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ABSTRACT
In a frontal vehicle crash, for a given crash velocity
and given maximum vehicle crush, with a known
restraint characteristic, what is the vehicle pulse,
subject to lower and upper bound constraints, that
produces the lowest peak occupant deceleration? A
solution procedure using numerical optimization is
proposed. The pulse is discretized in the vehicle
crush domain. The optimization search is facilitated
by a specially developed algorithm that is a hybrid of
the sequential quadratic programming (SQP)
algorithm for nonlinear constrained optimization and
the genetic algorithm (GA). Optimization examples
are shown with linear and nonlinear occupant
restraints. Numerical results from the examples
indicate that when the number of pulse discretization
segments is less than five, the solution method is
effective in providing pulse improvements for
practical problems. A discussion on the theoretical
and practical aspects of optimal pulses is also given,
with reference to a theoretical optimal pulse recently
published by Wu et al. [1].

INTRODUCTION
Occupant protection in vehicle crash is an important
aspect in automobile design. It has been a continuing
endeavor on the part of automobile manufactures.
Some occupant crash-test responses are also
regulated by crash safety standards in many countries
and geo-political regions. Engineering design in this
field is generally executed with integrated testing and
analytical modeling. Analytical modeling at present
generally includes finite element, rigid-body
dynamics, and simple spring-mass model analyses.
Each of these approaches reduces the vehicle-
occupant restraint problem to a different level of
abstraction that is best suited to answering questions
raised from a particular perspective concerning the
central occupant response issue. These predictive
models, in their most direct applications, simulate the
occupant response under given vehicle structure and
restraint specifications. Given this capability, a
question that is naturally expected is then: what is the
best structure and restraint design for the occupant?
This optimal design question is the focus of this
study.

A definition of "best for the occupant" is in order at
this point. What metrics most comprehensively and
accurately reflect the level of occupant protection is
in itself a topic that still requires considerable
investigation. Nevertheless, the peak occupant thorax
acceleration has been used in the industry. This
metric has also been one of the injury assessment
values in the US Federal Motor Vehicle Safety
Standard 208 for frontal crash occupant protection. It
serves as an indicator of the force acting on the
occupant if the occupant is approximated as a single
point mass. In the scope of this study, "best for the
occupant" means a condition that gives the lowest
possible peak occupant thoracic acceleration.

The frontal vehicle crash design optimization
problem may be dealt with analytically with two
approaches. The first would use physical vehicle
parameters as the optimization variables, and would
therefore involve the solution of the dynamic crash
response of the vehicle in addition to the solution of
the occupant response to the vehicle motion. This
makes an efficient and accurate structural dynamic
solver a prerequisite, which at the present time, still
represents a challenge. The alternative approach is to
use a two-step strategy by first finding an optimal
structural response for the occupant. The second step
is to either solve an inverse structural design problem
based on the optimal structural response, or provide a
direction for structural design. The study in this paper
assumes this two-step approach, and deals only with
the first step, i.e., finding the optimal structural crash
response for the occupant.

Many studies have been published in the last three
decades or so on this optimal pulse problem. Several
[1-11] of these are particularly relevant to the current
work, and a brief review is given here. In [2-3],
different simple theoretical vehicle acceleration
pulses are evaluated analytically in terms of their
effect on the occupant. In contrast, in [4-9],
numerical methods are used to compute the occupant
response (based on either single-degree-of-freedom
(SDOF) spring-mass model or multi-body occupant
dynamics simulation), allowing for vehicle pulses of
general shapes. The vehicle pulses are in general pre-
selected for evaluation; therefore, these are not
optimization studies in the sense of the lack of an
automatic search. In [10], a sensitivity analysis is
used, which is in essence a gradient-based iterative
search. The vehicle pulse is discretized in the crash
displacement domain. Overall, to date, the optimal
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pulse problem has not been addressed using a formal
optimization approach as far as the authors are aware.

Results of several studies [6,10] have shown that a
"good" pulse has the following characteristics: high
at the beginning stage, decreasing to very low levels,
and re-surging in the last stage of the crash. However,
the authors did not present a definitive explanation
from a fundamental basis.

Motozawa and Kamei [11] used a specific condition
to identify "optimal pulses" with a linear SDOF
spring-mass model. Essentially the condition
stipulates the vehicle pulse to have a transient period
in the beginning that brings the occupant acceleration
to a level, and be able to maintain this level to the
end of the crash. A family of pulses satisfying this
condition were identified, which were concluded to
"consist of three aspects: high deceleration, low or
negative deceleration, and constant deceleration".

Wu et al. [1] recently presented SDOF spring-mass
model analyses that addressed the optimal pulse
problem by applying an energy relationship between
the vehicle pulse and the occupant acceleration in the
occupant-vehicle relative motion domain. A
significant result in [1] is the answer to the optimal
pulse question: for a given amount of vehicle crush
under a given crash velocity, the optimal pulse is one
that consists of an impulse, a subsequent zero-
acceleration period, and finally a constant level
period. This is applicable to both linear and nonlinear
non-decreasing restraint functions. The velocity
change of the impulse, the timing of the zero
acceleration period, and the final constant level are
completely determined by the crash velocity, the
maximum crush, and the restraint function. This
result is significant because it shows that the results
of several existing studies [9-11] can all be unified as
specific cases along the path to this optimum (i.e., it
is the theoretical limit of all those results). Physically,
the optimality of this "high-ended" pulse derives
from its unique ability to bring the restraint as
quickly as possible to a peak level, and maintain it at
this level for the rest of the crash event (i.e., a near
square-shaped occupant acceleration response in the
time domain, which is the most efficient).

