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Abstract 
 

     Recent studies have pointed out that conventional lifting rotors in forward flight have efficiencies far lower than the 
optimum efficiencies predicted by theory.  Finite-state inflow models have been suggested as a theoretical basis whereby to 
study the reasons for this efficiency deficit.  In this paper, a finite-state inflow model is utilized to formulate the optimum 
circulation and inflow distribution for rotors in axial flow.  The results show that a formal optimization with finite-state 
models can be done in closed form and that such an optimization recovers the classical uniform-flow condition (for an 
actuator disk with an infinite number of blades), the Prandtl solution (for an actuator disk with a finite number of blades), 
the Betz distribution (for a lifting rotor with an infinite number of blades) and the Goldstein solution (for a lifting rotor with 
a finite number of blades).  Thus, it should be possible to use finite-state models to investigate optimum rotor performance 
in forward flight.  
 

Notation  
 

m
njA    special case of the matrix L%  

,m m
n nC D  Fourier expansion coefficients for the pressure 

PC  power coefficient 

IPC  induced power coefficient 

TC  thrust coefficient 
0m

njE    expansion transformation matrix 
H rotor inplane force 
[ ]I  identity matrix 
j, n polynomial number 
k Prandtl�s tip loss correction factor 
K thrust deficiency 

m
nK  kinetic energy matrix 

qL  blade loading 

,c sL L% %  cosine and sine parts for the L-matrix 
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L  L% -matrix with the elements where m = 0 are 
 multiplied by two 
m, r harmonic number 
PI induced power 
Ps shaft power 

m
nP  associated Legendre function of the first kind 
m

nP  normalized associated Legendre function of the 
 first kind 

P∆  rotor disk pressure 
Q power or number of blades 

m
nQ  associated Legendre function of the second kind 

r  non-dimensional radial position 
R radius 
t time 
t  t= Ω  
T thrust 
u horizontal component of induced velocity 
U inplane flow 
v vertical component of induced velocity 
V flow normal to the disk 
V∞  free-stream velocity 
w induced flow 
W inflow 
x distance on the blade from the center of the rotor 
X tan / 2χ=  
 



  
,m m

n nα β  induced flow expansion coefficients 
η climb rate / Rν= Ω   
 
η  ellipsoidal coordinate system component 
θ pitch angle 
κ swirl parameter = 2.2 
λ total inflow η ν= +  
Λ Lagrange�s multiplier 
µ advance ratio /u R= Ω  

ν ellipsoidal coordinate or 21 r−  
ν  normalized inflow /w R= Ω  
ρ density 

,mc ms
n nτ τ  pressure coefficients for Fourier series expansion 
φ angle between the lift and the thrust 

m
nφ  radial expansion shape function 

Φ  pressure 
χ skew angle 
ψ angular position from rotor aft 
ψ  ellipsoidal coordinate 
Ω angular velocity 
 

Introduction 
 

     Work-Energy principles indicate that the induced 
power PI generated for a lifting rotor (i.e., the power that 
does not perform useful work) can be found by computing 
the shaft power and then subtracting the work done on the 
vehicle 
 
   PI  = PS � TV � HU                 (1) 
 
where T is the thrust perpendicular to the disk, V is the 
rotor velocity in the T direction, H is the rotor force in the 
inplane direction, and U is the rotor velocity in the H 
direction (See Figures 1 and 2).  By necessity, the 
magnitude of this power must equal the power that is 
expended into the kinetic energy of the induced flow.  It 
follows that simple, Glauert momentum theory can be 
used to compute the minimum possible induced power for 
a given flight condition.  Based on these, one would 
predict that a rotating wing in forward flight would be 
almost as efficient as a fixed-wing aircraft.  However, 
flight test data (as well as comprehensive simulations) 
give induced power several times as large as the ideal 
value.  In an effort to determine the source of those 
deficiencies, Ormiston [1],[2] performed extensive runs 
with RCAS to try to determine why the actual results 
were differing from the ideal results.  In these studies, the 
profile drag of the airfoil was assumed to be zero so that 
the induced power could be separated.  The results of 
those studies similarly showed that there is an order-of-
magnitude difference between ideal induced power and 

the actual induced power of rotorcraft.  An obvious 
question is, �Why is there such a difference?� 
     Several potential sources of decreased efficiency can 
be identified in terms of the physics of an actual rotor as 
compared to an ideal actuator disk.  First, an ideal disk 
produces thrust perpendicular to the disk whereas a true 
rotor produces a tilted thrust vector that results in swirl 
velocity.  Therefore, there is lost energy.  Second, an ideal 
rotor has an infinite number of blades whereas a true rotor 
has a discrete number.  The fact that there are vortex 
sheets coming off the individual blades implies an upwash 
outside of the slipstream that further translates into lost 
energy.  Third, an ideal disk can generate an arbitrary lift 
distribution over the span and azimuth.  An actual blade, 
on the other hand, can only produce lift under the 
constraints of both allowable blade pitch changes and of 
the limits on airfoil lift coefficients at high angles of 
attack.  The ultimate goal of the present research effort is 
to determine which of these contribute to the drastic 
increase in induced power and, consequently, what 
changes in rotor hardware (if any) might address the 
issue. 

