injury points and right censored non-
injury points is equivalent to logistic regression with 
additional points manually added. This example 
shows that uncensored analysis has the effect of 
adding more points to the analysis and therefore 
changes the distribution of the original population. 
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Figure 29.  Statistical analysis on Original and 
Break-Down data. 
 
Example 2: As shown in example 1, uncensored 
analysis has the effect of adding extra points to the 
analysis.  Thus uncensored analysis allows for risk 
curve generation based on just two injury points and 
no non-injury points. As a result each laboratory can 
come up with its own risk curve as shown in Figure 
30.  

 
Figure 30. Risk curves using two injury points 

Dataset3: Based on the results of non-correlated 
datasets (Dataset1 & Dataset 2) and the uncensored 
survival analysis examples, Dataset 3 was studied in 
detail using only logistic regression and left / right 
censored survival analysis with various distributions.  
For completeness, Dataset3 was evaluated using 
uncensored survival analysis with Weibull 
distribution only and non-parametric survival 
analysis. The injury risk curves generated for 
Dataset3 are shown in Figures 31-37. 

 
Figure 31.  Logistic regression and survival 
analysis (Left/Right censored + Normal 
Distribution) 
 

 
Figure 32.  Logistic regression and survival 
analysis (Left/Right censored + Log-Normal 
Distribution) 

 
Figure 33.  Logistic regression and survival 
analysis (Left/Right censored + Logistic 
Distribution) 
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Figure 34.  Logistic regression and survival 
analysis (Left/Right censored + Log-Logistic 
Distribution) 
 

 
Figure 35.  Logistic regression and survival 
analysis (Left/Right censored + Weibull 
Distribution) 

 
Figure 36.  Logistic regression and survival 
analysis (Left/Right censored + Extreme Value 
Distribution) 
 

 
Figure 37.  Logistic regression, survival analysis 
(Uncensored/Right censored + Weibull 
Distribution) and non-parametric survival 
analysis. 
 
Figure 38, Table 10 and Table 11 show the fit 
statistics for logistic regression and survival analysis 
corresponding to Figures 31-37. 
 

 
Figure 38. ROC Curve for Dataset 3 

 
Table 10. 

Fit Statistics for Dataset 3 (Logistic Regression) 
 

 
Logistic 
Regression 
(Figures 14-27) 

Hosmer-
Lemeshow 

Goodness-of-Fit 

Max 
Loglikelihood 

3.35 -16.563 

 
Table 11. 

Fit Statistics for Dataset 3 (Survival Analysis) 
 

Survival Analysis Max 
Loglikelihood 

Figure 31 Normal +LC/RC -16.61 
Figure 32 Log-Normal +LC/RC -15.84 
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Figure 33 Logistic +LC/RC -16.56 
Figure 34 Log-logistic +LC/RC -16.01 
Figure 35 Weibull +LC/RC -16.13 
Figure 36  Extreme Value +LC/RC -17.38 
Figure 37 Weibull +UC/RC -27.69 
 
Based on the study, it was found that survival 
analysis with left/right data censoring scheme and 
with Weibull or Log-Normal or Log-Logistic 
distribution satisfied the conditions of a “good” risk 
curve and point (0, 0). The corresponding risk curves 
are plotted and compared with logistic regression risk 
curve (Figure 39). 
 

 
Figure 39.  Logistic regression and survival 
analysis (Left/Right censored + Log-Normal 
Distribution, Left/Right censored + Log-Logistic 
Distribution, Left/Right censored + Weibull 
Distribution) 
 
DISCUSSION 

This study was conducted to analyze various 
statistical methods using non-correlated and well-
correlated datasets. It is observed that certain 
statistical methods generate “good” risk curves even 
when the underlying data is non-correlated as is 
evidenced by the Figures 10 through 27.  