At this point, the aspect of constraint condition
deserves some discussion. Figure 1 shows the
normalized linear occupant restraint system energy
(which maps directly to the peak occupant
acceleration) as dependent on the normalized
maximum vehicle crush for several types of pulses.
Clearly, the notion of optimal pulse is only
meaningful when we specify all the constraints, for

example, under a given amount of total vehicle crush.
Further constraint conditions are necessary to narrow
down the optimal pulse to one relevant to a particular
case. For example, the fourth pulse shown in Figure
1, which is a case in the family of pulses given in
[11], is inadmissible if the vehicle pulse is
constrained to be non-negative (Note that the thin
part of the dashed line corresponds to pulses with the
vehicle velocity and/or the crush having a negative
period before the end of the pulse. These are not
realistic in a physical vehicle crash case). As a further
example showing the importance of constraints, the
lower "Two-Impulse" curve (ending time (te) longer
than a quarter of the period) in Figure 1 will become
the higher one, if a constraint is imposed that the
occupant does not experience unloading (see
Appendix 1).

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Crush (v
0
*T/2)

R
es

tr
ai

nt
 e

ne
rg

y 
(v

02 /2
)

Impulse+square (Wu et. al.)
Two−Impulse t

e
=T/4 (Wu et. al.)

Two−Impulse t
e
=t

e
*>T/4

Wave+square (Motozawa et. al.)

Figure 1. Occupant restraint energy and crush
pulse relationship for selected pulse examples for
linear restraint (Occupant restraint energy is
normalized by that corresponding to a single impulse
pulse; and vehicle crush is normalized by that
corresponding to a square pulse ending at the
natural period of the restraint system (T). v0 denotes
the crash velocity).

In summary, the optimal pulse question can not stand
alone; it is only meaningful when the appropriate
constraints are specified. The answer, under the equal
maximum crush and non-negative constraints, is
given in [1] as the theoretical optimal pulse for a
general restraint system. In practice, the optimal
pulse question becomes somewhat more complicated.
Inevitably there will be more constraints; for
example, there may be limits to the acceleration that
will exclude the possibility of an impulse at the
beginning of the theoretical optimal pulse. An
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approach to obtain a solution which can deal with
such practical constraints is the objective of this
study. A numerical optimization method is proposed,
and applications of this method to practical examples
are shown.

NUMERICAL OPTIMIZATION METHOD

Problem Definition
The preceding discussion suggests that the optimal
pulse question can be cast as a constrained nonlinear
optimization problem. The peak value of the entire
acceleration time history of the occupant is chosen
here as the objective function (although the general
numerical solution method used here does allow
other metrics based on the kinematics of the
occupant, for example, its peak relative velocity, or
the maximum work to it from the restraint). The
vehicle pulse will be the variable to be optimized,
subject to the appropriate constraints (for example, in
the form of maximum crush, etc.).

Figure 2.   Schematic picture describing the
system and sign convention (x represents vehicle
crush, and y represents relative motion between the
occupant and the vehicle, with positive direction
shown by the arrows. Vehicle acceleration versus
crush, and occupant acceleration versus relative
motion relationship are shown schematically).

The above description can be summarized as:

minimize  maximum ( )))(()( txytx ���� + ,
    x                t

subject to constraint g(x)=0 (1),

where x is the forward motion of the vehicle (crush),
y is the forward motion of the occupant relative to the
vehicle (see Figure 2), and g denotes constraints that
can be put on the acceleration of the vehicle.

Since the optimization variable is the vehicle pulse
x(t), a function by itself, the above-defined
optimization problem is, strictly speaking, a
functional optimization problem. Since it is difficult,
if not impossible, to explicitly express the peak
occupant acceleration (the functional) in terms of the
vehicle pulse, with the constraint, and with a general
restraint function, the preferred analytical approach
of finding and solving the Euler equation that
corresponds to the optimal condition is impractical.
Therefore, in this study, the vehicle pulse is
discretized, and represented by individual
acceleration levels as variables. This approximation
turns the functional optimization problem into a
simpler parameter optimization one.

The discretization of the pulse is carried out in the
vehicle acceleration-crush domain, instead of the
time domain. This is for two reasons. First, a
specification in this domain, as opposed to in the time
domain, is natural to structural design since the
acceleration versus crush information is directly
mapped to force levels of each segment of the
structure along its longitudinal axis. Second, the
imposition of the constraints is more convenient in
this domain, as will be seen later.

The relationship between y (relative motion) and x
(vehicle crush) is implicitly defined by the following
two simple second order ordinary differential
equations (ODE):

                   ,)( xyfy ���� −=+
            ]);[;()( ii axxaxax −=−=��      (i=1, …, n) (2).

The first equation is the equation of motion for the
occupant, where f(y) is the restraint force normalized
by the mass of the occupant (f(y)>0, when y>0). (For
simplicity, the restraint force is assumed to depend
only on the relative position of the occupant
throughout this study, although numerically, damping
and other rate-dependent behavior can also be
incorporated).

