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The purpose of this project has been to expand the Crash Victim Simula- 
tion software, originally developed at Calspan Corp. The objectives were to: 
1. review the capability of advanced features of the software; 2. improve the 
contact algorithm in the CVS; 3. develop software for use in correlation and 
validation studies; and, 4. apply the software to problems in side impact. 

This report is organized in three volumes which are supplementary to 
existing CVS documentation. The first volume describes the analysis of new 
features (moveable contact surfaces, sharing of deflections between ellip- 
soids and contact surfaces, and bivariate representation of force-deflection 
characteristics in deflection as well as deflection rate). This volume is 
intended for the analyst who wishes to understand the basic assumptions in- 
corporated in this model. Volume II presents an updated User's Manual for tl- 
entire CVS model which is expected to serve as sufficient documentation for 
/the ordinary user of the model. Volume III presents information concerning 
the CVS model as a computer program and is intended for professional program- 
mers who need to study or make changes in the program. 
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1.0 INTRODUCTION 

1.1 General 

The purpose of this project has been to expand the Crash Victim 

Simulation software, originally developed at Calspan Corp. The objec- 

tives were to: 1. review the capability of advanced features of the 

software; 2. improve the contact algorithm in the CVS; 3. develop soft- 

ware for use in correlation and validation studies; and, 4. apply the 

software to problems in side impact. This three volume report consi- 

ders the first two of the objectives. 

1.2 Organization of Report 

This report is organized in three volumes. The first volume deals 

with the analysis of the new features and is supplementary to the ini- 

tial CVS writeups (1) and updates (2). This volume is intended for the 

analyst who wishes to understand the basic assumptions incorporated in 

this model. The second volume presents an updated user's manual for the 

entire CVS model as now constituted and is expected to serve as suffi- 

cient documentation for the ordinary user of the model. The third vol- 

ume presents information concerning the CVS model as a computer program 

and is intended for professional programners who need to make changes in 

the program. 

Volume One contains sections dealing with the new ellipsoid-plane 

contact algorithms, the material properties now available, and shared 

deflection. 

Volume Two contains sections dealing with the updated, machine- 

produced input writeup, a general description of output options and an 

example run. 

Volume Three contains sections describing the layout of packing 

tables for variable information, the structure of the program and a de- 

tailed layout of possible output from the program. 

1.3 Scope of Chanqes 

The HSRI Version of the CALSPAN CVS Model is based on Version 18A 

of that model augmented by some of the corrections of Version 19 con- 
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cerning Euler joints. HSRI refined the contact algorithms for ellipsoid- 

panel interactions. Three important basic problems in the contact algo- 

rithms were addressed. The first problem is accurate computation of de- 

flections even for the case of complete penetration of an ellipsoid into 

a contact surface. The second problem is the computation of contact 

forces based on mutual deformation of the interacting elements. The 

third problem is handling of permanent deformation by contact surfaces. 

- 

- 

- 

- 

- 

- 

The contact section of the old CVS was largely replaced with an al- 

gorithm based on the approach taken in earlier HSRI models(3,4,5) in- 

corporating some of the ideas of British Leyland (6). In our early 

dealings with the old CVS, we modified the input section to read and 

check the ID field of the input cards. In addition, we modified the out- 

put section to use only one logical device and to print optionally in 

equal increments of simulated time. These changes were made to partially 

facilitate the use of the model. A more general specification of vehicle 

initial conditions and more flexibility in reporting of kinematics were 

later incorporated for the same reason. In general, we have followed 

the policy of making changes only where such changes were defendable by 

their utility to Occupant Side Impact Simulation. 

1.4 References 

1. Fleck J. T., Butler, F. E., Vogel, S. L., "An Improved Three-Dimen- 
sional Computer Simulation of Vehicle Crash Victims", Calspan Corp., 
Buffalo, 4 vols., NTIS Nos. PB241692-5. 