 
Figure 1: Basic illustrative problem for a rotor [1]. 

 
     The scope of such a study is so broad that the use of 
large, comprehensive codes is prohibitive for these 
purposes.  On the other hand, finite-state wake models are 
ideally suited to such task.  These models expand both the 
pressure field and the velocity field in orthogonal 
expansion functions. Therefore, the computation of 
induced power (the dot product of thrust and induced 
flow) simplifies nicely into a quadratic cost function that 
allows classical optimization to be used for the minimum 
power under a variety of constraints.  Thus, it is 
anticipated that such an approach can yield insight into 
this issue.  As a preliminary step in such an endeavor, this 
present paper looks at the induced power of a non-ideal 
lifting rotor in axial flow to verify that dynamic wake 
models can indeed compute the proper induced power.  



 Since theory and experiment agree with simple 
momentum approaches for power in axial flow, such 
conditions provide the ideal test bed to verify that this 
optimization approach is viable.  Future studies will then 
concentrate on induced power in forward flight. 
 

Optimization with Finite-State Model 
 

He inflow equations. 
 
     He [3] developed an unsteady induced-flow theory to 
be used in stability, vibration, control, and aeroelastic 
studies.  The theory is based on an acceleration potential 
for an actuator disk.  The induced flow, w, is expressed in 
a polynomial distribution (proportional to Legendre 
functions) radially and in terms of a Fourier series 
azimuthally.  The way the induced flow is set up allows 
for all harmonics and describes the induced flow for any 
radial position. 
     The He theory provides the pressures on the rotor disk 
as a Fourier expansion.  As more harmonics are added, 
that pressure converges to the lift concentrations on the 
blade and to zero lift off the blade.  One of the issues to 
be addressed in this present work is whether or not such 
an approach can give adequate convergence to induced 
power.  The form of this pressure expansion is as follows:                   
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The pressure at the rotor disk is obtained by the difference 
between the pressure above and the pressure below the 
disk.   
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(3) 

The power  Q can be expressed as: 
 

                       ( )
A

Q P w v xdxdψ= ∆ +∫∫                         (4)    

     The He model also sets out the velocity field normal to 
the rotor disk in terms of the same Legendre Functions 
and variables, as given below. 
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(5)                                                        

                            

1( ) ( )m m
n nr Pφ ν

ν
≡                                 (6) 

where t t= Ω , and ( )m
n rφ are a complete set of functions 

that arise from the solution to Laplace�s equation in 
ellipsoidal coordinates. 
The form of the functions is: 
 

( ) / 2__
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where ( 1)!!( 1)!!
( )!!( )!!

m
n
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n m n m

+ − − −=
+ −

       

substitution of the induced flow and the pressure at the 
disk yields: 
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The functions m

nP  are Legendre Functions of the first 

kind, and ν is related to the radial position be 21r ν= − . 
      The equations that relate the pressure coefficients in 
the pressure expansion ( ,mc ms

n nτ τ ) to the velocity 
coefficients ( ,r r

j jα β ) are derived from the momentum 
equation of potential flow. 

              
{ } { } { }1 1

2
m m c m mc
n n n nK V Lα α τ

• −
   + =   
%

          
  (10)

              

{ } { } { }1 1
2

m m s m ms
n n n nK V Lβ β τ

• −
   + =   
%             (11) 

where ( ) d
dt

•

= , 
2

2 2

( )V µ λ ν λ
µ λ
+ +=

+
, λ is the total inflow, 

µ is the advance ratio, V is the flow parameter, and m
nK is 

diagonal; 2m m
n nK H

π
= .  The L  

%  cosine and sine 

matrices are given in closed form in terms of the wake 
skew angle, χ. 



                              
2

2

2

2 (2 1)(2 1)( 1)
( )( 2) ( ) 1

n j r

rm
jn m r

n j

n j
j n j n j nH H

+ −

+ +−Γ =
 + + + − − 

  

                                                                     for r + m even       
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where l = min(r,m), X = tan|χ/2|.  The forcing functions, 

m
nτ , are given in terms of the blade loading, Lq.  
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Theorem on Induced Power. 
     A Rotor Induced-Power Theorem is used to verify the 
approach of this work. Let a rotor, Figure 2, be moving 
along an arbitrary, straight path through still air with a 
velocity W.  Let χ be the angle between the flight path 
and a vertical to the rotor.   

 
Figure 2: Inflow velocity components for a moving 

rotor. 