The second equation relates the time domain function
x(t) to the crush domain defined vehicle acceleration
a(x) (a(x)>0 when x>0, for frontal crash), and the
second part of the equation denotes the discretization
of the pulse into n segments, as shown in Figure 3.
The crush distances xi (i=1,…,n) that define the
discretization are prescribed, and the n acceleration
levels ai are left as the parameters to be optimized. In
all the computation in this paper, a rebound
acceleration is assumed that has the same level as the
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last segment of the crush pulse, and produces a
rebound velocity of 1/10 of the crash velocity.

Figure 3.  Discretization of the pulse in vehicle
crush domain.

The initial conditions for the two equations are:
0)0(      ,0)0( == yy � ,

                         0)0(      ,0)0( vxx == � (3),

where v0 is the initial crash velocity of the vehicle.

Throughout this study, the optimization constraints
are the crash velocity (v0) and the maximum crush
(d0). The velocity constraint can be written in terms
of the optimization parameters ai through the energy
relationship as:

                         02/
1

2
0 =−∆∑

=

n

i
ii vax (4).

The maximum crush constraint is automatically
satisfied by discretizing the crush over the range [0
d0], which is the aforementioned second reason for
formulating the problem in the acceleration-crush
domain.

As discussed in the introduction, constraint on the
pulse levels is also necessary for the problem to be
physically meaningful. The constraint imposed in this
study is:
                      iuiil aaa ≤≤    (i=1,…,n) (5),

where ail and aiu are the lower and upper bounds for
the i-th segment of the crash pulse. They are inputs to
the computation and can be determined based on
physical considerations (e.g., non-negative
acceleration), or design limitations.

So far, the optimization problem has been fully
defined. As a summary: a peak occupant acceleration
can be obtained after solving Equations (2), under a
given restraint function f(y), with the initial
conditions (3), for a given set of ai that is defined

over a prescribed division of the total crush d0 and
subject to the constraints (4) and (5). The remaining
task now is to develop an algorithm that facilitates
the search for the optimal set of ai.

Optimization Search Algorithm
The sequential quadratic programming (SQP) [12]
has been established as an effective general
nonlinear, constrained optimization algorithm. A
brief account of the key strategies for the SQP is
given here. The constrained optimization problem is
transformed into an unconstrained using the
Lagrangian function. The SQP algorithm goes
through a sequence of iterations, progressively
seeking to move to a better solution point. At each
iteration, the problem is approximated by a quadratic
programming (QP) sub-problem which can be
precisely solved if the first and second order
derivatives of the objective function are known.
Commonly, the gradient (first order derivative) is
approximated by finite difference, and the Hessian
matrix (second order derivative matrix) and its update
are also approximated for computational efficiency.
With most implementations, the QP sub-problem
provides only a search direction, and a step size along
this direction is determined by evaluating a merit
function that combines the objective function value
and the amount of constraint violation. In the current
study, a routine (constr) in the Matlab Optimization
Toolbox [13] is adopted with modifications to the
merit function definition and convergence criteria.

Computation of examples during the course of this
study showed that the SQP algorithm by itself often
converges (a sufficiently small step and objective
function change in successive iterations) to local
minima. While no method is known that completely
eradicates this shortcoming, some strategies, often
heuristic, do help alleviate the predicament.  In this
study, a "confirmation" step is implemented at the
convergence of a SQP sequence, by invoking a
simple genetic search algorithm (GA, see [12] for an
introduction). The GA search explores a
neighborhood of the SQP-converged point in the
parameter space. If within a given amount of
exploratory stochastic sampling, no superior point is
identified, the SQP-converged point is confirmed,
and the entire search is terminated; On the other
hand, if the GA converges to a superior point, the
control algorithm then recursively initiates the
SQP/GA process using this point as the new starting
point. The recursion goes on until a subsequent GA
confirms a SQP convergence.

The GA-type of search schemes are function-value-
comparison-based, with no derivative computation. It
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attempts to move to improved points through a series
of generations, each being composed of a population
which has a set number (population size, 30 in this
work) of individuals. Each individual is a point in the
parameter space (in our case, a pulse). The schemes
that are applied to the evolution of the generations
have some analogy to the natural genetic evolution of
species, hence the term genetic. Most evolution
schemes consist of basic operations commonly
named "reproduction", "cross-over", and "mutation".
The reproduction ensures that fitter individuals (those
giving better objective function values) get a higher
probability of continuation into the new generation.
The crossover operation provides some controlled
randomness in the new population by combing
"genes" (bits in the numerical representation of a
parameter. The parameters are represented in the
binary form in this study) from different individuals.
The mutation operation, when applied, injects an
additional measure of dynamics to the new
population by completely reversing certain gene
segments of a certain percentage of the individuals.

The GA is generally applied to unconstrained
problems, since constraints, aside from the upper and
lower bounds of the optimization variables, are
difficult to implement in the GA. This is because
some of the operations, such as the crossover and
mutation, do not automatically preserve constraints.
In this study, in order to use the GA, an ad hoc extra
operation was devised so that the constraint equation
(4) is enforced. This is possible, due largely to the
simplicity of the constraint. This extra operation
consists of a scaling and a bounding step. The scaling
step simply scales an individual after the three GA
operations mentioned above by a factor that brings
the energy of the new individual to the crash energy
(the second term of Equation (4)). Such a scaling
preserves the "look" of each individual, which is a
desirable property. The bounding step ensues that
each individual is bounded. This is achieved by
iteratively "trimming" the out-of-bound parameters
and "re-distributing" the trimmed energy uniformly to
the rest which are not at their respective bounds, until
all the parameters are bounded.