2. Butler, F. E., Addendices to reference l., A-K, Calspan Corp., Buf- 
falo, unpublished. 

3. Robbins, D. H., Bennett, R. O., and Roberts, V. L., "HSRI Three-Di- 
mensional Crash Victim Simulation: Analysis, Verifications; Users' 
Manual, and Pictorial Section," HSRI, The University of Michigan, 
Ann Arbor, NTIS No. PB208242, June, 1971. 

4. Robbins, 0. H., Bennett, R. O., and Bowman, B. M., “HSRI Six-Mass, 
Three-Dimensional Crash Victim Simulation," HSRI, The University of 
Michigan, Ann Arbor, NTIS No. PB239476, Feb. 1973, 302 p. 

5. Bowman, B. M., Bennett, R. O., and Robbins, D. H., "MVMA Two-Dimen- 
sional Crash Victim Simulation, Version 3," HSRI, The University of 
Michigan, Ann Arbor, 3 vols., NTIS Nos. PB235753/1, 236907/2, 
236908/O, 684 p., 1974. 
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6. Butterfield, K. R., "The Computation of the Maximum Penetration of an 
Ellipsoid Through a Panel," Report No. NA2, British Leyland, unpub- 
lished, July 1976, 5 p. 



- 

- 

- 

- 

- 

- 

- 

2.0 Ellipsoid-Plane Contact Determination 

A body segment in the form of an ellipsoid contact and penetrates a 

vehicle panel in the form of a parallelogram. To determine the force that 

is developed by this contact, a penetration depth, 6, must first be deter- 

mined. This section presents expressions for penetration due to the var- 

ious possible ellipsoid-panel contacts. 

Section 2.1 describes the geometry and defines penetration for mid- 

plane, edge, and corner contacts. 

Section 2.2 presents a derivation of expressions for the mid-panel 

case. 

Section 2.3 deals with penetration at edge one. 

Section 2.4 deals with penetration at a general edge. 

Section 2.5 presents the results of Section 2.4 for each of the other 

three edges. 

2.1 Definition of Penetration 

We define an x, y, z, coordinate system by taking the x-y plane as the 

panel surface with the positive x-axis along one edge. The coordinates of 

the center of the ellipsoid in this system are (x0, y,, to). The principle 

axes of the ellipsoid are 5, n, r with semi-major axes lengths of a, b, c 

respectively so that the ellipsoid equation in this system is: (Refer to 

Figure 1.) 

The two systems are related by 

(2) 

- 

- 



where 

and where i, j, i are unit vectors 

Figure 1 Ellipsoid Seen In Panel System 

The z value of the point on the ellipsoid which attains the absolute 

minimum z value (the lowest point of the ellipsoid) will be termed -6 max. 

If this point lies within the panel boundary and is beneath its surface, 

then we define penetration 6 to be equal to 6 max. 



- 

- 

- 

- 

- 

Even if the location of 6 max is outside the panel boundary, there is 

still a possibility of intersection with one or more of the edges of the 

panel. In this case, we determine a lowest point for each of the four 

edges of the panel define each edge penetration to be the negative of the 

z coordinate of the corresponding low point, and finally define penetration 

to be maximum of the four: 6 = max (61, 62, 63,641. 

An edge penetration can best be described for the edge formed by line 

segment OPl in figure 1 (edge one); the other edges are entirely similar. 

Figure 2 illustrates two views of edge one. Figure 2a shows the x-z plane 

in the panel system while figure 2b shows the y-z plane. 

Figure 2a Figure 2b 

x-z Intersection El 1 i pse y-z Projection Ellipse 

- 

- Figure 2a shows the intersection of the ellipsoid and the x-z plane 

whereas figure 2b shows an orthographic projection of the ellipsoid onto 

the y-z plane so as to contrast 61 from 6 max. 

6 



It may happen that the lowest point in the intersection of the ellip- 

soid with the x-z plane lies outside the panel boundary. One of these cases 

is illustrated in figure 3. 

x 

Figure 3 Minimum Above Panel'Boundary 
P 

If the x-coordinate of the lowest point is greater than x1, then we 

define the edge penetration to be the distance from the panel surface to 

the point on the ellipse which is directly beneath xl:gl. Similarly, 

if the x-coordinate of the lowest point is less than x = 0, as shown in 

figure 4, then we take as the edge penetration the distance from the panel 

surface to the point on the ellipse which is directly beneath x=0:x0. 

