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Abstract – The goal of our research is to design perception
devices dedicated to driving safety improvement such as :
Collision Warning and Avoidance systems, Emergency
braking… This device is supposed to be a piece of new driving
assistance systems aiming at increasing the safety on road.
Many safety systems which are emerging nowadays in our
vehicles use a “distance to obstacle” information obtained
thanks to telemeters such as radars, laser scanners (or lidars),
ultrasounds… At least, this kind of systems achieve a great
precision in locating objects relative to the sensors, but they
are not able to provide their localisation compared to the road
or the lane. This is the reason why some systems are involving
passive sensors like video integrated inside vehicles. A device
founded partially on computer vision allowed to compensate
this lack. But the localisation computed by vision needs to be
analysed in term of precision. This paper attempts to explore
differences in localisation accuracy between systems involving
only one camera (monocular vision) and systems involving two
cameras (stereovision). A complete study of the errors commit
on depth reconstruction is shown.

Keywords: monocular vision, stereovision, active safety,
depth and distance reconstruction, obstacle detection, retro-
projection.

1 Introduction
In this paper, we propose to estimate and compare
accuracies of perception systems based on the use of vision
(monocular and binocular).

Our research has important implications for many domains,
including automotive, aeronautic, robot guidance and
generally speaking, embedded systems. In fact, we try to
show, while most systems require two or more video
cameras for high precision, how can monocular and
binocular vision go to similar results with different
accuracies. The main common goal of these vision methods
is to detect objects and locate them from the camera in
terms of distance, angular position or time to collision.

1.1 The benefits of using a vision system

Vision, whether mono camera or stereo based, is a very
dynamic field with plenty of applications in transport
[Franke 00]. It can provide information on the road
environment, like the lane [Luong et al 94], [Tarel 00] and
roadside [Dickmanns 92], [Chausse et al 00] markings, the
distance between vehicles [Labayrade et al 02b], or
indicators of visibility distances.

Though the provided measures look all right, not much has
been written about their accuracy. Yet systems based on
RADAR or laser scanners have some serious drawbacks as
regards security applications. These are mainly due to the
lack of information on the position of the detected object

relatively to the road and objects recognition (for instance
many on-board RADAR are unable to make a distinction
between a bridge and a car).

A system using a vision sensor in addition to a rangefinder
can help to solve those problems. In this paper we are
going to study the implementation and capabilities of two
standard systems based on mono and stereo vision, which
implies the modeling of the vision sensor. Then knowing
this, we will underscore the reconstruction of the scene in
3D, through a simple method making it possible to
simultaneously define the position of the object and the
possible mistakes on this positioning. Assuming that the
object points detected are static, and the video sensors’
parameters (intrinsic and extrinsic) are well known, we
finally analyze this information on simulated and real data.

1.2 Monocular vision

One of the most important components of any machine
vision system based on a single camera, is the detection
and analysis of image motion. Properly done, image motion
processing can lead to the recovery of “three dimensional”
(3D) information such as structure, depth, and shape from
a sequence of two dimensional images. The ability to
derive such information has attracted substantial interest in
image motion understanding from researchers in fields
ranging to robotics.

A state of the art about monocular and binocular vision is
done in [Alix et al 03]. This paper won’t discuss of the
techniques developed during this time, but on the results
derived using one method based on retro-projection of
image points in 3D. The retro-projection technique is a
mathematical method based on projective geometry and
which allows to “locate” objects in 3D from their projected
points in the image. Often, such a solution utilize some
form of an object/feature matching technique to calculate
the speeds and trajectories of the objects in motion and
perhaps even make predictions about their future motion.

To locate moving objects, several assumptions are usually
made to simplify the process: a maximum velocity of the
object (given some short time interval dt, possible position
points of an object must be inside a circle with radius
vmax/dt centered at the object position in the previous image
frame), bounded acceleration (the rate of change of
velocity must be relatively small), and common object
motion (different points in an object move in the same
way). Of course, these assumptions do not always hold true
for all image sequences: motion due to rotation and motion
of non-rigid objects are both common examples of motion
which do not conform to the above assumptions. When this



is the case, the results obtained by moving object detection
are usually unreliable.