It follows that the inplane component of air velocity as 
seen by the rotor is U = Wsinχ and the normal component 
is V = Wcosχ. 
     Let the rotor loading perpendicular to rotor plane be 
called T and the rotor load in plane be called H, each with 
a positive sense in the direction of the flight path (i.e., 
opposite to V and U).  Let the blades in the rotor disk be 
rotating counter-clockwise at angular velocity Ω, when 
looking down on the rotor, and let ψ be the azimuth angle 
of a blade as measured from aft, ψ = Ωt.  Let a generic 
point on the blade be a radial distance x from the center of 
rotation as shown on Figure 3. 
 

 
Figure 3: Rotor blade generic position and rotating 

angle. 

Let φ be the inflow angle as seen in the local blade 
system, Figures 3 and 4.  In that system, let dL be the 
incremental local lift per unit length (perpendicular to the 
total inflow), let dD be the incremental local induced drag 
per unit length, and let dT be the incremental thrust.  Let 
w be the induced flow, opposite to L, Figure 4. 

 

 
Figure 4: Geometry of the forces on the blade. 

 
                                   cosdT dL ϕ=                             (15) 
                                   sindD dL ϕ=                             (16) 

                                 sindH dD ψ= −                           (17) 
 

sgn( )
(2 1)(2 1)2

rm
jn m r

n j

r m
n jH H

π −Γ =
+ +



      Figure 5, taken from the work of Glauert [4], 
shows the geometry of the flow in the blade coordinate 
system.  The relative flow due to rotor motion alone is Ωx 
+Usin(ψ) in the rotor plane and V perpendicular to that 
plane.  The induced flow w must be parallel to the lift, so  
 
it is added vectorally at the angle φ as shown (see 
Glauert).  The resultant total inflow (due to rotor motion 
and due to induced flow) must be perpendicular to the 
local incremental lift, due to circulation considerations.  
Therefore, w can be considered perpendicular to the total 
flow vector.  The resultant relationships gives rise to the 
geometry in the figure and to the following identities: 

                               

cos costan
sin sin sin

wV
w V

x w U x U
ϕ ϕϕ
ϕ ψ ψ

+
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= =
Ω − + Ω +            (18) 

 

          

cossin tan cos
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V w
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ϕϕ ϕ ϕ
ψ

+= =
Ω +

                     (19)                                         
 

 

 
Figure 5: Geometry of the flow. 

                                                                                                              
The above can be used to transform the induced power 
equations. 
                            I SP P TV HU= − −                              (1) 

 

        sin cos sin sinIP L x L V L Uϕ ϕ ϕ ψ= Ω − +           (20) 
                                                                                                        

( )sin sin cosIP L x U L Vψ ϕ ϕ= Ω + −             (21) 
 

(where the differentials are omitted for clarity).   

But cossin
sin

V w
x U

ϕϕ
ψ

+=
Ω +

.  Therefore 

                                    
cos cosIP LV L LV Lwϕ ω ϕ= + − =          (22) 

 
The induced power is, then:              
 

  IP Lw=         (work done by L on w)  (23)     

                   
Thus, the incremental induced power can be found from 
the integral of the dot product of the local lift and local 
induced flow, which is the work done on the flow field.  
The above theorem is, strictly-speaking, exactly true only 
for axial flow because of the assumption that local lift is 
parallel to local induced flow.  On the other hand, that 
assumption is less and less important as one transitions 
away from hover.  Furthermore, it is exactly true that the 
work done on the flow field will equal the induced power.  
Therefore, Equation (23) seems a valid approach to 
computing the induced power from a dynamic wake 
model. 
 
Induced power derivation from He model. 
     For the Peters-He model in its actuator-disk form, we 
have a skewed wake as shown in Figure 6 below. 

 
Figure 6: Normalized velocity components. 

The power Q can be found from Equation (4) to be: 

( )
A

Q P w v xdxdψ= ∆ +∫∫  

Notice that the power does not depend on the velocity 
component u.  The pressure at the disk (as shown in 
equation (3)) is: 
 

( )2 2
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R
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                         (24) 

Climb rate V
R

λ =
Ω

                           (25) 

Non-dimensional radial position xr
R

=             (26) 

Non-dimensional inflow w
R

ν =
Ω

                (27) 

Note that rdr = -νdν, and λ and µ are constant. 
 
The inflow is given by Equation (5). 
     Introducing the definitions for pressure change, v from 
the climb rate, and the induced velocity we obtain the 
expression for the power where the climb rate, λ, is a  
 
 



  
constant.  The normalized Legendre function is 0

1 3P ν=  
by definition.  Introduction of it into the expression for  
the power yields Equation (28).  By the use of the simple 
relationship between power and power coefficient, we 
obtain the following, 
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and 

        { } { }2
Tm m

T n nC Cτ=                            (30) 
 
A simple check using m = 0 only, and n = 1 only, 
provides the common expression that shows the Peters-He 
model agrees with the induced power from Momentum 
Theory.  The lift and pressure coefficients for this special 
case are shown in equations (31) through (33). 
 

0
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1
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α ν=                                  (31)  

0
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3
2

c
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( ) ( )2 3
23P T TC C Cλ ν λ ν= + = +           (33) 

 
     Equations (29) and (30) provide the framework for a 
classical, quadratic optimization of power. 
 