2 

Figure 4 Minimum Below Panel Boundary 

- 
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Thus, we see that the different types of penetrations which can arise, 

and for which we must derive expressions, are: 

where the edges are defined in figure 5. 

Y 

OL 
a%-G I 

Qp3 
PI 

k 

C&l 
(A,> (h la) 

(0 

Figure 5 Panel Nomenclature 

2.2 Calculation of Maximum Penetration for the Hid-Panel Case. 

Recalling that the ellipsoid is 

5' - 
& 

and the panel and ellipsoid systems are related by 

- 
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we find that the equation of the ellipsoid in the x, y, z system is 



- 

The coordinates of the lowest point of the ellipsoid can be determined 

as follows. The intersection of the ellipsoid with the z = -6 plane forms 

an ellipse which has the equation 

- 
By performing a suitable translation and rotation, it is possible to reduce 

this equation to the canonical form 

'Ow &rnax is determined by ffnding the value of 6 for which a and 6 vanish 

and this happens if and only if 

- The appropriate root of the quadratic is easily identified and we have 

- 

- 

- 

(8) 
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The ellipsoid intersects the z = -6max plane at the point with the coordi- 

nates 

2.3 Penetration at Edge One 

The intersection of the ellipsoid and the x-z plane is obtained by 

setting y=o. 

(10) 

The coordinates of the absolute minimum z value of this ellipse may be de- 

termined as follows. Setting z = tmin gives us the quadratic equation in 

x: 

The condition that (11) possesses a double root gives a quadratic equation 

in 
3*;- 

The root of this corresponding to the minimum is 

Also, 
c +f t- 

c+-= - IA 

?- 
- 0 

-- 
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Now if X min 1 X1 as pictured in Figure 3, z min satisfies 

If on the other hand, X min 5 0 as pictured in Figure 4, z min satis- 

fies 
2 

c4UF 4 +q,,+J=o 

(16) 

Y'4CJ 

P += X 
(17) 

2.4 Penetration at a Genera? Edge 

We will next consider the penetration at an edge defined by y = ax+6 

in the panel system. It is convenient to define a coordinate system x', 

y' such that x' lies along the line y = ax+6 with its origin at (xc" xc+8). 
This will be termed the edge system as is illustrated in Figure 6. 

Figure 6 The Edge System 

12 



The two coordinate systems are related by 

where 

R= -- 

The relation between x', y', z' and 5, II, 5 is 

where 

D'= Rb 

Now previously we began with the relation 

13 

(18) 

(20) 
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- 

- 

- 

- 

- 

- 

- 

and we derived formulas for the penetration which results from the inter- 

section of the ellipsoid with the y = 0 edge. Based upon this correspon- 

dence, we conclude that the formulas for the penetration which results from 

the intersection of the ellipsoid with the line y = ax + B is obtained by 

making the replacements 

in the previous formulas. Once these coordinates are worked out, the co- 

ordinates with respect to the x, y, t system can be obtained by making use 

of the inverse transformation: 

Finally, the results for each of the panel edges is obtained by choosing 

appropriate values for a, B, and xc. 

2.5 Penetrations at Edqes Two, Three, and Four 

We present the results obtained from carrying out the method indicated 

in last section for the other three edges. It is convenient to begin by 

defining a series of quantities in order to shorten expressions. 

Let 



where the M..'s are minors of 0. 
‘a 

In what follows, the discriminants of the various quadratic equations 

are given names 'i. Ai are so identified because they give information on 

the type of roots of the quadratic and therefore on conditions for contact 

between the ellipsoid and the panel edges. For example, let us consider 

Al* 

If the x-z plane intersects the ellipsoid in an ellipse, then the 

ellipse will have an absolute minimum and an absolute maximum z value. 

