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ABSTRACT 
 
Driver assistance and performance monitoring 
systems are currently being applied in modern cars 
in order to enhance safety. However, these systems 
have to answer certain concerns raised by 
manufacturers, legislators and users. These include, 
degree of intrusiveness (warning messages, tactile 
feedback, taking control of the car), ability to 
respond to different driving contexts and system 
reliability under varying road and environmental 
conditions and driver reliability. By combining 
inexpensive and non-intrusive sensors with state-of-
the-art signal processing, probabilistic theory and 
artificial intelligence for signal analysis and 
modelling, it is possible to present a solution to all 
the above concerns to a certain extent. To 
investigate this extent, highway scenario simulator 
experiments have been conducted including 30 
drivers in normal physical condition and impaired 
conditions due to lack of sleep. A simulator 
equipped with a near-infrared eye-gaze tracker, 
strain gauges to measure force on the steering 
wheel column (SWC), and potentiometers to 
measure steering wheel and throttle angle has been 
used. In addition to these core sensors, two 
webcams have been implemented to view the driver 
and to track lane-keeping. Raw data have been 
obtained comprising eye movement, force on SWC, 
vehicle speed, lane deviation, and human activity 
from the webcam. The data are first processed up to 
a level where all signals are one dimensional and 
continuous. Secondly, metrics have been derived 
using derivatives, histograms and entropies of the 
signals. These metrics are then tested against a 
ground truth risk level obtained from a driver 
survey and from independent observers. After 
selecting the best metrics for driver performance 
indication, different time windows for metric 
derivation are compared and the driver sessions are 
classified by a Fuzzy Inference System The system 
works well on the simulator data, with a 98% 
correct classification rate and is now being 
implemented in real conditions on real roads.  
 
INTRODUCTION 
Active safety depends on how well the vehicle is 
equipped for accident avoidance and prevention. 
However, a well-equipped car can still be involved 
in a severe accident if the driver of the car is not 

monitored. Detection of low performance of the 
driver due to fatigue, sleepiness and inattentiveness 
is crucial for active safety systems to operate on 
time considering the condition of the driver. Any 
solution to this problem could significantly in 
reduce the number of the accidents because 
thousands of car accidents are caused by low driver 
performance and condition [1] Therefore, 
experimental studies in search of indicator signals 
and studies to define the best way of using these 
signals to obtain a high correct classification rate 
and low number of false alarms are conducted. Eye 
tracker systems become centre of attention in 
computer vision domain. Different eye tracking 
systems together with head tracking algorithm are 
suggested based on near infra-red or visible light 
using different hardware architectures. Eye closure 
metric PERCLOS is identified as a good 
psychomotor indicator and validated against EEG 
[2]. In [3] the steering wheel angle is considered as 
an indicator signal and Artificial Neural Networks 
(ANN) are used as decision mechanisms. There are 
studies to use statistics, regression analysis [4] and 
fuzzy systems [5] for decision making using the 
indicators.  In addition to mainstream approach 
alternative signal modelling approaches are also 
suggested such as system identification (SI). [6] 
Despite the vast amount of research on the issue, 
the questions including degree of intrusiveness, the 
cost and feasibility of the system, and the final 
output form have not been satisfactorily addressed. 
In order to answer these questions, the best 
indicator signals which can be measured non-
intrusively using a low-cost sensor system are 
investigated. The first section defines the proposed 
multi-sensor system from this point of view. Next, 
derivation of best metrics representing signal 
characteristics and extraction of high-level 
information from raw signals is discussed. These 
metrics are grouped under different combinations in 
search for an optimal feature space. In some feature 
spaces, some of the metrics are not included on 
purpose to observe the effect of missing sensor data 
on performance of decision making system. The 
effect of time window size during which the feature 
vectors are calculated, on the prediction 
performance is investigated and optimum window 
size is determined. Finally, the decision systems are 
investigated and the results of training and testing 
of decision systems are reported.  
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Multi-Sensor System Structure 
 
Detection of driver vigilance and quantitative 
measurement of states are difficult problems due to 
three system design requirements: 
 
* Non-intrusiveness: The measurement systems 
must be non-intrusive to driver. 
* Robustness and Reliability: System should be as 
reliable as possible to represent the real vigilance 
state and robust to compensate sensor failures.  
*Low-cost and Feasibility: The sensors selected for 
measurement system should be low-cost and should 
be connected in a feasible way. 
 