Optimization. 
     The classical quadratic optimization problem is stated 
as follows: 
Minimize { } [ ] { }Tx A x subject to { } { }Tc x q= (given).  
Use of Lagrange�s multiplier to include the constraint 
leads to the cost fuction. 

{ } [ ] { } { } { }1
2

T TJ x A x c x= − Λ
             

(34) 

where Λ is the Lagrange multiplier. Optimizing, we 
obtain that for the change of the functional to be zero  
 

{ } { } { }1 0
2

T TJ x A A x cδ δ   = + − Λ =    
     (35) 

 

{ } [ ] [ ]( ) { }
11

2
Tx A A c

−
 = + Λ  

              (36) 

Notice that the matrix to be inverted is the symmetric part 
of [A]. 
The Lagrange multiplier must be chosen such that: 

{ } [ ] [ ] { }
1
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q
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 + 

                  (37) 

     We may now apply this approach to the case for 
minimum induced power that we are presently discussing.  
For an actuator disk, with infinite number of blades that is 
lightly loaded, we will minimize CP for a giver CT. 
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   { } { }2
Tm m

T n nC Cτ=                           (39) 
 
Physically, the coefficients m

nC  are a Legendre-function 
fit to the function cosν ϕ and they are defined as: 
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Then, the relationship between the coefficients and the 
function cosφ becomes: 

                       
0 0

,
cos 2 cos( ) sin( )m mc ms
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Notice that, for axial flow, the advance ratio (µ) is zero.  
For an ideal actuator disk, the non-dimensional climb rate 
(λ) is arbitrarily small, whereas for tilted lift it will have a 
finite value. 
     From He�s inflow equations (10) and (11) for an 
infinite number of blades, this is a steady system.  
Furthermore, all the coefficients associated with the sine 
component are zero, that is, mβ  and msτ are zero. 



 Rearranging the equation with this in mind, it can be 
solved in matrix form for the induced velocity 
coefficients, as expressed by: 
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{ } { }11
2

m mr r
n nj jL

V
α τ

−
 =  
%                        (46) 

 
     Let the matrix L% with the m = 0 row partition 
multiplied by two will be called L .  Then, the minimum 
induced power problem can be formulated as the 
optimization of a functional J, shown, subject to the 
constraint expressed by Equation (48).  The optimization 
is carried out in to yield the optimum value for the 
pressure coefficients.   
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     Equation (51) is the solution for this optimization 
problem, which will yield the minimum induced power 
for a lightly loaded actuator disk with infinite number of 
blades.  In these equations Λ is the Lagrange multiplier of 
the optimization, that is chosen to give 0

1 3 2 TCτ = , as 
it was explained for the constraint in the general 
formulation of an optimization process. 
     The general solution for the pressure coefficients can 
be applied to different cases.  It is the purpose of this 
paper to show results for axial flow, but these coefficients 
can be also used to obtain pressure, circulation and inflow 
velocity for a variety of flows, including edgewise flow 
( 90 )χ = o .  For axial flow, 0χ = o , the elements in L are 
zero except when r = m.   
     With the calculation of thrust and power coefficients, 
the determination of the figure of merit is simple.  The 
general solution for the figure of merit that will be shown 
by the use of finite-state methods is: 

{ } { }
1

. . 2
Tm m

finite state n nK F M C L C
−

−
 = =               (52) 

The conditions for each of the special cases will cause the 
coefficient vector or the L-matrix to change, but the 
general form will remain for all of the cases. 
 
Special Case of Actuator Disk 

For the case of an actuator disk Equation (43) 
reduces to the unity (λ = 0) and the coefficients in 
Equations 40 through 42 reduce to: 
 

10
1 0

13
3

C dν ν= =∫  

and all the others become: 
0m

nC =  
 
Therefore, the vector { }m

nC  is the vector {1 0 0 � 0}T 
with as many elements as the number of terms that 
correspond to the harmonics studied in the problem and 
the optimization becomes simplified.   
     Momentum theory [5],[6] predicts that the minimum 
induced power for an actuator disk in axial flow will be 
achieved by constant pressure and constant inflow 
distributions.  Results using the finite-state method show 
agreement with these predictions.  Figures 7 and 8 show 
the constant profile for the pressure and the inflow 
respectively with a reduced amount of terms in the 
Fourier series.  According to Momentum theory the lift 
distribution corresponding to this pressure and velocity 
should be linear.  Finite-state methods agree with the 
predicted results, as it is shown in Figure 9. 

 

Figure 7: Pressure profile that provides minimum 
induced power for an actuator disk in axial flow with 

an infinite number of blades. 
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Figure 8: Velocity profile that provides minimum 
induced power for an actuator disk in axial flow with 

an infinite number of blades. 

 

Figure 9: Lift distribution for optimum flow for an 
actuator disk with an infinite number of blades. 