These are obtained by solving a quadratic equation, the minimum corresponding 

to one root and the maximum corresponding to the other. If Al, the discri- 

minant, is positive then these roots are different -- which means we have 

an ellipse. If Al is zero, then the roots are the same and the x-z plane 

contacts the ellipsoid at a single point. If A1 is negative, the roots are 

imaginary and there is no intersection between the ellipsoid and the x-z 

plane. 

Now we list the formulas for the remaining three edges. (Refer to 

figure 5). 

Edge 2: If 0 f 4, f Lb&, we use 
a 

- 

Y 
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- 

No contact with this edge if A5 < 0. If y62 -C 0, then we use 

(25) 

where 

Q,= 0 

%r*=o 
and 

There is no contact with this edge if A3 < 0. 

If x2 2 x63 2 x1 + x2, then we use Edge 3. 

(26) 

where 

No contact with this edge if A7 c 0. 

If 4,+&A< J# 
63 ' 

then we use 

16 



No contact with this edge if ~8 < 0. 

If X6 < x2, then we use 62 as defined previously. 
edge3 

There is no contact with this edge if A5 < 0. 

Edge 4 If 0 2 y6b 2 ~2, then we use 

NO contact with this edge if Alo < 0. J 

IfY2< Yg b,.then we use 63 as defined previously. 
i 

There is no contact with this edge if A8 < 0. 

If Y c 0, then we use 
64 

Y 

(2% 3 

17 



- 

- 

- 

- 

No contact if A2 < 0. 

We also restate the results of Sections 2.7 anA 2.3 in terms of this notation. 

(30) 

18 



2.6 Calculation of Edge Effects 

When an ellipsoid approaches a planar panel from the side, the defini- 

tions of penetration in the previous sections can lead to a discontinuity 

in penetration when the tip of the ellipsoid intrudes below the panel. 

Figure 7 illustrates this situation. 

Figure 7. DISCONTINUITY AT EDGES 

If the material is stiff, the resulting discontinuity in force can up- 

set the tracking of the integration in a way which cutting down the inte- 

gration time step will not be correct. In order to protect against this 

type of discontinuity, force is linearly scaled on as a function of the 

distance of the ellipsoid center from the panel edge which is closest. 

The distance used to scale against is taken as the radius of the 

sphere which circumscribes the ellipsoid. The scaling is adjusted so the 

factor is .5 when the ellipsoid center lies over the dominating edge. 

Figure 8 illustrates the situation. 

19 
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Fiqure 8. Edge Scaling Factor Zones 

The Normal Force Scaling Factor (SF) is defined one when the ellipsoid 

center is over the full contact panel zone (PlH-PZH-P4H-P3H-PlH) and is zero 

when the ellipsoid center +s outside the panel contact zone, (PlL-PZL-P4L-P3L- 

PlL). When the ellipsoid is within the panel contact zone and without the 

full contact panel zone, the Scaling Factor takes on a value between zero and one. 

The Normal Force Scaling Factor is defined as 



MJJ 3” 130) are the coordinates of the ellipsoid center in the 
panel system, 

( 0, 0, 0) are the coordinates of point Pl in the panel system, 

(31) 
Continued 

( 4%) %,o) are the coordinates of point P2 in the panel system, 

( ‘+ J OJ *) are the coordinates of point P3 in the panel system, 

and 

x= max (a,b,c) See Section 2.1 for definitions 
of ellipsoid and panel system. 

2.7 Tangential Forces 

Many material panels resist motion along their surfaces as well as 

motion into their surfaces. Two types of tangential resistance are appro- 

ximated in this model: Coulomb Friction and "Snapback" Force. 

The Coulomb friction is defined as: 

(32) 

- 
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where 

- 

- 

and 

d 

are the inputted friction coefficients, 

is the penetration, 

is the normal force due to load-deflection, 

is the tangential velocity along face of panel, 

is the inputted velocity threshold for full 
friction. 