A far more general approach to representing motion in
images is the optic flow field [Beauchemin 95]. Unlike the
image differencing techniques, optic flow fields do not
assume a fixed camera position. Optic flows describe the
velocities of image features at a given instant in time and
an optic flow field attempts to represents the three-
dimensional motion of these features in a two-dimensional
image [Alix et al 03], [Irani 98], [Uchimura 98].

1.3 Binocular vision

3-D structural information is directly derived from
triangulation. For a conventional parallel axis stereo
geometry the world coordinates is supposed to be coincide
with the coordinate axes of the left camera without loss of
generality (see Figure 1).
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Fig. 1. Stereo Coordinate System

Fig.1 shows the imaging geometry of a stereo pair of
cameras. The equivalent pinhole models represent two
cameras with the projection centres CL and CR respectively.
The origin of the world coordinates is CL, and the stereo
baseline is b. For a given 3-D scene point ),,( zyxP the

projection points on the left and right image are PL and PR

respectively.

From the disparity map, the world coordinates of the scene
point ),,( zyxP can be easily obtained as:
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where d is the disparity that is equal to XL-XR, b is the
baseline and f is the focal length.

The detected and successfully matched object points are
not necessarily all related to the object of interesting that
were the pedestrians. The majority of the non-obstacles
related points were on the road surface. The plane
representing the road surface is found by a plane fitting
procedure through all the lowest feature points in the
scene, and therefore all the detected points that are on the
road surface are discarded. Those points are normally
representing the lane markings, shadows, texture...

2 Camera modelling
This part is dedicated to the modelling of the video sensor.
We will define the transformations to go from the
coordinates of some point ‘P’ in the 3D space to the
projected point ‘p’ in the 2D image plane.

2.1 Integrating the vision modules in the vehicle

Fig.1 shows the positioning of cameras in the vehicle as
well as the different coordinate systems that we have used.
In the following, we will need to use four different
coordinate systems (CS). The first one is the absolute Ra

CS, linked with the road. The second is linked with the
front part of the vehicle and it bears RV. The third is the
camera CS, bearing RC.With a stereo system we will use
the RCr and RCl notations for respectively the right and left
cameras. The 4th CS correspond to the image plane, noted
RI. Assuming the cameras height is h, the tilt angle towards
the ground plane is ϕ and dC is the distance between the
front of the vehicle and the projection of the centre of the
camera on the road.

Fig. 3. Coordinate Systems used

To simplify the notations, the reference in which a vector is
expressed be noted in a vector rating.

2.2 Camera parameters

Let TzyxP ],,[= denotes an object point in 3-D space

and T
RI

vu ],[ denotes its projection on the image plane. In

the camera CS, the coordinates of a point are noted
T
RC

zyx ],,[ . The perspective projection can be expressed

as follows:
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where αu, αv are expressed as the focal reported to the

image pixel size tu and tv in meter :
vv

uu

tf

tf

/

/

=
=

α
α , f is the
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With the standard video camera used, we can assume that
αu ≅ αv ≅ α..

2.3 Projective geometry

In the next part of this paper, we adopt the following
notation: the expression of the coordinates of a point in the
CS linked with the vehicle will be in capital letters, while
in the CS linked with the camera, they will be in small
letters.

The transformation from the vehicle CS to the camera is
done through the composition of a translation vector
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angle ϕ.

In the case of a stereo perception system, it is necessary to
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make a translation of Yl
r

, with l, the half spacing between
the cameras. The different transformation matrices in
homogeneous coordinates are :
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The transformation matrix between the vehicle CS and the

camera is then tYi TRD rr= :
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, where ‘i’ is either l, m, r (Left, Mono, Right) and iε is

respectively equivalent to –1, 0, 1.