  
Closed-Form Expression.   
     Since the above shows that a formal optimization with 
the dynamic wake model gives the Glauert result for 
minimum power, it seems that it would be useful to 
consider some closed-form results under the Glauert 
hypothesis.  From momentum theory [5],[6], one can 
show that  

( )2TC η ν ν= +                              (53) 

( ) ( )22P TC Cη ν ν η ν= + = +                 (54) 
 
Because we optimize for a given CT, it is very convenient 
to normalize all velocities on induced flow in hover.  
Thus, / / 2TCη η= , / / 2TCν ν= , λ η ν= + .  It 
follows that the proper normalization of induced power is 

3/ 2

2 P
P

T

CC
C

=                                 (55) 

The result is a normalized set of inflow equations.  The 
thrust equation becomes: 

( )1 η ν ν= +                               (56) 
which can be solved for normalized or flow due to a 
normalized climb rate.  That value can then be used to 
determine the normalized induced power for an ideal 
actuator-disk rotor. 

11/ 22

1
2 4IP PC C η ηη

−
  
 = − = + + 
   

          (57) 

One can see that the ideal induced power ranges from a 
normalized value of unity in hover ( )0η =  and then 
decreases with climb rate as 1/η .  This is the Glauert 
result.  We will use this ideal value to compare minimum 
power settings for various rotors.  We will define a 
generalized figure of merit which is the ideal power, 
Equation (52), divided by the actual induced power. 
 
Special Case of Lifting Rotor with an Infinite Number 
of Blades. 
     When the lift vector is tilted perpendicular to the 
vortex sheets, the ideal power is no longer attainable.  
Thus, uniform flow is no longer the optimum condition.  
Betz [7] determined that the minimum power is obtained 
when the induced flow at the individual blades is such 
that the vortex sheet remains along a helical path.  Thus, 
the optimum inflow distribution is proportional to cosφ, 
Figure 5.  For an infinite number of blades, it follows that 
the pressure field must follow this same shape.  Thus, let 
the optimum pressure at the rotor be: 

2 2
cos

2 2
V V rP

r
ϕ

λ
Λ Λ∆ = =

+
               (58) 

where k is a Lagrange multiplier.  Then the induced 
velocity, w is:     

 
2 2

1
2 4

rw P
V r λ

Λ= ∆ =
+

                  (59) 

 
The thrust coefficient is :  

31 1

2 20 0
2 cosT

rC P rdr V dr
r

ϕ
λ

= ∆ = Λ
+∫ ∫

   
    (60) 

dividing both sides by CT, introducing the normalized 

values 
/ 2TC

ΛΛ = and 
/ 2T

VV
C

=  , and letting  

/y r λ≡ we obtain an expression that can be integrated to 
obtain a solution in closed form. 

  
31/2

30
1

2 1
V y dy

y
λ

λΛ=
+∫                    (61) 

performing the integration on Equation (61) gives the 
value of the normalized Lagrange multiplier to be: 
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2

2

4 1
11 ln 1V λ

λ

Λ =
 − + 
 

                 (62) 

To obtain the induced power coefficient, we must 
consider the power. 

2 31 1

2 20 0
2

4P
V rC Pwrdr dr

r λ
Λ= ∆ =

+∫ ∫      (63) 

Then,  the normalized power coefficient is: 

( )3/ 22 / 2I

P
P

T

C
C

C
= , which provides the final expression 

for the normalized induced power. 

2
2

1 1
14 1 ln 1

IPC
V λ

λ

Λ= =
 − + 
 

              (64) 

 

For axial flow, 
2

1
2 4

V η ηλ η ν= = + = + + . 

The result of this closed-form solution yields the 
expression for the ideal figure of merit for a lifting rotor 
with an infinite number of blades.  Rearranging the 
previous equations, one obtains: 

2
2

1. . 1 ln 1BetzK F M λ
λ

 = = − + 
 

                (65) 

     The question remains if the use of finite-state methods 
will suffice to obtain the Betz distribution for a lifting 
rotor with an infinite number of blades.  To verify this, 
the figure of merit is found by finite-state methods using 
the formulation described in the optimization section.   
These coefficients represent the general solution.  To 
customize them to the present special case, some 
modifications were performed.  Since the present cases 

are for axial flow, the matrix L 
  

 ─ defined by Equation 

(13) ─ simplifies to a diagonal in terms of mm
jnΓ .  It should 

be noted that these matrices are identical to m
njA    in Ref. 

3.  For an infinite number of blades in axial flow, 0m
nC =  

except when m = 0 so that only 0
jnA  enters the 

optimization.  0
nC  comes from the following integral over 

the wake skew angle, 
2 10 0

0 0

1 cos ( )
2n nC P d d

π
ϕ ν ν ν ψ

π
= ∫ ∫  

where 
2 2

cos r

r
ϕ

λ
=

+
 and rdr dν ν= − .  With those Cn 

the thrust and power coefficients become: 
 

0

1,3,5
2 c

T n n
n

C C τ
=

= ∑                            (66) 

          
0 0

1,3,5
2 c

P T n n
n

C Cη α τ
=

= + ∑                     (67) 

For this optimization, again the power coefficient is 
minimized for constant thrust, and the functional J 
becomes:

{ } { }0 0 0 0

1,3,5,... 1,3,5,...