(32) 

Continued 

The Snapback force deals with the "piling up" of panel material in 

front of the ellipsoid as it continues across the panel surface and is de- 

fined as 

(33) 
where 

G. 
1) h 

and 

Ls 

are the inputted snapback coefficients, 

is the distance along the face of the panel from 
the point of contact. 

- 

- 

- 
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Coulomb friction and Snapback force are combined to form total tan- 

gential force which is scaled to ramp on force for fast moving ellipsoids, 

is also scaled for edge effects, and is also subject to an absolute maxi- 
mum. 

where 

Rea- is the distance from the ellipsoid center and the lowest point 
of the ellipsoid in the Dane7 system, 

Frw is the inputted maximum tangential force, and all other 
quantities as previously defined. 
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2.8 Recognition of Beinq Behind the Panel 

There are many circumstances in which an ellipsoid may be positioned 

behind a panel without having penetrated through the panel (e.g., the feet 

underneath thesteering wheel or the dash). Automatic recognition of this 

situation is handled initially by the simple criteria of whether the ellip- 

soid breaks the plane of the panel and whether it has a non-zero penetra- 

tion as defined in the previous sections. If both criterion are met, the 

intrusion is defined to be from the front. In succeeeding times, the state 

of being behind or coming from the front is remembered in a switch main- 

tained for each interaction. The switch is modified back to the initial 

condition if ellipsoid totally lies above the panel plane or goes out of 

contact to the side of the panel. 

- 

- 

- 

2.9 Calculation of Solid Corner Effects 

It is possible to designate that any panel is the face of a solid. 

In this case, normal edge scaling is replaced with special corner 

scaling when an ellipsoid is deemed to be following the solid round the 

corner. If the user does not so designate a panel, then scaling is ap- 

plied as explained above. Figure 9 illustrates a typical solid corner with 

an ellipsoid moving around the corner. If these two panels are treated ac- 

Figure 9. The Solid Corner Situation 

24 



cording to the rules of the previous sections, at the first two times, the 

ellipsoid will be in full contact with Panel 2 and be beind Panel 1. At 

time tS, edge scaling will reduce the ellipsoid contact with Panel 2 and 

still no contact with Panel 1. At the last two times, we would see in- 

creasing force due to Panel 2 and still no contact with Panel 1. 

The Solid Corner Effect would produce non-zero force due only to Panel 

2 at the first two times, due to both panels at tS and due only to Panel 

1 at the last two times. 

For programming convenience, an additional requirement is made that the 

algorithm required to apply to each panel separately without knowledge of 

the other panel(s) forming the solid corner. An enabling assumption is made 

that the unknown panel(s) lie at right angles to the panel under considera- 

tion. 

where 

40, %I&¶ are the coordinates of the ellipsoid center in panel 
SjY33il, 

and 

is the maximum semiaxis lenath nf the allinsoid. 

Figure 10 illustrates the situation. 

25 
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Figure 10. Panel Treated as Part of Solid Corner 
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The SCF is applied in addition to the edge scaling factors. The control 

regions shown in Figure 10 are used to turn on and shut off computation 

of SCF depending on the previous events. The current state and previous 

history of a contact interaction is recorded by means of the values as- 

signed to a set of "state" switches, the details of which will not concern 

us here. 

Referring to Figure 10, when an ellipsoid has been in contact with 

the interior of a panel which has been designated part of a solid corner 

and the center of the ellipsoid makes its way into R, or lies above R,, then 

normal edge scaling is used. When an ellipsoid center enters R?, normal edge 

scaling continues as long as deflection is not increasing, but when de- 

flection increases, corner scaling begins in addition to edge scaling. 

When the ellipsoid center passes below RS9 the ellipsoid is considered 

behind the panel. When an ellipsoid has been behind the panel and its 

center passes into R,, motion towards the midpoint of the panel is moni- 

tored. If motion is away from the midpoint, the ellipsoid is still con- 

sidered behind the panel. If the motion is towards the midpoint then 

corner scaling is used until the ellipsoid center crosses into R2 when 

the contact is considered to be interior from the top (full on). A simi- 

lar computation is used for each of the other panels forming the solid 

corner when they are separately considered. 