Numerical Assessment of SQP/GA Algorithm
An example problem was solved using the above-
proposed algorithm to assess its numerical
effectiveness. The parameters that specify the
problem were chosen to be representative of a
possible car on the road today in a v0=15.56 m/s (35
mph) full rigid barrier frontal crash. The maximum
vehicle crush was d0=0.71 m (28 inches). The
restraint system was assumed to be linear, with

ω2=1800 (rad/s)2 (ω being the fundamental radian
frequency of the system). In order to assess
convergence with different degrees of discretization,
optimization runs were carried out for each of the
following numbers of segments (c.f. Figure 3 for
definition of n), n=2, 3, 4, 5, 6, 8, 10, 15, 20. For this
example, the segment size was assumed to be equal,
although the program allows for non-uniform
division (as shown with a later example). For
simplicity, the initial starting pulse in the
acceleration-crush space, which was needed in the
optimization, was uniform over all the segments (i.e.,
a square-pulse), whose magnitude was determined
by:

                
0

2
0

00 2

1

d

v
aa i == ,   (i=1, …,n) (6).

A lower bound of 0, and upper bound of 0na were

specified for all the acceleration segments (Trial
numerical runs with negative lower bounds produced
better acceleration results, consistent with the
discussion in the Introduction).

Preliminary runs showed that repeat runs for the
same problem (same n) did not converge to the same
point, because of the randomness of the GA part of
the hybrid algorithm. As a result, for each problem (a
given n), ten repeat SQP/GA runs were executed to
get a "statistical" assessment. In addition, one SQP-
only run was executed for comparison.

Because of the number of runs involved, there was a
motivation to increase the speed of the execution. As
a result, in the algorithm development stage, the
integration of the equations of motion (Equation (2))
was carried out analytically as detailed in Appendix
2. This is possible because a linear-elastic restraint
was assumed. In the following, results from this
"analytical" approach are presented, and
correspondingly noted. After the algorithm
development stage, the equations of motion
(Equation (2)) were solved using a numerical ODE
solver in Matlab (ode45). This ODE-solver approach
was applied to this example problem, and all the rest
of the numerical examples shown in this paper. It is
noted that in using this approach, the restraint was
assumed to be linear in loading, but the unloading
was chosen to be a straight line from the unloading
point with a slope 5 times that of the loading part.
This more realistic restraint model was afforded by
the flexibility of the numerical ODE-solver method.

Figure 4 shows the result of the numerical study
described in the last few paragraphs. At each of the n
values where computation was carried out, result of
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the optimal peak occupant acceleration from the one
SQP-only run is shown by the "star" plot symbol. The
problem of convergence to local minimum is
reflected in the figure (e.g., n=10 result is inferior to
n=5 result). At each n value, the ten hybrid SQP/GA
runs in general provided improvements over the
SQP-only run; however, the ten runs did not end at
the same point (note that each of the result is still a
converged point, therefore, a minimum). The dashed
line in Figure 4 passes through the average of the ten
hybrid runs at each n value, giving an estimate of the
expected value from the hybrid algorithm. It is noted
that at relatively small n values (e.g., n=2, 3, 4, 5),
the SQP was able to produce relatively good
solutions, but as n gets larger, help from the GA step
becomes necessary to take the solution out of a local
minimum and continue the iteration.
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n=15, etc.).

Numerical convergence is further examined with
Figure 5a which shows the case of n=5 as an
example. Each of the ten hybrid runs started with the
same path as the SQP-only run in the very first SQP
step, but embarked on different paths during the
subsequent GA, and the next SQP/GA iterations.
Figure 5b presents the vehicle accelerations
corresponding to the runs shown in Figure 5a in the
vehicle crush domain (normalized by the maximum
crush, d0).

Parallel to Figures 5a and 5b, Figures 6a and 6b show
the same type of information for the case of n=10, as
an example. Note that in Figures 5a and 6a, only the

history of the SQP phase of the SQP/GA iteration is
shown with respect to the cumulative number of the
SQP internal iteration, while the history of the GA
phase is not shown and essentially collapses in this
plotting scheme. As a result, a sudden drop (c.f.
Figure 6a) signifies an appreciable improvement
from a GA phase.  The number of SQP/GA iterations
and the total number of function evaluations as a
measure of the amount of computation for this series
of runs are provided in Table 1.
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As a summary, Figure 7a shows the optimal pulse
result from the runs shown in Figure 4, and Figure 7b
presents the corresponding occupant acceleration
time history. Although the curves are difficult to
distinguish in Figure 7a, the objective is to show that
as the pulse is allowed more flexibility (i.e., n
increases), the optimal pulse progressively has a
higher and narrower peak at the beginning of the
crush, which is followed by a near-zero acceleration
part, and a more moderate elevation in the end.
Figure 7b shows that the optimal occupant response
gradually approaches a "hat" shape as n increases.
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Figure 7a. Vehicle acceleration result of the best of
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corresponding to pulses shown in Figure 7a (The
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size in the analytical solution in the optimization).