These methods are: 1) Non-parametric 
survival analysis with uncensored injury data and 
censored non-injury data (Figure 14); 2) Parametric 
survival analysis with uncensored injury data and 
right censored non-injury data with any assumed 
underlying distribution (Figures 16, 18, 20, 22, 24 
and 26); 3) Survival analysis with normal distribution 
when injury data is interval censored [0, failure] and 
non-injury data is right censored (Figure 27); and 4) 
Certainty method and Consistent Threshold method 
(Figures 10, 11, 12 and 13).  

Once data is arranged in ascending order, 
CTE method computes probability of injury subject 
to the constraint that the risk of injury at any given 

stimulus is greater than or equal to the risk at the 
preceding stimulus. Thus CTE method cannot 
differentiate between the non-correlated and the well-
correlated datasets and always generates an injury 
risk curve where probability of injury increases over 
the range of the stimulus (Figures 11 and 13). In 
addition, the CTE method, just like any other non-
parametric method depends on the sample that may 
not be representative of a population under 
consideration. 

It is observed that logistic regression along 
with the survival analyses with Normal /Weibull 
/EVD /Logistic /Log- Logistic /Log-Normal 
distributions when injury data is left censored and 
non-injury data is right censored yielded better 
differentiation of the non-correlated data (Figures 15, 
17, 19, 21, 23 and 25).  Kent et al [8] suggests that 
treating the uncensored data as censored data can 
result in an incorrect risk curve and may in fact 
suggest no correlation or inverse correlation between 
injury and a parameter that is actually an accurate 
predictor of injury. However, it is observed from 
Figures 16, 18, 20, 22, 24 and 26 that survival 
analysis with uncensored injury data can generate a 
“good” risk curve even for the non-correlated dataset 
whereas left /right censored survival analysis 
(Figures 15, 17, 19, 21, 23 and 25) is able to capture 
the poor correlation between the independent and 
dependent variable appropriately by generating a 
“bad” risk curve.  The Pearson correlation 
coefficient, Point Biserial correlation coefficient and 
p-value were computed for two datasets that are used 
in Kent et al [8] study. These are Banglmaier dataset 
(Banglmaier et al [18], Banglmaier et al [19]) and 
Klopp dataset (Klopp et al [20]). Banglmaier dataset 
(Kent et al [8]) has a Pearson correlation coefficient 
and Point Biserial correlation coefficient of 0.204 
with a p-value of 0.2324 and Klopp dataset (Kent et 
al [8]) has a Pearson correlation coefficient and Point 
Biserial correlation coefficient of 0.0044 with a p-
value of 0.9758 which indicates poor correlation 
between the independent and dependent variable. 
Thus it is observed that in Kent et al [8] study, 
doubly (left/right) censored survival analysis and 
logistic regression is able to capture the trend (poor 
correlation) properly as compared to uncensored 
survival analysis  that generates a “good” risk curve 
for non-correlated data (Kent et al [8]- Figure 10 and 
Figure 12). Thus, the ability of uncensored analysis 
and the inability of censored analysis to generate a 
“good” risk curve may not necessarily imply that the 
risk curve generated by uncensored analysis is 
correct. All it may mean is that the dataset has poor 
correlation or requires further investigation to find 
any confounding factors or may require additional 
tests to add more data points. Kent et al [8] mentions 
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that it is not necessary to perform non-injury tests 
when using uncensored analysis for risk curve 
generation. In our study, from Example 1 and 
Example 2, it is observed that uncensored analysis 
has an effect of adding extra points to the analysis 
(Figure 29), which helps create a good S-shape risk 
curve with just two injury points and no non-injury 
points (Figure 30). However, these risk curves may 
be misleading as the effect of adding extra points 
changes the underlying population.  

From the study of the well-correlated 
dataset, several observations can be made based on 
Figures 31 – 37 and Figure 39.  

First, uncensored survival analysis gives the 
best fit for the well-correlated dataset (Figure 37 and 
Table 11) but we already observed that survival 
analyses with uncensored injury data generates 
“good” risk curves even for the non-correlated 
dataset (Figures 16, 18, 20, 22, 24 and 26). Without 
this knowledge Figure 37 may be misleading. 