Y 

Y 
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3.0 Load-Deflection Properties 

- 

Ellipsoids and Panels each can have load-deflection properties spe- 

cified by the user. This section describes the characteristics which 

it is possible to ascribe to ellipsoids and panels. The five following' 

sections deal with loading characteristics, unloading characteristics, 

reloading characteristics, bivariate tables, saturation and breakdown. 

3.1 Loadinq Characteristics 

Three general classes ofloading curves are allowed. First is the 

bivariate polynomial. Second is the bivariate table. Third is null or 

zero properties. 

The bivariate polynomial is of the form 

of which at least one aij must be non-zero. 

There are a maximum of twenty-seven such terms which may be used 

to describe polynomials up to a homogeneous equation of 

degree six (case when i + j = 6). 

The random bivariate table can be described as a set of triples 

('i, 'i, Fi) for i = 1, . . . . N where N is at least four. Tables may 

also be speciffed on a fixed lattice and/or with dependence on only deflec- 

tion or deflection rate alone. A succeeding section discusses the ap- 

proach taken to interpolation in each of these cases. 

The null possibility enables some special effect such as tangential 

resistence coupled with no normal resistence to simulate "wind". 

3.2 Unloading Characteristics 

Four basic types of unloading characteristics are provided. The 

first type is unloading back down the loading curve. If the loading 

curve contains rate dependence then a hysteresis effect can be simulated 

in this way. It is also possible to specify "elastic behavior as a 

28 



variation in which only the magnitude of rate is used in computing rate 

terms. The second type is unloading down a bilinear curve computed 

from G and R ratios. The third type is unloading down a linear curve 

of specified slope. The fourth type is unloading down a linear curve 

computed using only the G ratio. 

The G ratio is defined as the ratio of permanent deformation to 

deformation beyond previous permanent deformation. G = 0 represents a 

completely resilient material. The R ratio is defined as the ratio of 

conserved energy upon complete unloading to potential energy at turn- 

around. R = 1 describes a completely energy-efficient material. The G 

and R ratios are not completely independent and it is the users respon- 

sibility to maintain an appropriate relationship between the two. Either 

G and/or R may be specified as a constant or as a tabular function of 

turnaround deflection. Clearly the following two inequalities must 

always be satisfied. OsGa cm-4 OGR5 I (37) e 

The turnaround deflection (a) is defined as that deflection for 

which deflection rate is zero. This deflection is approximated from the 1 
current deflection and deflection rate together with the last two such 

pairs. 

where 

603 
co are deflection and deflection rate at current time step I 

6-l' i-1 are deflection and deflection rate at last previous time step 

Lp i-2 are deflection and deflection rate at next to last previous 4 

time step 

Y 
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If any of the denominators in (38) vanish then 

Permanent deformation and conserved energy are computed using 

Ec= RE 

where 

crl = permanent deformation 

E = current potential energy 

If bilinear unloading is being used then 

(40) 

(41) 
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where 

z is force value at turnaround deflection 

k 
& 

= fi-\u 1 unloading slope for straight line from turnaround 

to permanent deflection 

A is the changeover deflection 

h8l are coefficients of lower linear segment 

L, @a are coefficients of upper linear segment 

and unloading force is defined as 

If linear unloading based on G ratio alone is being used then 

If linear unloading based on slope is being used then 

(43) 

V 

Y 
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3.3 Reloading Characteristics 

- 

- 

- 

Two basic types of reloading characteristics are provided. Regular 

reloading scales on deflection up to the corresponding force at the maxi- 

mum deflection and the current deflection rate. Alternate reloading 

uses the original loading curve pushed so that the zero po int corresponds 

to the permanent deformations. 

The equation used for regular reloading is as follows . . 