Low cost, non-intrusive sensors and measurement 
methods that can be connected to CAN system of 
the cars are selected. Robustness and reliability are 
addressed under decision selection fusing the 
information from different information channels 
using a multi-sensor system.  
 
The metrics derived from eye movements are the 
most reliable indicators .Therefore, in the core of 
the multi-sensor system, a near infrared computer 
vision system is placed for eye tracking. Because in 
certain cases (e.g. bright sun light, tinned glasses, 
driver out of field of view) eye tracking system 
cannot give reliable results or any results at all, it 
should be supported by peripheral sensor systems. 
This consists of strain gauges to measure the force 
applied by driver on the steering wheel and two 
encoders for measuring the steering wheel angle 
and the throttle angle. In addition to this system, 
there are two webcams viewing driver and the road 
for human movement analysis and for lane tracking 
performance measurement respectively. In brief, 
the peripheral system supports the computer vision 
system for eye tracking and also adds extra 
information about the attentiveness level of the 
driver in terms of vehicle dynamics (e.g. speed via 
throttle angle, steering wheel angle, lane deviation 
via webcam) and human-car interface related 
measures (e.g. force on steering wheel). Multi-
sensor monitoring system arrangement and 
experiment geometry can be seen in Figure 1. 
 
 
 

 
 
Figure 1. Multi-sensor system structure and 
experiment geometry 
 
Experiment Design and Conditions 
 
Thirty drivers with different level of driving skills 
and driving behaviour took place in the experiment 
and they drive the STISIM car simulator for about 
1.5 hours. Each subject drove the same route twice 
under normal conditions and sleep-induced 
conditions. In the normal driving sessions drivers 
had their normal daily sleep need before taking part 
in the experiment, whereas in the ‘sleep deprived’ 
session they were requested to sleep at least 3 hours 
less than their usual sleep need. In order to induce 
sleepiness, this session took place between 2-4 pm 
in which the circadian rhythm of the body is known 
to decrease. Driving scenario is a monotonous 
highway scenario with no curvatures on the road, 
helping to induce sleepiness as well. 
In order to separate the driving task into 
longitudinal and lateral control actions and to 
observe the distribution of the attention during the 
driving, drivers were given special instructions. 
Firstly, they were requested to keep their speed at 
55 kmph during the session; therefore they needed 
to adjust their longitudinal control commands by 
changing throttle angle. Second instruction was to 
choose a lane and keep the lateral position of the 
car as stable as possible minimising lane deviation. 
In fact, these two requirements represent two rules 
that drivers should obey in a highway not to have 
any risk. The speedometer is arranged in front of 
the screen as a slide bar just underneath the road 
view. The drivers needed to look at different 
heights to check for the speed (speedometer) and 
for the lateral position (road view) changing their 
eye gaze. By this way the distribution of their 
attention during the experiment is expected to be 
measured from the gaze vector output of the 
computer vision unit.  
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Figure 2.  Data reduction and database preparation procedure 
 
 
Data structure and analysis  
 
The raw data obtained from the controlled 
experiment comprises the following list: 

• Video stream containing near infrared frontal 
face images of the driver. 

• Strain data from strain gauges on the steering 
wheel. 

• Speed and steering wheel angle from the 
potentiomers in the simulator on steering wheel 
and on throttle respectively. 

All the data should be reduced into one dimension 
first and then to some metrics/features 
characterising the signal. This data reduction 
procedure can be seen in Figure 2.  
 
Metric Development- In order to derive the 
metrics all the information are reduced to one 
dimensional signals changing versus time and are 
synchronised. Development of good metrics 
depends on how well the nature of the signal is 
understood.  Different metrics developed for this 
study are explained here briefly without giving 
details of low-level processing algorithms for the 
sake of brevity and focus.  
*Visual Metrics: The first metric group is derived 
using the raw signals from computer vision system. 
The near infrared video stream of driver faces is 
processed to segment the eye image containing 
pupil and glint features. An example of segmented 
pupil area and glint can be seen in Figure 3. The 
vector between the centres of the pupil and glint 
can be mapped to the real coordinate of where the 
eye gaze is directed. The gaze is the direction of the 
eyes when the fovea is centred on the scene being 
seen, thus at the time when the frame is captured 
the attention is focused on that point. The one 
dimensional visual signals are constructed 

measuring pupil area, x and y component of the 
gaze vectors and x and y components of the pupil 
centre to measure the head coordinates. 
 