1
2

Tc c c
T n nj j n n

n n
J C A C

V
η τ τ τ

= =

 = + − Λ ∑ ∑
 

                               (68) 
where Λ  is the Lagrange multiplier.  Performing the 
optimization (δJ = 0), the optimal pressure coefficients for 
this particular case are: 

{ } { }10 0
j nj noptimal

A C Vτ
−

 = Λ                 (69) 

Introducing the above changes to the general optimization 
formulation, the figure of merit using finite-state methods 
is: 

{ } { }10. . 2 T
finite state n nj nF M C A C

−

−  =              (70) 
     Figure 10 shows the comparison for the figure of merit 
from the finite-state method as compared to the Betz 
formula.  It is seen that the finite-state method agrees 
satisfactorily with Betz result.  The difference between 
them can be reduced by addition of more terms to 0

njA    
and {Cn}.  However, the present approximation, which 
uses twenty terms is thought to be close enough so that 
the dynamic inflow model is verified.   
     What is most important about Figure 10 is the large 
drop in figure of merit with climb rate, even for an 
optimized rotor.  The drop is due purely to the effects of 
tilted lift and swirl velocity.  It may well be that the 
deficiency in rotor efficiency in forward flight is due to a 
similar phenomenon. 

  

Figure 10: Comparison of the finite-state optimization 
to Betz distribution. 

     Figure 11 gives Figure of Merit as a function of climb 
rate η rather than λ.  Since λ is determined by the total 
flow through the rotor, the Figure of Merit thus becomes a  
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function both of climb rate η and thrust coefficient CT.  
For larger climb rate, the effect of CT is diminished.  
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Figure 11: Figure of Merit versus climb rate for 
different thrust coefficients (infinite number of 

blades). 

     Figure 12 presents the induced power coefficient as a 
function of climb rate for a range of CT values.  

 

Figure 12: Induced power coefficient (helicopter 
convention) versus climb rate (infinite number of 

blades) 

An important characteristic seen in Figure 12 is a 
�bucket� in the induced power for each thrust coefficient 
at a given climb rate.  This is due to the fact that ideal 
power decreases with η whereas the figure of merit also 
decreases with η.  Thus, there is an optimum climb rate.  
The lowest curve is for CT = 0 and is equal to  1/λbar.  This 

ideal minimum power monotonically decreases with η , 
so the �bucket� is not present, and the induced power 
coefficient does not increase for high climb rates.   
 
Special Case of Finite Number of Blades. 
     The effect of a finite number of blades is a further loss 
in wake energy due to the individual vortex sheets from 
each blade.  Goldstein worked out the exact effect for 
optimized rotors.  Prandtl, on the other hand, worked out 
an approximate correction factor that agrees very well 
with Goldstein for moderate climb rates.  Prandtl 
[5],[6],[7] introduces a correction factor, k, in the 
calculation of induced flow that accounts for the loss at 
the tip of the blades.  Because of this tip loss, for a given 
thrust, there is more induced flow than predicted by 
momentum theory.  Using these principles an 
approximation to the theoretical figure of merit for an 
actuator disk or a lifting rotor for a finite number of 
blades can be obtained using Prandtl formulation.  The 
Prandtl k factor is applied as follows. 
      

( ) ( )( )2 2dL rdr V v v kπ ρ= +                  (71) 
where 
 

12 (1 )cos exp
2

Q rk
π λ

−  − −  =     
                 (72) 

where Q is the number of blades. 
     Because the Prandtl correction as applied to the Betz 
distribution agrees so closely with Goldstein, that it 
makes sense to do some calculations with the Prandtl 
factor to determine the magnitude of the effect of number 
of blades on figure of merit.  Thus, the following formula 
can be used for the figure of merit computations. 

1 2
Prandtl 0

. . 2 cosK F M k rdrϕ= = ∫                     (73) 

where,  

 
2 2

cos r

r
ϕ

λ
=

+
                          (74) 

 
where λ is the climb rate and φ is the inflow angle.   
     Figure (13) shows the effect of tip loss (as determined 
from Prandtl�s k-factor) on Figure of Merit.  The top 
curve, for the case φ = 0, is the effect for an actuator disk 
with a finite number of blades for a four-bladed, lightly 
loaded rotor.  The middle two, coincident curves are the 
figure of merit for a rotor with tilted lift but infinite 
number of blades.  The lowest curve is for tilted lift and 
finite number of blades (i.e., the Goldstein solution).  One 
can see that blade number is also an important factor in 
the loss of ideal induced power. 
 



 

 

Figure 13: Effect of Tip Loss on Figure of Merit, 
Lightly-Loaded Rotor. 

