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1.0 INTRODUCTION

1.1 General

The purpose of this project has been to expand the Crash Victim
Simulation software, originally developed at Calspan Corp. The objec-
tives were to: 1. review the capability of advanced features of the
software; 2. improve the contact algorithm in the CVS; 3. develop soft-
ware for use in correlation and validation studies; and, 4. apply the
software to problems in side impact. This three volume report consi-
ders the first two of the objectives.

1.2 OQOrganization of Report

This report is organized in three volumes. The first volume deals
with the analysis of the new features and is supplementary to the ini-
tial CVS writeups (1) and updates (2). This volume is intended for the
analyst who wishes to understand the basic assumptions incorporated in
this model. The second volume presents an updated user's manual for the
entire CVS model as now constituted and is expected to serve as suffi-
cient documentation for the ordinary user of the model. The third vol-
ume presents information concerning the CVS model as a computer program
and is intended for professional programmers who need to make changes in
the program.

Volume One contains sections dealing with the new ellipsoid-plane
contact algorithms, the material properties now available, and shared
deflection.

Volume Two contains sections dealing with the updated, machine-
produced input writeup, a general description of output options and an
example run.

Volume Three contains sections describing the layout of packing
tables for variable information, the structure of the program and a de-
tailed layout of possible output from the program.

1.3 Scope of Changes

The HSRI Version of the CALSPAN CVS Model is based on Version 18A
of that model augmented by some of the corrections of Version 19 con-



cerning Euler joints. HSRI refined the contact algorithms for ellipsoid-
panel interactions. Three important basic problems in the contact algo-
rithms were addressed. The first problem is accurate computation of de-
flections even for the case of complete penetration of an ellipsoid into
a contact surface. The second problem is the computation of contact
forces based on mutual deformation of the interacting elements. The
third problem is handling of permanent deformation by contact surfaces.

The contact section of the old CVS was largely replaced with an al-
gorithm based on the approach taken in earlier HSRI models(3,4,5) in-
corporating some of the ideas of British Leyland (6). In our early
dealings with the old CVS, we modified the input section to read and
check the ID field of the input cards. In addition, we modified the out-
put section to use only one logical device and to print optionally in
equal increments of simulated time. These changes were made to partially
facilitate the use of the model. A more general specification of vehicle
initial conditions and more flexibility in reporting of kinematics were
later incorporated for the same reason. In general, we have followed
the policy of making changes only where such changes were defendable by
their utility to Occupant Side Impact Simulation.

1.4 References

1. Fleck J. T., Butler, F. E., Vogel, S. L., "An Improved Three-Dimen-
sional Computer Simulation of Vehicle Crash Victims", Calspan Corp.,
Buffalo, 4 vols., NTIS Nos. PB241692-5.

2. Butler, F. E., Addendices to reference 1., A-K, Calspan Corp., Buf-
falo, unpublished.

3. Robbins, D. H., Bennett, R. 0., and Roberts, V. L., "HSRI Three-Di-
mensional Crash Victim Simulation: Analysis, Verifications; Users'
Manual, and Pictorial Section," HSRI, The University of Michigan,
Ann Arbor, NTIS No. PB208242, June, 1971.

4. Robbins, D. H., Bennett, R. 0., and Bowman, B. M., "HSRI Six-Mass,
Three-Dimensional Crash Victim Simulation,” HSRI, The University of
Michigan, Ann Arbor, NTIS No. PB239476, Feb. 1973, 302 p.

5. Bowman, B. M., Bennett, R. 0., and Robbins, D. H., "MYMA Two-Dimen-
sional Crash Victim Simulation, Version 3," HSRI, The University of
Michigan, Ann Arbor, 3 vols., NTIS Nos. PB235753/1, 236907/2,
236908/0, 684 p., 1974,



6.

Butterfield, K. R., "The Computation of the Maximum Penetration of an
El11ipsoid Through a Panel," Report No. NA2, British Leyland, unpub-
1ished, July 1976, 5 p.



2.0 Ellipsoid-Plane Contact Determination

A body segment in the form of an ellipsoid contact and penetrates a
vehicle panel in the form of a parallelogram. To determine the force that
is developed by this contact, a penetration depth, §, must first be deter-
mined. This section presents expressions for penetration due to the var-
ious possible ellipsoid-panel contacts.

Section 2.1 describes the geometry and defines penetration for mid-

plane, edge, and corner contacts.

Section 2.2 presents a derivation of expressions for the mid-panel

case.

Section 2.3 deals with penetration at edge one.

Section 2.4 deals with penetration at a general edge.