3F ir” -F= 
-= 
bd n-w 

where 

(4-4) I 

z is the deflection at which unloading changes to reload, the mini- 

mum value 

F is the unloading force at 2 

? is a generalization of t obtained by loading force evaluation 
. 

with 6=0 and 6 = current 6 

Equation (44) then linearly scales from the turnaround point (&o) 

in the S,i plane to the point along the 6=n line corresponding to 

the current value of deflection rate. This scaling has the property 

of producing continuous forces with the resumption of the loading 

curve when 6>n. 

Alternative reloading simply evaluates force as F(B-ci,,G’). 

3.4 Bivariate Table Interpolation 

The most general form of table available is a random set of triples 

(Bi, 'i, Fi) for i = 1 to N. In the input section, a lattice of boxes 
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is set up in the 6-i plane and the triples are sorted into boxes. When 

interpolating for an arbitary point (6,:), a search starts in the box 

containing (6,6) and then continues in increasing surrounding tiers un- 

til the three closest points are identified. A planar interpolation is 

then done using those three points. If the input is given for a regular 

or irregular lattice in 6-8 plane then the lattice box is found containing 

the (6,:) and computed with linear interpolations along the top, bottom, 

and the vertical line containing the point. 

) 

J 

and the four corners of the lattice box are (60,io,Fl), (6,,io,F2), 

boil .F3), (6, i, , F4) l 

Bivariate tables can be also simplified to tables in deflection or 

deflection rate alone. If this is the case, piecewise linear interpola- 

tion is used and only pairs are stored (Si,Fi) or (~i,Fi) as applicable. 

3.5 Saturation and Breakdown 

Saturation is a force maximizing. The normal definition of loading 

force is modified 

/- 

where FL is normal loading force, 

and Fs is inputted saturation force. 
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If force is not saturated all normal unloading and reloading options 

exist as described in previous sections. 

If force is saturated then unloading and reloading is governed by a 

straight line which is computed either as slope 

! 

5 
+ 

J-'>JL 

f = F,(i=) +f _RzJ’ 

9 
ircu 

0 

where 

unloading or G-unlaading. 

($7) 

6 is inputted saturation force, 

% 
is inputted saturation slope, 

and 6 
C 

is the yield deflection. 
I 

Breakdown occurs when deflection increases beyond the breakdown 

point. Breakdown supercedes all other loading options including satura- 

tion. Breakdown proceeds linearly from the force obtained at the break- 

down point to zero at the breaking point. Once the breaking point is 

reached, no further force will be generated under any circumstances. If 

unloading occurs, the regular unloading options specified is used. If 

reloading occurs , it is linear from the unloading force at the turnaround 

deflection at the maximum deflection reached in breakdown loading. Be- 

yond that point, breakdown loading resumes. 
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Breakdown loading is 

where 

6D is inputted breakdown deflection 

F,, is loading force at 6D and current 8 

dF is inputted breaking or failure point 

Reloading to breakdown is 

where previous definitions apply. 
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4.0 Shared Deflection 

When two physical bodies are pushed together, both will deform. 

Figure 11 illustrates the situation. The shared deflection algorithms 

approximate the amount of deformation of each body. Let us define 

A( 8,&t), the force imbalance function as 

where 

G (4,6-J = force function for first body 

G(.&,$J = force function for second body 

6 ,& are deflection and deflection rate for first body 

a-, L 
are deflection and deflection rate for second body 

The shared deflection problem can then be stated: given S,d find 

61j~,&2j2 such that 

- 

Since 6 and i are functions of the overall problem, in general (51) 

can not even be written. The approach taken is to set up one or more 

new problems at each new time step based on current values of 6, and 6 

and applicable forms of F and G and then require continuity of 6ljl;zTnd 

b, with past values of these quantities. Viewed in this light, the 

problem becomes one or more highly non-linear first order differential 

equatiomin dl. The multiple equations come from the loading-unloading- 

reloading options previously exp'lained which F and G depending on ranges 

in Gl,iIp2,and 6,. 
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Figure 11. Mutual Deformation of an 

Ellipse on a Line 

Y 
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A general interactive procedure was developed and is presented in 

the next section. An algorithm for the special case when both F and G 

are first order in both deflection and deflection rate is taken up in 

the next sub section. The next section discusses the situation when 

both F and G are sixth order polynomials in pure deflection or pure de- 

flection rate. The next subsection deals with the general function of 

deflection alone. The final subsection deals with the case when F or G 

or both are bivariate tables. 