     We now wish to see if the finite-state methodology can 
give the correct optimum distribution and figure of merit 
as Goldstein (i.e., as the Prandtl-corrected Betz).  
Makinen, [8],[9] showed that the inflow model can indeed 
match Goldstein provided that a correction is applied for 
the swirl kinetic energy.  Thus, the added energy is added 
to the mass matrix; and the resultant induced flow is 
assumed parallel to the tilted lift vectors.  
     To be precise, the apparent mass matrix m

nK    
(diagonal), must be replaced to include the effect of the 
wake swirl.  There are different swirl corrections that can 
be applied, but from Ref. 8 the following correction gives 
the best results. 
 

[ ] [ ]
2

2 m
m m m m
n n nj nK K I m I A K

Q
κλ −          ⇒ + −               

(75) 
where κ =2.2, Q is the number of blades, and λ is the total 
inflow.  It should be noted that for an actuator disk (no lift 
tilt), κ is set to zero. 
     When the dynamics of the unsteady blade-passage is 
added to the dynamic wake model, (see Ref. 8) shows that 
the L%  used in axial flow, 0

njA   , is replaced by the 
following. 

0
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,2 ,3 ,...

12
0

2

nj

Tm m
nj nj

m Q Q Q

m m m m
n nj n nj

L A

E A

m K A K E
λ

−

=

−

   = +  
      

         +            

∑

%

         (76) 

The 0m
njE    matrix is the expansion transformation matrix 

(Ref. 8) defined as: 

( ) ( )10 0

0

m m
nj n jE P P dν ν ν= ∫                      (77) 

 
Performing the optimization for this case, and using 
finite-state methods, the figure of merit is obtained.  The 
{ }m

nC remains the same as for an infinite number of 
blades.  There is no change in the values because 
physically these coefficients are a fit of the function 

cosν ϕ , and for an actuator disk cos 1ϕ = .   

{ } { }1
. . 2

Tm m
finite state n nK F M C L C

−

−  = =  
%          (78) 

 
     Once the theory has been verified, some useful plots 
of induced power for different numbers of blades at 
various climb rates can be obtained, as it is shown in 
Figure 14.  The importance of this graph is that the effect 
of finite number of blades on the induced power can be 
noticed.  It is seen that induced power increases for a 
decreasing number of blades.  It is an expected result, as 
the ideal induced power exists for an infinite number of 
blades (for Prandtl is k = 1).  The profile of the curves is 
similar to the one observed for infinite numbers of blades 
at different thrust coefficients.  The �bucket� effect is 
present here also, and the general profile is maintained.  
Thus, the effect of these differences for finite number of 
blades affecting the induced power is as less critical as the 
increase in induced power due to lift tilt. 

Figure 14: Induced power coefficient comparison for 
various numbers of blades. CT = 0.02. 

 
     Finite-State methods should agree with the theory 
developed by Goldstein [10] for every flight condition in 
axial flow.  There is no closed-form solution or 
expression that Goldstein developed for the theoretical 
figure of merit for a lifting rotor with a finite number of 
blades.  However, Makinen [8],[9] was successful in the 
further development and application of the finite-state 
method to obtain circulation for a given induced velocity.  
These circulation results are in agreement with 



 Goldstein�s circulation for an optimal propeller, as it 
is shown in Figures 15 and 16.  The fact that the 
application of finite-state methods provides an accurate 
optimal circulation results in the confidence that the 
calculations of figure of merit for this special case will 
also be accurate. 
     Figures 15 and 16 show the circulation at any radial 
position of the blade using Prandtl�s approximation, 
Goldstein�s optimal circulation, and Makinen�s results 
with the swirl velocity corrections made to the apparent 
mass matrix in Equation (75).  Figure 15 is for a µ0 = 5 (λ 
= 0.20) and Figure 16 is for µ0 = 20 (λ = 0.05).  It is 
noticed that Prandt and Goldstein�s circulations give 
results that are very close to each other.  Since there is 
such close agreement in both approaches, and there is a 
figure of merit expression for Prandt�s approximation, the 
finite-state approach could be comparabe to Prandtl�s 
approximation.   
     It is not surprising that the quadratic optimization with 
the dynamic wake model gives the correct figure of merit 
due to both lift tilt and finite number of blades.  Figures 
15 and 16 (from Ref. 8) show that the dynamic wake 
model (with swirl correction) gives the correct inboard 
(swirl) and outboard (tip loss) velocities. 

 
 

Figure 15: Circulation at any blade radial location for 
Prandtl, Goldstein, and using Finite-State methods. 

Plot obtained from [8],[9].  

 
Figure 16: Circulation at any blade radial location for 

Prandtl, Goldstein, and using Finite-State methods. 
Plot obtained from [8],[9]. 