After the algorithm development with the above
"analytical" approach, the same problem was solved
using the ODE-solver approach, which is necessary
for general non-linear occupant restraints. The main
results are shown in Figure 8, and iteration details
given in Table 2 (The computation time per function
evaluation increased by two orders of magnitude on
average). The convergence trend is similar (Figure 8a
v.s. Figure 4), but a degradation is seen relative to the
"analytical" runs, when n is relatively large. This
appears to be caused by minor inaccuracy in the
gradient calculation, which itself is caused by
otherwise inconsequential numerical inaccuracy in
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function value evaluation by the ODE solver. The
"best-case" results (Figures 8b and c) are less orderly
compared with the "analytical" solutions. The ODE-
solver approach was used in all the computation
shown in the rest of this paper, with n limited to 5.
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Figure 8a. Convergence study of different number
of discretization segments, using ODE solver (At
each n value, ten SQP/GA run results are shown by
circle symbols. Some of the ten symbols overlap and
can not be distinguished).
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Figure 8b. Vehicle acceleration result of the best
of the runs under each n value shown in Figure 8a
(The dot plot symbols signify the discretization).

APPLICATION EXAMPLES
Two examples were run to demonstrate the
application of the numerical optimization method.
The first example involved a nonlinear occupant
restraint function (This restraint function was used in
[1]. In the present numerical study, a very small
positive slope is given to the flat part of the restraint
at 400 m/s2 (40 g) to build in a gradient in the

objective function). It used the same problem
definition parameters (initial velocity and maximum
vehicle crush), and optimization parameter bounds as
the   preceding    algorithm  study   example.   Four
discretization possibilities, n=2, 3, 4, and 5, each with
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Figure 8c. Occupant acceleration time history
corresponding to pulses shown in Figure 7a (The
difference between curves shown here and those in
Figure 7b in the unloading phase is a result of the
difference in the restraint unloading assumption).

ten repeat SQP/GA runs, were executed to further
examine the numerical behavior of the algorithm.
Each optimization run still started with the
convenient square pulse. The results are shown in
Figure 9.

In Figure 9a, the ten repeat run results at each of the n
values are shown, with the dashed line going through
the averages. Up to n=4, the ten repeat runs resulted
in identical peak occupant acceleration values (and
identical pulses. Also note that for n=4, the ten
SQP/GA runs did not follow exactly the same path
during the iteration, but concluded at the same point).
By n=5, the algorithm started to have difficulty
converging to a single solution, with one of the runs
standing out clearly. The actual pulses for the n=4
and n=5 cases are shown in Figure 9b. (The pulses
corresponding to the lowest ("best") and the highest
("worst") occupant peak acceleration values are
identified in Figure 9b). The resulting occupant
acceleration in the time and relative displacement
domains are shown in Figures 9c and 9d respectively,
along with that by the initial square pulse. This
example shows that the algorithm deals with general
nonlinear restraint correctly, and good convergence
appears to be attainable for at least up to n=4
segments for the pulse.
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Figure 9c. Occupant acceleration time history of
nonlinear restraint application example (The

spacing of the circle plot symbol is ten times the step
size of the ODE solver in all the optimization runs.)
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Figure 9d. Nonlinear restraint model (loading
part) and occupant response in relative
displacement domain (The restraint model includes
a linear unloading part, the slope of which is shown
by the numerical results in the figure. See Figure 9c
for an explanation of the circle plot symbols.)

The second application example is a pulse shaping
scenario: when a vehicle crash test has been carried
out, what changes to the pulse could be made to
minimize the occupant peak acceleration, if the total
vehicle crush and the occupant restraint systems are
fixed? This example used data from an actual 56 kph
frontal rigid barrier crash test. A four-segment
vehicle pulse model was constructed in the crush
domain, and it was used as the starting point for the
optimization. An occupant restraint system model
was also extracted from test data. The optimization
was carried out for the four acceleration levels, which
were subject to lower and upper bounds that were
assumed to reflect possible limitations. The result of
the computation is shown in Figure 10 along with the
actual test response and the input model. (In terms of
computational details, ten repeat runs were executed.
For this particular problem, each run converged with
23 major SQP iteration totaling 290 function
evaluations. The GA part which consisted of 40
generations of population size 30 did not identify an
improvement in any of the ten runs. Therefore, an
identical result was obtained for all ten runs. Data
shown in Figure 10 give this single result.)

The initial model of the pulse in the crush domain is
shown in Figure 10a, and the restraint system model
shown in Figure 10b. The pulse and restraint models
produce an occupant response (which is the initial
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starting point of the optimization) reasonably close to
the actual test result in both history and the peak
value, as shown in Figures 10b and 10c. The final
optimized pulse is shown in Figure 10a, and the
corresponding occupant responses shown in Figures
10b and 10c.
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Figure 10a. Vehicle pulse and optimization bounds
for application example.

The optimized pulse reached the upper bound in the
first segment, and reached the lower bound in the
third segment (note that numerically, the second
segment of the pulse, at 291.65 m/s2, should not be
considered reaching the upper bound set to 300 m/s2--
a quick numerical test that sets it to the upper limit
and takes off the increased energy from the last
segment produced occupant peak acceleration of
369.97 m/s2, higher than the 368.34 m/s2 by the
optimal pulse). From Figure 10c, the effect of the
optimal pulse on the occupant response is to induce
an earlier (in time) restraint. The amount of restraint
energy reduction can be judged from Figure 10b.