 
 
Figure 3. Segmented pupil area showing the 
pupil area, glint (corneal reflection) and defined 
gaze vector 
 
Samples of gaze vector y component, pupil area 
and head x and y component measurements are 
given in Figure 4. In order to derive the metrics 
from one dimensional signal, an exploratory 
analysis is conducted. In this analysis, standard 
deviations, mean values and entropies of the signals 
are taken. In addition to these three variables, the 
histograms of the signals are taken over a 
predefined time window in order to follow signal 
value distribution over time. Each driving session is 
divided into 12-minute long sub-sections taken 
from start, middle and finish parts of the session. 
By constructing histograms of gaze x, gaze y and 
pupil area some characteristics that are not visible 
from signal-time diagrams are obtained. Three 
visual metrics are defined based on histograms: Eye 
closure metric 1(ECM1), Eye closure metric 2 
(ECM2) and Attention division ratio (ADR).  
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Figure 4. Samples of pupil area head position x and y and gazey 
 
The histograms of gaze x, gaze y and pupil area are 
shown in Figure 5 for a normal/alert and 
impaired/drowsy driver. There are two clear 
observations that can be drawn from histograms: 
1. Gaze y values between [-1 and -0.5] represents 

road scene changing eye gaze, thus the attention 
is on the road scene. For the values between [-
0.5 and 0] the attention is focused on 
speedometer. Gaze y histogram has an equal 
distribution of attention to these two defined 
intervals at the start of the simulation for both 
alert and drowsy drivers. However, as the time 
proceeds the distribution of gaze y concentrates 
in speed checking region. Both alert and drowsy 
driver follows the same trend, however, the 
distribution change towards the speed checking 
interval is more rapid and dramatic in drowsy 
driver. 

2. The number of closed eyes [0] and open eyes   
[1] and intermediate states if any can be seen in 
pupil area column of the histogram. As the time 
proceeds the proportion of number of closed 
eyes to the number of open eyes increases. Both 
alert and drowsy drivers follow the same trend 
however the proportion increases dramatically 
in drowsy state. 

 
 

 

 
 
Figure 5. Histograms of alert (top) and drowsy 
(bottom) drivers 
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In the light of these observations ECM1 and ECM2 
are derived from pupil area histograms of three sub-
sessions of the whole driving session. These eye 
closure metrics are similar to PERCLOS measured 
by [7], however defined over a longer time period. 
The attention division ratio (ADR) is derived from 
the gaze y column of the histograms by dividing the 
number of gaze measurements in speed checking 
interval to the number of gaze measurements in 
road checking interval.(1) 
 Eye Closure Metric (ECM1) emphasizes the 
number of blinks by taking the proportion of fully 
closed to fully open eye cases, whilst ignoring the 
cases in between. The second metric of eye closure 
(ECM2) represents partially closed cases as well as 
fully closed eye cases in the denominator of the 
ratio. (2 and 3) 
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In addition to these newly defined metrics, the 
entropies and standard deviations of the signals are 
also used. The entropy of the signals is calculated 
as in information theory given in (4). 

i

n

i
i xxentropy log

1
∑

−

=    (4) 

To sum up, the visual metrics are the standard 
deviation, entropy and mean value of gaze x, 
standard deviation and entropies of head motion x 
and y components, ECM1, ECM2 and ADR.  
*Non-visual Metrics: These are the metrics 
obtained from vehicle dynamics (speed and steering 
wheel angle) and human-car interface (force on 
steering wheel) signals. A sample of these signals 
can be seen in Figure 6.  
As in the visual metric development the standard 
deviation and entropy is used to measure the scatter 
and complexity in the signal. In addition to this 
general approach, two control metrics are derived 
from the speed indicating longitudinal control 
performance. As can be noticed from Figure 6, the 
speed graph resembles the response of a PID 
controller. In fact, drivers are told to keep their 
speed at 55 kmph; therefore, driver acts like a PID 
controller to keep this reference value with some 
small deviations. These small deviations can be 

added up to give total steady state error of the 
driver after settlement. Integral of the standard error 
and integral of the average error is taken as 
performance indicators of longitudinal control as 
given by (5 and 6). 
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Figure 6. Sample data from non-visual information 
channel: speed (km/h), lane deviation (m), steering 
wheel angle (degree) and force (normalized to [-1, +1] 
N interval), time (simulator time unit is seconds) 
 