Section 2.5 presents the results of Section 2.4 for each of the other

three edges.

2.1 Definition of Penetration

We define an x, y, z, coordinate system by taking the x-y plane as the
panel surface with the positive x-axis along one edge. The coordinates of
the center of the ellipsoid in this system are (xo, Yoo zo). The principle
axes of the ellipsoid are £, n, ¢z with semi-major axes lengths of a, b, ¢
respectively so that the ellipsoid equation in this system is: (Refer to

Figure 1.)
Y "]1 S -
i} ML e T | (1)

The two systems are related by

4 ¢ s (2)
(“& =Din |t *
3 4 Yo



where

A A A A A
An dia AG t'e' ~ f" ti’ and where i, j, k are unit vectors
) & vt A - 1,3‘ '{.-el }'fe in the x, y, z system and e;, e,,
= PR = ~

i } AaA AN B e3 are unit vectors in the ¢, n,
Ay i dnf \BE A& A

3 A z system.
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Figure T Ellipsoid Seen In Panel System
The z value of the point on the ellipsoid which attains the absolute
minimum z value (the Towest point of the ellipsoid) will be termed -6 max.
If this point lies within the panel boundary and is beneath its surface,
then we define penetration § to be equal to § max.



Even if the location of § max is outside the panel boundary, there is
still a possibility of intersection with one or more of the edges of the
panel. In this case, we determine a lowest point for each of the four
edges of the panel define each edge penetration to be the negative of the
z coordinate of the corresponding low point, and finally define penetration
to be maximum of the four: & = max {§;, 87, 53,64}.

An edge penetration can best be described for the edge formed by line
segment 0P, in figure 1 (edge one); the other edges are entirely similar.
Figure 2 illustrates two views of edge one. Figure 2a shows the x-z plane
in the panel system while figure 2b shows the y-z plane.

2 Z
v
(0’0)
Figure 2a Figure 2b
x-Z Intersection Ellipse y-Z Projection Ellipse

Figure 2a shows the intersection of the ellipsoid and the x-z plane
whereas figure 2b shows an orthographic projection of the ellipsoid onto
the y-z plane so as to contrast &, from § max.



It may happen that the lowest point in the intersection of the ellip-
soid with the x-z plane lies outside the panel boundary. One of these cases
is illustrated in figure 3.

Z

|
1P (40
5%

Figure 3 Minimum Above Panel Boundary

0 (9, o)

1

If the x-coordinate of the lowest point is greater than x;, then we
define the edge penetration to be the distance from the panel surface to
the point on the ellipse which is directly beneath x;:5;. Similarly,
if the x-coordinate of the lowest point is less than x = 0, as shown in
figure 4, then we take as the edge penetration the distance from the panel
surface to the point on the ellipse which is directly beneath x=0:&,.

Z

P
i C"Pl)O) )(

Figure 4 Minimum Below Panel Boundary
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Thus, we see that the different types of penetrations which can arise,

and for which we must derive expressions, are:

~ ~ A ~
;M.(.) 5:) S:., é."é")gc)) é| )5})53
where the edges are defined in figure 5.
Y
p&. P;
~a) 4 eoce 3 N
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o) (8 CEYY Figure 5 Panel Nomenclature
(&o) (g)
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2.2 Calculation of Maximum Penetration for the Mid-Panel Case.

Recalling that the ellipsoid is

£

E:. .,!:. S
vy Ir <

and the panel and ellipsoid systems are related by

¢ Mo

4

(‘?) z D ("\ + s
¥ p %o



we find that the equation of the ellipsoid in the x, y, z system is

A&‘+B?f+C§W4Mu?+E¥}+F7%+G4+H%+I}+3=0

where

ol:-l A\; _A_;_ —
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B - A:-l 513_1_ + dl] -
o. (r e
C = :l.._-L 31- + —= A;‘; -
R
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D= '2_( -—-—-—-‘a,_“ + A—-—-—-—-“";f)' t “‘c‘;"')
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aﬁ- I’z T (4)
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L A A dody . dndn , dad
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- ,\f‘ ££_ a‘:). *0_\’:\3) :’ JL{ al)-'x. +AL1J*% (Js"’éi} ’2\
J = 9 ( o t L o> Lh 0~L -

s (f s A2y, (o s ot

- ol
daidy . dandin - daadys ) -
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The coordinates of the lowest point of the ellipsoid can be determined
-§ plane forms

as follows. The intersection of the ellipsoid with the z
an ellipse which has the equation

An?+ B,_ka. +D¢}+(6~E5)¢+(H-F5)}+I~IS+C§’“:Q (5)