DISCUSSION

Optimal Pulse Shape
Some of the optimization results here can be
compared with the theoretical optimal. Figure 11,
which follows the same format as Figure 1, shows the
result of the series of runs with increasing n with the
ODE solver shown in Figure 8a. The numerical
results are normalized and represented by the circles
in Figure 11. The result of this series of runs brings
the occupant restraint energy from the square pulse at
the chosen normalized vehicle crush down towards
the theoretical optimal pulse by Wu et al. [1]. In
theory, if global convergence is achieved consistently
with increasing n, the result  of  this  series  of  runs
should eventually approach this line. This series of
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Figure 10b. Occupant restraint response for
application example (The loading part of the
restraint model consists of 4 linear pieces, and the
unloading is specified as a straight line with slope
shown by the last segment of the restraint model
curve. For the optimization result, the circle plot
symbols represent the computation data points, with
a reduction factor of ten in frequency for clarity).

0 0.02 0.04 0.06 0.08 0.1 0.12
0

100

200

300

400

500

600

Time (ms)

O
cc

up
an

t a
cc

el
er

at
io

n 
(m

/s
2 )

Test
Initial response
Optimization result

Figure 10c. Occupant acceleration time history
(For the optimization result, the circle plot symbols
represent the computation data points, with a
reduction factor of ten in frequency for clarity.)

"optimal" pulses under a given n value achieve
optimality by producing an occupant acceleration
time history (see Figure 7b) that ramps to a plateau
with a minimum vehicle crush permissible by the
pulse shape requirement (e.g., n segments) and
subject to non-negative pulse constraint. At the
plateau, the occupant and the vehicle decelerate with
the same acceleration while maintaining zero relative
velocity.
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In Figure 11, data are also presented on the optimal
two-step pulse for a perspective. As with the other
theoretical pulses shown in Figures 1 and 11, an
analytical optimal solution could be derived, but with
some added complexity. To avoid this, and to utilize
the optimization method proposed here, the two-step
optimal pulse was determined numerically. The n-
step optimization routine (with the analytical
equation solution for execution speed) was adopted
with modifications. In this two-step pulse case, the
division point of the two crush segments was also
included as an optimization variable. To this end, a
third optimization variable, the ratio of the first to
second segments of crush displacement (in addition
to the two acceleration steps) was added to the
optimization variable list. Another modification
involved normalizing the two acceleration step values
by the square-pulse level, outside the search routine,
to bring their magnitudes in parity with the third
variable, which has lower and upper bounds of 0.0
and 1.0. To map out a curve, computation was carried
out at each of ten normalized total vehicle crush
values from 0.1 to 1.0. At each of these values, to
gain confidence in the result, ten repeat runs were
carried out. Detailed results, defining the resulting
pulses are given in Appendix 1. From the result in
Figure 11, it is noted that the n=2 case of the n-step
series runs is above the optimal two-step result. In
theory this should be the case since the n=2 case has
less flexibility with its two segments required to be
equal.
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Figure 11. Occupant restraint energy and crush
pulse relationship for theoretical and numerical
examples (The dash line connects the average of
results of ten repeat runs (each represented by an 'x')
at each normalized crush for the two-step
optimization. Also see Figure 1 for notes on
definition of variables).

Convergence to Local Minima
The lack of global convergence as shown in the
numerical examples warrants a discussion.
Convergence to local minima is an unpleasant reality
with many complex nonlinear optimization problems.
For each particular problem, its significance should
be assessed in light of the overall objective. For
example, in the case of the n-step example problem
here, if the objective is a theoretical study of the
functional optimization problem, the local
convergence is a severe obstacle, since one would
want to be able to find the solution as n increases to
infinity. On the other hand, if the objective is to
achieve simply an improvement, the SQP/GA
algorithm apparently is still of value.

Quantitatively, from Figures 4, 8a, and 9a, it appears
reasonable to assume high confidence in the quality
of result from a single optimization run, if the
number of segments does not exceed 4 or 5. This may
appear to be rather restrictive; however, from a
practical point of view, this condition is of limited
significance for the following reasons. First, an
analysis based on such SDOF spring-mass models is
for guidance in general, and rigorous convergence
requirement is not meaningful. Second, limiting the
number of segments is sensible, because an optimal
pulse target will invariably be only approximately
realized in practice, because of the complexity in
both the vehicle structure and crush dynamics.
Therefore, the numerical optimization method can be
applied to practical design process, with a numerical
effectiveness consistent with the efficacy of the
simple vehicle-occupant model.

SUMMARY AND CONCLUSIONS
The notion of an optimal pulse is only meaningful
when the constraint conditions are specified clearly.
The pulse identified by Wu et al. [1] represents a
theoretical optimum under non-negative pulse
constraint. The optimal pulse problem may be solved
numerically with a formal optimization approach,
when complex constraints are present. The current
work provides one solution scheme.

The vehicle pulse is discretized in the vehicle crush
domain, and the optimal acceleration levels are
determined through a numerical search scheme. The
search scheme is a hybrid of the SQP and GA search
methods. The SQP search, although more efficient,
needs assistance from the GA search to alleviate the
local convergence problem. The hybrid SQP/GA
scheme still does not guarantee global convergence.
However, when the number of pulse discretization
segments is less than five, the method is effective in
providing pulse improvements for practical problems.