To completely express the coordinates of the points in the
CS linked with the camera, you have to operate a
permutation of suffixes (and so get ‘z’ as the depth axis
and (x,y) a plane parallel to the image plane), thus the
expression of the projection will be simpler. Let it be
Mperm, which allows us to have the coordinates of the point
to be projected into the camera CS :
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To obtain the coordinates (u, v) in the image CS, it is
sufficient to use the classical projection formulas, and
express Mproj as the perspective projection matrix :
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We get the transformation matrix between the vehicle CS
to image plane :

ipermproji DMMM ..= Eq. 7

Let’s call Qt, the transformation matrix between the road
CS and the vehicle at instant time t. These matrix
coefficients come from proprioceptive sensors embedded
in the vehicle (accelerometer, odometer, GPS, gyro,…)
[Alix et al 03]. We obtain the transformation matrix
between Ra and the image plane :
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Let T
RaZYXP ],,[= be a point in Ra, then his

coordinates in Rc are :
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P coordinates in the image will be, according to equation 2:
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2.4 Back-projection

Knowing the changes to be performed to go from the
coordinates of a point in the absolute CS to the coordinates
of the point in the image, we are now going to perform the
reverse work, using the knowledge of the point position in
the image and that of the changes to perform.

2.4.1 Differences between mono and stereo vision

To locate a fixed point in space, we need to get 3 pieces of
information : its coordinates X, Y and Z. In the case of a
vision through a mono-camera system, we get at any
moment, an image ‘i’ which can provide us the coordinates
(ui, vi) of the tracked point. So we need two images
corresponding to different instants, as well as the
knowledge of the camera shifting (motion) between these
two images. Then we call this temporal retro-projection or
back-projection.

For a system based on stereovision, we get 2 images at any
instant, noted iR and iG, and then four pieces of information
(uiR, viR, uiL, viL). This allows us theoretically get the
position of the point in space at any moment. In this case
this is spatial retro-projection. Nevertheless, with a stereo
system, we can combine these two methods to follow a
point both temporally and spatially. The recognition of the
followed point between images resorts to matching
methods which won’t be developed in this article. A strong
constraint common to these two types of retro-projection is
the precise knowledge of the transformation between these
two images.

2.4.2 Temporal retro-projection

As it can be shown in Fig. 4, to reconstruct a point in the
3D space from an image sequence (2 or more).

Fig. 4. Theoretical temporal retro-projection

Nevertheless, the pixel of an image has a non-zero size,
then it exists an infinity of lines passing through this pixel.
(Fig. 5).



Fig. 5. Error due to pixel size

Assuming the same probability repartition of these lines,
we are using a statistical method to search for the average
position of point P [Olague 98]. This type of method
allows us to obtain at the same time, an estimation of the
error committed on the positioning of the point in space.

Position estimation

Let be P the point we are searching for the coordinates in
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We obtain a system which has the following form:

bAP = Eq. 12

A is a 2t*3 dimensions matrix in the case of monocular
vision and 4t*3 for stereovision.

In the stereovision case, this matrix contains the
information provided by the left and right images at each
time t. The solution obtained by a mean square method is
possible from two images. Then equation 12 becomes:

bAAPA TT = Eq. 13

Also, if AAT is inversible (this implies a non-zero
movement between at least two images in the case of
mono-vision), it comes:

( ) bAAAP TT 1−
= Eq. 14

Error estimation

The inherent system error is due to the pixel size. It gives a
3D cone-shaped (Fig. 5) of probable positions of point P
from a pixel. The error committed passing through a pixel
is )2/,2/max( vu tt .

The retro-projection lines repartition through a pixel is the
same. This bring us to assume that the error could be

express like
XXX ε+= .