 
Future Work 

 
     Since the method has been validated, the theory can be 
applied to the same cases for skewed flow.  Most of the 
approach for skewed flow is similar to that for axial flow.  
The case for an actuator disk with an infinite number of 
blades will be revisited.  However some changes will be 
done for forward flight.  For this case, momentum theory 
predicts that the optimum induced power is obtained for a 
constant pressure distribution (similarly as to what 
happened for axial flow) but the induced velocity profile 
will no longer be constant.  For an actuator disk with an 
infinite number of blades, we have already applied the 
finite-state model and verified that it gives the Glauert 
solution of uniform pressure.  However, to go on to the 
other cases, all harmonics (and their periodic coupling) 
will need to be included.  The rest of the special cases, 
for an actuator disk with a finite number of blades and for 
the two cases for a lifting rotor, will provide results never 
obtained before.  The results will hopefully provide the 
conclusion as to why the experimental minimum induced 
power for a helicopter is orders of magnitude greater to 
what theory predicts should be.  These results could allow 
determining what changes, if any, should be introduced in 
the rotor to reduce the minimum induced power.   
     The formulation for the figure of merit in forward 
flight will remain similar to the general figure of merit 
shown by Equation (52): 

{ } { }
1

. . 2
Tm m

finite state n nK F M C L C
−

−
 = =    

 
However, the coefficients and the L-matrix will be 
different than the ones obtained before, and also different 
for each of the four cases. 



 The main difference for skewed flow is that when 
calculating the cosine of the inflow angle the advance 
ratio, µ, must be considered.  Equation (43) again is: 
 

( )2 2

sincos
sin

r

r

µ ψϕ
µ ψ λ

+
=

+ +
 

 
where r is the radial position along the blade and  ψ is the 
angle at which the rotating blade is with respect to the aft 
position of the rotor.                
     For skewed flow, the total inflow also changes.  The 
total inflow for axial flow was defined before as:  
 

2

1
2 4
η ηλ η ν= + = + +  

and it was derived from momentum theory for a uniform 
induced flow distribution.  In forward flight, the total 
inflow becomes: 

λ η ν= +                                 (79) 
where the normalized inflow is the solution of Equation 
(80) for given normalized climb rate and advance ratio. 
 

( )221 ν µ ν η= + +                          (80) 
 

     These changes will affect the optimum coefficients, 
but the L-matrix will also be altered because the skew 
angle is no longer zero, and so there are more harmonics 
than the m = 0 for axial flow.  The expression for this 
matrix will be obtained using He�s formulation 
(Equations (13)). 
     With the results in forward flight, the study of 
minimum induced power will be complete for any flight 
condition. 

 
Conclusions 

 
     The objective of this paper is to validate the use of 
finite-state methods to obtain accurate minimum induced 
power results.  The theory is validated by the comparison 
to classical solutions for the figure of merit.  The results 
compare favorably for a variety of flight regimes in axial 
flow.  The current method was verified for: 1) an actuator 
disk with an infinite number of blades, which was in 
agreement with the predictions made by momentum 
theory; 2) for an actuator disk with a finite number of 
blades, which proves similar results as to the ones 
obtained by Prandtl; 3) for a lifting rotor with an infinite 
number of blades, which agrees with Betz�s distribution; 
and 4) for a lifting rotor with a finite number of blades, 
which should agree with Goldstein�s solution, but was 
compared to Prandtl�s approximation modified to include 
a finite number of blades. 
     Because the method has been validated for all the 
cases in axial flow, it is hopeful that the formulation can 

be used to obtain results for skewed flow in all four 
special cases.  These will result in the fulfillment of the 
complete scope of flight conditions for a helicopter, and 
will provide a greater understanding on what the 
requirements are for minimum induced power conditions.       
     Also, because of the results obtained by Ormiston 
[1],[2], a conclusion as to what makes the induced power 
to increase well above ideal values should be found.  
These studies will determine which of the three main 
causes for the increment of induced power is the most 
important: the fact that a real rotor has a finite number of 
blades, the limitations in lifting capabilities of the blades 
as airfoils, or the tilted thrust that produces swirl velocity.   
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Addendum 
 
     Equations (52), (65), (73), and (78) give formulae for 
Figure of Merit for a lightly-loaded rotor.  Thus, to be 
precise, they are actually formulae for thrust deficiency K.  
This thrust deficiency is a function of λ, the flow rate.  In 
order to extend these formulae to apply to rotors with 
significant loading (i.e., ν not small relative to η) one 
must correct for the lift deficiency in the momentum 
equation (54).  This is done as follows. 
     First, λ is computed without thrust deficiency 
 

2

2 2 2
TCη ηλ  = + + 

 
 

and this λ is used to compute the thrust deficiency K.  
Next, K is used in the momentum theory to compute 
Figure of Merit. 
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T

lightly loaded

T
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F M
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K

η η

η η
−

   + + 
   =
   + +    

           (81) 

 
For lightly loaded, η2  >> 2CT, this reverts to F.M. = K.  
For hover, η = 0, this reduces to  
 

3 / 2. .
hover

F M K=  
 

Thus, Equation (81) is the Figure of Merit for full loading. 