Shi 13

ACKNOWLEDGEMENT
The authors wish to thank Dr. Guglielmo Rabbiolo of
DaimlerChrysler for his suggestion for using the
scaling scheme to impose the constraint in the GA
algorithm.

REFERENCES
[1] Wu, J., G. S. Nusholtz, and S. Bilkhu. 2002.

"Optimization of Vehicle Crash Pulses in Relative
Displacement Domain".  Int. Journal of
Crashworthiness, pp. 397-413, Vol. 7, No. 4.

[2] Egli, A. 1968. "Stopping the Occupant of a
Crashing Vehicle - A Fundamental Study". SAE
Transactions, Vol. 76.

[3] Searle, J. 1970. "Optimum Occupant Restraint".
SAE 700422.

[4] Lundell, B. 1984. "Dynamic Response of a Belted
Dummy - A Computer Analysis of Crash Pulse
Variation". SAE 840401.

[5] Ishii, K. and I. Yamanaka. 1988. "Influence of
Vehicle Deceleration Curve on Dummy Injury
Criteria". SAE 880612.

[6] Brantman, R. 1991. "Achievable Optimum Crash
Pulses for Compartment Sensing and Airbag
Performance". SAE 916148, 13th International
Technical Conference on Experimental Safety
Vehicles, S9-O-22.

[7] Matsumoto, H, et al. 2000. "A parametric
Evaluation of Vehicle Crash Performance". SAE
900465.

[8] Grims, W. and F. D. Lee. 2000. "The Effect of
Crash Pulse Shape on Occupant Simulation". SAE
2000-01-0460.

[9] Whitteman, W. J. and R. F. C. Kriens. 1999.
"Numerical Optimization of Crash Pulses".
EUROPAM 99 -- 9th User Conference.

[10] Takahashi, K. et al. 1993. "Optimization of
Vehicle Deceleration Curves for Occupant
Injury".  SAE 9307515.

[11] Motozawa, Y. and T. Kamei. 2000. "A New
Concept for Occupant Deceleration Control in a
Crash". SAE 2000-01-0881.

[12] Papalambros, P. Y., and D. J. Wilde. 1988.
"Principles of Optimal Design: Modeling and
Computation". Cambridge University Press.

[13] MathWorks. 1996. "Matlab Optimization
Toolbox, Version 1.5".

[14] Goldberg, D. E. 1989. "Genetic Algorithms in
Search, Optimization, and Machine Learning".
Addison-Wesley.

APPENDIX 1.  RESTRAINT ENERGY V.S.
VEHICLE CRUSH OF EXAMPLE PULSES
WITH LINEAR RESTRAINT

Equations for the restraint energy v.s. vehicle crush
relationships plotted in Figures 1 and 11 for the
example pulses are given here. The equations are
derived using either direct solution of equation of
motion, or the energy relationship in [1]. In this
appendix, c denotes the vehicle crush normalized by
v0T/2 (the vehicle crush for a square-pulse with the
natural period T of the restraint system as the
duration), and e denotes the occupant restraint energy
normalized by v0

2/2 (the restraint energy resulted
from an impulse pulse with v0 velocity change).

Impulse+Square pulse by Wu et al. [1]

        





−

+=
)1(

1
2 βπ

ββ
c ,  ( )21 β−=e (A1.1)

where β is a parameter (the ratio of the velocity
changes in the square part of the pulse to the crash
velocity).

Two-impulse pulse
When the second impulse occurs at time te=T/4 (T is
the period of the linear restraint system):

              β
2

1=c , ( )22 1 ββ −+=e (A1.2),

where β is a parameter (the ratio of the velocity
changes of the second impulse to the total velocity
change).

When the second impulse is allowed to occur at a
time te>T/4,

                 β
π

ω etc = , ( )21 β−=e (A1.3),

where 32≤β  is defined the same as in the first case,

and ω is the radian frequency of the linear restraint
system. The time at which the second impulse should
be applied to achieve the best among the two-impulse
cases is determined by:

                  
)1(2

)cos(
β

βω
−

−=et (A1.4).

Note that in this case, unloading-reloading of the
restraint occurs before the second impulse.
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"Cosine type" pulse by Motozawa et al. [11]
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Motozawa et al.: "Cosine type", α=0.30, β=0.75. 

Vehicle accleration
Occupant acceleration

Figure A.1. Example of "Cosine type" occupant
acceleration and corresponding vehicle pulse by
Motozawa and Kamei [11].  (This example enters
the curve in Figure 1 with normalized restraint
energy at 0.28. The vehicle acceleration is required
to have a period of significant negative acceleration.)

where β is a parameter (the ratio of the velocity
change of the square part of the pulse to the total
velocity change). α is another free parameter. The
time for the start of the square part of the pulse, tc, is
determined by πωα /ct= , where ω is the radian

frequency of the linear restraint system. In the
example plotted in Figure 1, α=0.30. Its time
histories for the vehicle and occupant accelerations
are shown in Figure A1.