By developing the equation 12 and neglecting errors of
order 2, we obtain:

PA AbP εεε += Eq. 15

If we set ( ) TT AAAD
1−

= , it comes :

( )PD AbP εεε += Eq. 16

The errors committed on the main axes are obtained by
extracting the elements on the covariance matrix diagonal
on P, noted by CovP:

( )( ) TT
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T
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This method exposed above is simple, nevertheless it
allows to estimate both a target position and the error
committed during the estimation process. As we will see it
in the next parts, if we want to rise the accuracy in
position, we must use more than two images.

3 Stereo and mono-vision compared
accuracies

In the general case, we will take a fixed point to be “retro-
projected”. This point is at altitude 0.5m and has a lateral
distance of 1.5m from the main axis. The parameters
relative to the camera and its positioning are:

- tu = tv = 8.3e-6 m : size of the pixels
- f = 8.5 mm : focal distance
- h = 1 m : camera height
- dc = 1m : distance between camera and the front of

the vehicle
- l = 1 m :distance between the cameras (stereo base)
- α = 5.4 ° : angle between the camera optical axis and

horizontal axis
- v = 14 m/s : vehicle speed
- n = 10 : number of images
- dt : 1/25 s : video frequency

Number of images variation

Fig. 6. Comparison between raw result and 2order interpolation, for a
sequence of 10 images

In figure 6, we have characterized the relative error on
target’s depth estimation in the scene (distance to the
obstacle). The error is here only due to the pixel size on
the CCD matrix. We can observe a global behavior of the



error evolution provided by the 2order interpolation. In the
next parts we will assume that the error graphics are
associated to those of interpolation.

On figure7, the error on estimation of depth decrease with
the number of images, but concerning the obstacle
detection application, it is not possible to wait for 25
images to detect precisely a fixed obstacle. For a retro-
projection using 10 or 15 images, the ratio between
accuracy and detection speed is suitable (the error is under
10 % at 35 m by using 10 images, and it is under this
threshold at 45 m by using 15 images).

Fig. 7. Depth error variation for a monocular sequence of 10 images

For the graphs using 15, 20and 25 images, we can observe
a minimum of the error between 15 and 20 meters of depth
(Fig. 7).

Fig. 8. Depth error variation for a binocular sequence of 10 images

But knowing that the vehicle speed is not zero and that the
dimensions of the CCD matrix are not zero too, the
physical point can not be visible in all the images of the
sequence. This minimum is observed in the short depths
more the number of images is decreasing. The part below
this minimum has not any physical signification. We must
consider the part greater than this minimum.

In the case of a binocular detection (Fig.8) we can not
extract a global behavior of the graphs because of the small
relative errors. Figure 9 shows the mean behavior of the
retro-projection error. The maximum error observed at 90
m is below 5 %. The error is also really lower in the case
of stereo than in the case of mono-vision, for two reasons :

- First of all, there are twice more information in

stereo than in monocular vision, for an identical
number of samples.

- We can assume that the equipped vehicle is
moving in the direction of the obstacles. As you
can see it on figure 9, in the case of mono-vision,
the region of the probable target point positions is
greater than in the case of stereovision. This is
due to the motion of image planes which is
longitudinal in the case of monocular against a
lateral plus longitudinal in the case of binocular.

Fig. 9. Regions of the probable target point positions in stereo and mono

We have presented some results in the case of a fixed
distance between cameras. Figures 10 (2D map) and 11
(3D map) show maps of the relative error committed on
the estimation of the point to be retro-projected position
(the height of this point is fixed to 0.5 m).

Fig. 10. Depth error variation around the optical axis for 10 monocular
images (2D map)

Figure 10 presents two distinct regions. The first for which
the error is greater than 10 %, corresponds to the camera’s
optical axis and its closest area (around 10 pixels on each
side of the optical axis which is represented by the red line
at x = 0, on Fig. 10). The errors are very important (100 %)
for distances greater than 50m. The errors have also no
sense. The second region (error lower than 10 %)
corresponds to projected points which will have a more
important motion in the sequence.