Feature Spaces and Feature Selection 
In order to find the best feature space to represent 
the signals, three different feature space has been 
constructed. The first feature space (F1) contains 
only the visual metrics, the second (F2) contains 
entropy and control values and finally the third 
feature space (F3) has visual metrics and standard 
deviations. The first feature space is constructed to 
observe how well the visual metrics can predict the 
drowsiness level of the driver. The second feature 
space leaves out the visual metrics so that it 
becomes observable how well the control and 
entropy related metrics can predict without using 
visual cues. Finally, the third space represents a 
visual metric space backed up by standard values of 
other metrics. The member of these three spaces 
can be seen in Table 1.  
Apart from these three feature spaces a ‘best feature 
space’ is constructed after considering the results 
from correlation analysis. The ground truth risk 
level obtained from independent assessment and  
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Table 1.  Different feature vectors are designed to investigate the best representation of the phenomena 

Visual Cues (F1) Entropy and Control (F2) Visual Cues  and Standard Deviations(F3) 

 
Eye Closure Metric 1 
Eye Closure Metric 2 
Attention Division Ratio 
Gaze x Mean 
Gaze x Standard Deviation 
Head Motion in x Standard Deviation 
Head Motion in y Standard Deviation 
 

 
IAE 
ISE  
SWA Entropy 
Gaze x Entropy 
Force on SWC Entropy 
Head Motion x Entropy 
Head Motion y Entropy 

 
SWA STD 
Force on SWC STD 
Eye Closure Metric 1 
Eye Closure Metric 2 
Attention Division Ratio 
Gaze x Mean 
Gazex Standard Deviation 
Head Motion Standard Deviation 
Head Motion y Standard Deviation 

 

Table 2.  Best feature space members selected by p<0.05 criterion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
surveys and  metrics are taken into correlation 
analysis  as in (metric, ground truth drowsiness 
level)pair for each metric separately  . The metrics 
having high correlation coefficient ,r, and small 
values of signifance ,p, with ground truth 
drowsiness level as a result are selected as best 
metrics to construct best feature space. Best feature 
space members are given in Table 2 together with 
their p values. The members are selected by taking 
their p and r values into account. The metrics 
having  p<0.05 and r>0.2 is considered as having 
high enough correlation to actual drowsiness level 
expressed by ground truth. 
Decision Systems and Results 
After constructing the feature spaces from 
calculated metrics, a decision system should be  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

trained to detect impaired and normal states of the 
drivers. In order to train the decision systems, 
database containing the feature spaces are divided 
into train and test data groups.  Supervised learning 
method is used and ground truth acted as teacher to 
shape the artificial intelligence system to produce 
rules using available metrics. Because the 
drowsiness level can be judged by people and the 
available information is fuzzy nature, the Fuzzy 
Inference system is chosen as a good candidate to 
mimic this decision making process. Thus the 
system is expected to behave like a co-pilot 
detecting the impaired driver and the level of the 
risk involved. Finally, the effect of the time window 
selection in calculating the metrics are analysed 
using different time windows and training separate 
FIS for each time window selection.  

FV Members P (signf.) 

ECM1 0.000 

ECM2 0.000 

AttDivRatio 0.002 

Head motion-x Std 0.001 

Head motion-y Std 0.000 

IAE 

ISE 

SWA Entropy 

Force Entropy 

Force Std 

0.019 

0.042 

0.007 

0.036 

0.022 
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Fuzzy Inference Systems- FIS can be of mainly 
two types: Mamdani [8] and Sugeno-Takagi [9]. 
The first System constructs the rule base of the 
system from expert knowledge and is transparent to 
the designer of the system. Any rule can be added 
to or removed from a Mamdani FIS. On the other 
hand, Sugeno-Takagi system uses data to extract 
the rules in terms of linear relationships between 
the inputs to yield the output, thus it is data driven. 
If how the measured metrics were connected to the 
drowsiness level was known, the choice should be a 
Mamdani system. However, in our problem the 
rules expressing the relationship between the 
metrics and level of impairment and involved risk is 
not clear. Therefore, this investigation asks a two 
way question to find the best feature spaces and 
best decision system. For this reason, Sugeno-
Takagi system is used to reveal the relationships 
mathematically to construct a rule base. A sub-
clustering method is used in deriving the Sugeno-
Takagi (S-T) based FIS. 
The fuzzy C-means algorithm is an iterative 
optimization algorithm minimizing the cost 
function in (5). 
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where        
n : number of data points, c : number of clusters 

kx : kth data point 

iv : ith cluster center 

µik: degree of membership of kth data in ith cluster, 
m : constant  
When the input precisely matches with the centre of 
the cluster, this definition guarantees that the input 
will have zero membership coefficients for other 
clusters. It guarantees that the separate clusters are 
formed allowing the rules based on them to be 
defined. The mapping from the input space to 
output space is then performed using the rule base 
extracted by this method.  
A Sugeno-Tkagi  (S-T) FIS system is trained using 
150 sessions of database collected from 30 subjects 
and tested using 18 sessions that are completely 
new to the trained system. The result of the S-T FIS 
trained for F1 feature space is given in Figure 
7showing that the decision system was able to 
predict most of the cases.  
 