Square pulse
When the duration of the square pulse is less or equal
to half of the natural period of the linear restraint
system, the solution is:

                       
π
β
2

=c ,  
2

2
sin

2






= β

β
e (A1.6),

where β is a parameter. The ending time of the pulse,
te, is determined by etωβ = , where ω is the radian

frequency of the linear restraint system.

Two-step pulse
The optimal two-step pulse solution was obtained
using the numerical optimization method in this
study. The optimal occupant response is shown in
Figure 11. More computation details are given in
Tables A.1a and A.1b, which define the actual pulse
for each of the runs performed.

Table A.1a Ratio of second to first crush segments

Normalized crush 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Run 1 0.80 0.83 0.86 0.88 0.91 0.92 0.94 0.95 0.16 0.16

2 0.80 0.83 0.86 0.88 0.91 0.92 0.94 0.95 0.16 0.16

3 0.80 0.83 0.86 0.88 0.91 0.92 0.94 0.95 0.16 0.16

4 0.80 0.83 0.86 0.88 0.91 0.92 0.94 0.95 0.16 0.16

5 0.77 0.80 0.84 0.87 0.89 0.91 0.93 0.08 0.14 0.18

6 0.77 0.80 0.84 0.87 0.89 0.91 0.93 0.08 0.14 0.21

7 0.79 0.81 0.85 0.88 0.90 0.92 0.93 0.95 0.16 0.18

8 0.80 0.82 0.85 0.88 0.90 0.92 0.94 0.95 0.20 0.25

9 0.93 0.94 0.95 0.96 0.97 0.98 0.98 0.98 0.99 0.24

10 0.93 0.94 0.95 0.96 0.97 0.98 0.98 0.98 0.99 0.24

Table A.1b Ratio of second and first step of acceleration

Normalized crush 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Run 1 0.801 0.827 0.856 0.885 0.907 0.924 0.939 0.950 0.157 0.164

2 0.801 0.827 0.856 0.885 0.907 0.924 0.939 0.950 0.157 0.164

3 0.801 0.827 0.856 0.885 0.907 0.924 0.939 0.950 0.157 0.164

4 0.801 0.827 0.856 0.885 0.907 0.924 0.939 0.950 0.157 0.164

5 0.772 0.800 0.835 0.866 0.893 0.913 0.930 0.081 0.140 0.183

6 0.772 0.800 0.835 0.866 0.893 0.913 0.930 0.081 0.140 0.207

7 0.787 0.814 0.846 0.875 0.899 0.920 0.934 0.945 0.156 0.180

8 0.796 0.823 0.853 0.882 0.904 0.923 0.937 0.949 0.200 0.248

9 0.935 0.944 0.954 0.963 0.970 0.976 0.980 0.984 0.986 0.242

10 0.935 0.944 0.954 0.963 0.970 0.976 0.980 0.984 0.986 0.242
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APPENDIX 2.  ANALYTICAL SOLUTION OF
VEHICLE AND OCCUPANT ACCELERATION
TIME HISTORIES WITH N-STEP-PULSE AND
LINEAR ELASTIC RESTRAINT

Refer to Figure 3, the vehicle velocity at the end of
the i-th step can be calculated through:

           iiii xavv ∆−= − 22
1

2      (i=1 … n) (A2.1),

where ai and ∆xi are the acceleration level and the
crush of the i-th segment, and v0 is the vehicle initial
velocity. The time duration for the segment is:

                
ii

i
i vv

x
t

+
∆

=∆
−1

2
    (i=1 … n) (A2.2).

With ∆ti and ai, the vehicle acceleration time history
is known.

In each of the segment, the occupant response is that
of a forced linear system described by:

           )        )()( 1
2

iii tt(tatyty ≤≤=+ −ω�� (A2.3),

where y is the relative displacement between the
occupant and the vehicle at a given time t that falls
between the beginning of the i-th segment (ti-1 ), and
its end (ti). These times are already available from
Equation A2.2. ω in Equation A2.3 is the radian
frequency of the system consisting of the occupant
and the linear elastic restraint.

The solution for A2.3 is:

)...1,0 

 /)cos()sin()( 2
21

nitt(

atctcty

i

iiiiii

=∆≤≤
++= ωωω

  (A2.4a),

where 1−−= ii ttt  is a shifted time for convenience.

The relative velocity and acceleration are
accordingly:

        
)0 

 )sin()cos()( 21

i

iiiii

tt(

tctcty

∆≤≤
−= ωωωω�

, A(2.4b),

and,

      
)0 

  )cos()sin()( 2
2

2
1

i

iiiii

tt(

tctcty

∆≤≤
−−= ωωωω��

(A2.4c).

The initial conditions are:
      11 0       ,)0( −− ==== ii y)t(yyty ��   (A2.5),

where 1−iy and 1−iy�  are the displacement and

velocity at the beginning of the i-th segment. Since
the occupant and the vehicle are moving together at
the incipience of the crash, we have:
                    00       ,0)0( 00 == )(yy �    . (A2.6)

Using the above initial conditions, for each segment,
the constants in A2.4 can be computed:

           ./         ,/ 2
1211 ωω iiiii aycyc −== −−� (A2.7)

Therefore, stepping through from i=1 to n, Equations
A2.7 and A2.4 can be used to progressively solve for
the complete time history of the occupant.  When
needed, the absolute acceleration of the occupant is
found by:
               )       )()( 1 ii-i tt(tatytz ≤≤+−= ���� A(2.8)
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