This multiplicity of approaches was dictated by the gross simplifica- 

tions necessary to get even a crude approximation to the solution for 

this problem. 

4.1 General Alqorithm 

If A is considered a function of 81 and dl alone and is plotted over 

the 61-i1 plane, then A(61j1)=0 is a closed contour which changes shape 

this contour is cor- from one time step to the next. Only one print on 

rect for the physical condition and the materials 

algorithm is designed to find the contour and then 

til the appropriate point on the contour is found. 

process. 

involved. The general 

follow it around un- 

This is a two step 

The first step starts with the solution found at the last time step 

on the old contour and extrapolates in time to the new contour. 
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where 

6,8- are the combined deflectionand deflection rate, 

are the combined deflection and deflection rate at the 
last time step, 

4% is the time step, 

and 

2x 21 w aG- are the corresponding partials 

evaluated at the last time step. 

The second step in the general procedure involves trying to improve 

the solution by moving around the contour to find the point that fits. 

This is achieved by combining the expression for zero differential 

of A with a first order continuity expression. 

where 

the i subscript denotes the iteration being stepped off from, 

the i subscript denotes the Iteration being computed, 

the p subscript denotes a value from the last time step, 

and 

-t 
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4.2 First Order Bivariate Polynomial Case 

Assume that 

and 

then 

where 

and 

$ is the inputted deflection at which the rate terms 
become fully effective. 
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4.3 Sixth Order Univariate Polynomial Case 

Assume that 



- 

t 

4.4 General Pure Deflection Case 

In this case, 

where f and g are arbitrary functions of the appropriate deflections. 

Likewise A becomes a single variabled function in terms of 61 and the 

task to find its appropriate zero. We use a three step iteration, the 

first of which takes advantage of the previous history. 

where 

&(6-d-?) = 

I=‘(&] = d$ 
The second step is's direct application of Newton's method. 

(57) 

where 

- 

the second subscript on the 6's signifies the iteration step number 

and 

F’ f- 6’ 62) 

The third step employed depends upon the outcome of the second step. 

If the second step or any later step is on the opposite side of the zero 

of A(Sl) from the previous step, the method of halving the interval is 

employed to complete the iteration. 
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where 61, and 61- are chosen from all previous values of 61 such that 

a(sl+)>O, A(s+O, and /d1+ - 61-l is minimized. 

If at the third step or later steps it has not yet happened that 

two evaluations of A(Bl) have straddled the zero point, the classical 

secant method is employed. 

This type of step is continued until a point is obtained for which 

the value of A(Sl) has the opposite sign of previous evaluations. The 

total number of steps due to all methods is limited to an inputted num- 

ber. 

4.5 Tabular Case 

If the loading force of at least one of the materials is specified 

to be tabular, then the approach taken is to reduce the problem to a 

sequence of simple problems , each with a range of validity. When a 

solution is found within the range of validity, then the solution is 

accepted. If not, the problem is set up again shifting the range of 

validity in the direction of the last invalid solution. 

A table is always reduced to a planar form: F = asi + bii t c 

with the range of validity determined from the table points used to 

compute the coefficients. 

If a polynomial is involved and the polynomial is linear, then the 

algorithm of Section 4.2 is used to obtain a tentative solution. If 

the polynomial is pure deflection, then the algorithm of Section 4.3 is 

tried. Any other case, the algorithm of Section 4.1 is used. Work re- 

mains to be done in the handling of table-general polynomial. The thought 

is to set up a planar form of limited validity for the general poly- 
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nomial as well as for the table and use Section 4.2. The details of the 

appropriate reduction of the general polynomial to planar form with the 

same range of validity as the planar form fitted to the table remains 

incomplete at this writing as does better handling of the pure deflec- 

tion-bivariate table case. 

- 

- 

- 
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