 
 

 
Figure 7. Output of S-T FIS vs Risk function 
over F1 space 
The performances of F2 and F3 feature spaces are 
given in Figure 8 and 9 respectively. F2 feature 
space containing the control and entropy metrics 
and lacking the visual metrics is not successful in 
predicting the test data precisely. 

 
Figure 8. Output of FIS-S-T system vs Risk 
function over F2 space 

 
Figure 9. Output of FIS-S-T system vs Risk function 
over F3 space 
Adding standard deviation values of non-visual 
metrics to visual metrics caused a drop in 
performance when compared to F1. However, F3 is 
still advantageous to F1 because it does not solely 
depend on the visual metric. When the visual 
metrics become completely unavailable F3 can still 
judge the drowsiness level based on non-visual 
metrics it contains. On the other hand F2 feature 
space shows that it is not enough to include only 
control and entropy related metrics, the visual 
metrics are of crucial role in the system. 
The performances of these three feature spaces are 
summarised in Table 3.  
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Table 3. Performances of three feature spaces using S-T FIS for decision making
 
After observing the feature space performances 
from F1, F2 and F3, it is decided that the best 
feature space,F4, should  be put under test to obtain 
an optimum performance form the available 
metrics. This feature spaces includes only the 
metrics having high correlations with ground truth 
as explained before. The test results from F4 space 
is shown in Figure 10. 

 
Figure 10. Test results of S-T FIS using F4 space 
 
Feature space F4 was able to correctly identify 98% 
of the sessions; therefore, proving to be the best 
feature space. For the rest of the analysis including 
time windows, therefore, F4 will be used and 
tested.  
The next step in our investigation is to analyse the 
effect of the time window on the performance of 
the decision system. For this reason, the time 
window is successively halved to obtain 6 min, 3 
min and 1.5 min intervals corresponding to 1000, 
500 and 250 frames of the video segments of the 
NIR computer vision system. The results of 6-min 
time window is given in Figure 11. 

 

Figure 11. Output from S-T FIS using 6-min 
time window in calculating feature space 
 

 

 
Figure 12. Output from S-T FIS using 3 and 1.5 
min time window in calculating feature space 
 
As the time window for the calculation of the 
feature vectors narrows down the system is able to 
track the general trend efficiently however after 3 
min it begins to fluctuate. The fluctuation occurs 
because of the quantization and re-sampling 
between the data points. However, the system is 
able to give reasonable response for each time 
window. Preferably the 3 min time window is a 
good compromise between fast response and 
generalization capability or tracking capability of 
the general trend. These observations can be 
tracked from Figure 12.  

F1 F2 F3 PERFORMANCE 

COMPARISON Success 

(%) 

False 

Alarm (%) 

Success 

(%) 

False 

Alarm (%) 

Success 

(%) 

False 

Alarm (%) 

Mamdani  90 10 80 20 85 15 

Sugeno-Takagi 98 none 90 10 95 5 
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CONCLUSIONS 
 
In this study, a multi-sensor driver vigilance 
monitoring system is designed using the-state-of-
the-art signal modeling techniques and Fuzzy 
Inference Systems. This study investigates three 
important aspects of monitoring system design 
problem: reliability, availability and robustness. In 
order to find an answer these three requirements, 
best feature space, the time window used in 
calculations and an optimum decision system are 
sought after.  As can be seen from the results, the 
visual channels of information are proven to be the 
most powerful signals to detect the drowsiness and 
associated risk. In addition to conventional eye 
closure metrics, a new metric developed to measure 
the distribution of the attention of the driver. It has 
been found highly correlated to the involved risk 
level due to drowsiness. The best feature space is 
defined according to correlations with the perceived 
risk level. Finally, it is concluded that a Fuzzy 
Inference System using a feature space containing 
visual metrics of eye closure, attention distribution, 
head movement and non visual metrics of entropies 
of the steering wheel angle and the force on the 
steering wheel supported by control performances 
(IAE and ISE) of the longitudinal speed is the best. 
The best time window for calculating the metrics is 
identified as 3 minutes.  
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