Second, logistic regression and survival 
analysis with normal/logistic distribution when injury 
data is left censored and non-injury data is right 
censored, yield similar results (Figures 31 and 33). 

Third, survival analysis with Extreme value 
distribution (EVD) when injury data is left censored 
and non-injury data is right censored results in a risk 
curve which differs from logistic regression risk 
curve in the 0%-30% probability range after which 
both risk curves are similar (Figure 36). Both the risk 
curves do not pass through point (0, 0).  Finally, 
survival analysis with Weibull/ Log-Normal/ Log-
Logistic distribution when injury data is left censored 
and non-injury data is right censored resulted in risk 
curves very similar to that of logistic regression with 
the exception of the fact that they pass through the 
point (0,0) (Figures 32, 34 and 35). Because of this 
the logistic regression and survival risk curves differ 
in the 0%-18% probability range after which they are 
very similar. Thus the two analyses i.e. survival 
analysis (with left censored injury data and right 
censored non-injury data) and logistic regression 
yield almost similar results for both the non-
correlated and the well-correlated datasets. In 
addition, survival analysis with Weibull/ Lognormal/ 
Log-Logistic distribution offers a physically 
meaningful advantage of passing through point (0, 0). 
Nakahira et al [15] also suggests “zero predicted risk 
for no applied stimulus” as an assumption for 
accuracy of risk curve. Since crash performance is 
evaluated in the lower regions of the risk curve 
(Banglmaier et al [10]), using left/right censored 
survival analysis with either Weibull or Log-normal 
or Log-Logistic distribution for risk curve generation 
may be more suitable than logistic regression. 
However, an alternate approach may be to use a 

combination of logistic regression and survival 
analysis. As compared to survival analysis, logistic 
regression provides additional fit statistics which may 
be useful to determine which covariates or 
combination of covariates best predict the dependent 
variable.  Thus a combination of logistic regression 
analysis to determine the best predictive model 
followed by left/right censored survival analysis 
using Weibull or Log-normal or Log-Logistic 
distribution forcing the risk curve through zero may 
be an alternate approach.   

Weibull, Log-normal and Log-logistic 
distributions offer this meaningful advantage of 
passing through point (0, 0) because these 
distributions range from 0 to +∞  (Figure 4 and 5). 
These distributions show very similar results 
including 95% CI and “goodness of fit” statistics 
(Figure 39 and Table 11) and thus the distribution of 
choice from among them can be based on some sort 
of fit statistics like Max Loglikelihood, Akaike’s 
Information Criterion (AIC) etc. 

It is important to point out that all the 
datasets (Dataset 1, Dataset 2, and Dataset 3) 
evaluated in this paper have a sample size greater 
than or equal to 50.  Since many biomechanical 
studies may have smaller sample size (12-15 data 
points), the observations made in this paper may or 
may not extrapolate to smaller datasets. 

 
CONCLUSION 
1. This study showed that the following statistical 

methods do not yield better differentiation 
between well-correlated and non-correlated 
datasets:  

a. Survival analysis with the data assumed 
to be normally distributed when injury 
data is interval censored, and non-injury 
data is right censored 

b.  Survival Analysis with any distribution 
when injury data is uncensored and 
non-injury data is right censored 

c. Non-parametric survival analysis with 
uncensored injury data and censored 
non-injury data.  

d. Consistent threshold method and 
Certainty method 

2. Logistic regression and survival analysis with 
any distribution when injury data is left censored 
and non-injury data is right censored were able 
to differentiate better between non-correlated and 
well-correlated datasets. 

3. Survival analysis with Weibull or log-logistic or 
log-normal distribution when injury data is left 
censored and non-injury data is right censored 
offers a physically meaningful advantage (in 
comparison with logistic regression) of passing 
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through (0,0) point, i.e. has zero probability of 
injury at zero stimulus. This may be important 
when low probabilities of injuries are intended. 

4. A combination of logistic regression and 
left/right censored survival analysis may be used 
as an alternate approach. 
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