Fig. 11. Depth error variation around the optical axis for 10 monocular
images (3D map)

We can observe this areas but more attenuated , on the
figure 12 and 13. These results are valid in the case of a
perfect detection. But the different particular feature
detectors [Harris 88], [Schmid 98], [Achard-Rouquet 00])
are generally accurate at one pixel size. This error is
introduced in the next section.

Fig. 12. Depth error variation around the optical axis for 10 binocular
images (2D map)

Fig. 13. Depth error variation around the optical axis for 10 binocular
images (2D profile map)

When taking into account the error on detection

To simulate this error, we introduce a white centered noise.
Thus, each of the 8 pixels around the projected real point

can be detected as a particular point. In the monocular
case, the average relative error is multiplied by a factor 3
(Fig. 14). Nevertheless, in an obstacle detection application
at short distances (less than 20 m), the error is about 10 %.
The results keep being exploitable.

Fig. 14. Comparisons of detections with error or not – Monocular case

In the stereo domain, one pixel error at detection,
multiplies the relative averaged error on depth by a factor 4
(Fig. 15). But it keeps being less than 4 % at 90 m (with a
temporal tracking). The robustness of a stereo system
beside the detection error is greater than those of a mono-
vision system. In fact, we take more information in the
stereo case than in the monocular case. But the noise is
centered, so the mean of the measures is closer to the real
data.

Reconstruction accuracy vs. intrinsic parameters

Other parameters are implied in the precision
reconstruction. The first is the vehicle speed (this is not an
intrinsic parameter) : the more greater it is, the more
accurate is the reconstruction. This is because that the
movement between images is taller, so the intersection of
the retro-projection cone shaped is smaller. The focal
distance is implied in the process, but in a less
consequence on the reconstruction accuracy (Fig. 16).

Fig. 15. Comparisons of detections with error or not – Binocular case

When the focal lengths are different (we took f = 6.5 mm
and f = 16 mm), the relative error is quite identical below
45 m, and after that different of a factor 2.



Fig. 16. Focal distance variation – Binocular case

The pixel size is quite important. By dividing the pixel
sizes of a factor 2, the relative error on depth is divided by
a factor 3 after 30 m (Fig. 17). It is also important to
consider the sub-pixel feature detectors ([Devernay 95],
[Achard-Rouquet 00] ) and / or high resolution video
cameras.

Fig. 17. Pixel size variation – Binocular case

In figure 18, the distance is computed and compared to the
real distance to different targets at different distances. The
cone shaped of uncertainty is represented in dot points on
the graphs. The calculation is done on a pair of images, the
retro-projection is this case only spatial. The images
format is ¼ PAL (384 * 288 pixels), to assume a real time
calculation of the distances. Thus, in the worse case, the
accuracy is equal to 0.7 % at 3 m and 14 % at 40 m. These
calculations of accuracy must be correlated to figures 8
and 17. The image format used for our simulations is the
PAL format (768 * 576 pixels), the precision is also 3
times lower. Regards to the simulations, the accuracy at 40
m is below 1 % (Fig. 8). Taking into account the chosen
resolution, the error would be around 9 %, if the detection
would be without errors. Figure 15 shows a detection with
and without an error of one pixel. It shows also that it
multiplies the reconstruction error with a factor 2 or 3,
when adding one pixel error in the detection. By taking
into account this parameter, the error committed on
reconstruction should vary between 18 % and 27 %. The
reconstruction method is also relatively precise.

Fig. 18. Distance estimation accuracy for different targets and different
distances – Real binocular case
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4 Conclusion
We presented in this study only the case of fixed obstacles.
For mobile objects, mono-vision can not give information
on positioning without any strong constraints about the
object to be detected (template, geometry, speed…). Thus,
if these variables are supposed to be unknown, it is
nevertheless possible to obtain a time to collision [Barron
et al 94], which is independent of the depth scale factor
(distance to target in monocular vision). A localization
system based on stereovision [Koller et al 94] has not those
problems, we have seen it in this analysis. This work could
be useful for a video sensor specification which could in
particular be usable in our research context (obstacle
detection).
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