By performing a suitable translation and rotation, it is possible to reduce
this equation to the canonical form

o 8
+f§f_=l (6)

2

L1

P
{

Now ‘Smax 1s determined by finding the value of & for which a and b vanish

and this happens if and only if .
(AF*¢ BE™ - DEF +D*C - 4ABC) S,
+ (DEH- LAFH + DFG-2BEG + 4ABT- D'T)S,,,
kS -~ - (7)
+ [AN*+ BG -DGH + 0T -4ART) = 0

The appropriate root of the quadratic is easily identified and we have

{
uay ¥ (aar-DEIFF (ME-DF)E + 1(TT-4AB)C

{( L F-DE)H+ (28E-0F )6 + (874D (8)

) [(('J-AF—GE)H + (266 -DFIG +( btm)i)’“

= ( (2Ae-DR)F + (1Bg-OF )& + ILDL“‘N?)C) ((JJ\H~ M )H +(286-0HG-+1(D*-448)

10
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The ellipsoid intersects the z = ’Gmax plane at the point with the coordi-
nates

. 286 -OK-(2Be-OF)S,,
ey D‘L - +AB % (9)

dpwnar = _ZAB =06 - (24F 08 ) b moy

0*-¢AB
2.3 Penetration at Edge One

The intersection of the ellipsoid and the x-z plane is obtained by
setting y=o.

AML+C’§,$+EW'}-+G‘G+I%'+3:O (10)

The coordinates of the absolute minimum z value of this ellipse may be de-

termined as follows. Setting z =2z

min gives us the quadratic equation in

X:

An®+ (648 §u) ¥ +T ¥ TRai+ (g0 = 0 -

The condition that (11) possesses a double root gives a quadratic equation
in f}uﬁ

(e"=4%A) 3—; + (D-ec,-%l'-) Y i +G =+AT =0

(12)
The root of this corresponding to the minimum {s
el Jam [L(aaz-ea) +4(2c6 €6 H(ERAA
%MM 51‘4AC L (]3)

+2AI - EG}

Also, ) 6+ E ’}nuw~

Mo T ==

,AJ_W:O
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Now if X min > X; as pictured in Figure 3, z min satisfies
2 ) 2
<4t (T+E4)2 4 T4GatAx] = 0 (14)

and we find

‘L)_'J'(E“ q‘AC)/‘ﬁ "1(1@"61)5‘, *IL"*CJ

—(E 44+
. —(ew . -
Fmar
If on the other hand, X min < 0 as pictured in Figure 4, z min satis-
fies
2
¢ 9 +14,. tJ=0
on~al (16)
-T -'\/ T*-4CJ
ﬁ&, d 2C

(17)

2.4 Penetration at a General Edge

We will next consider the penetration at an edge defined by y = ax+g
in the panel system. It is convenient to define a coordinate system x',
y' such that x' Ties along the line y = ax+g with its origin at (xc, xC+B).
This will be termed the edge system as is illustrated in Figure 6.

)

y \

He = &N'Q'("B

4>

X

Figure 6 The Edge System
12



The two coordinate systems are related by

! 1 S o
<’ 1{ = R % - x}c
L 3
where
! d__
Vita- Viear ©
(18)
R.:' - ol |
Ut+ A V 14a™ Q
o l
O
The relation between x', y', 2' and £, n, ¢ is
! [ % ¥4 (19)
,?l = D ki + ’19'
%f S }'
where
D'=RD
amst | ‘e - Ko
4o
( L&’c - R ‘a'd‘ l'd’c (20)
1. &

Now previously we began with the relation

» € Mo
‘1.) = D 1\ 't' La'n

¥ 3 %,

13



and we derived formulas for the penetration which results from the inter-
section of the ellipsoid with the y = 0 edge. Based upon this correspon-
dence, we conclude that the formulas for the penetration which results from
the intersection of the elvipsoid with the line y = ax + 8 is obtained by
making the replacements

I 1 !
AL‘ ._DAA&) “0—3“0) A}Q__bl-&q ) %°\§3'°
in the previous formulas. Once these coordinates are worked out, the co-
ordinates with respect to the x, y, 2z system can be obtained by making use
of the inverse transformation:
! N
N (¥ ¢
G =R |4 [T *
i
¥ t a

(21)

Finally, the results for each of the panel edges is obtained by choosing
appropriate values for a, 8, and X+
2.5 Penetrations at Edges Two, Three, and Four

We present the results obtained from carrying out the method indicated
in last section for the other three edges. It is convenient to begin by
defining a series of quantities in order to shorten expressions.

Let

* >
g o di B et A WL
),.“A,.c. aday oC e dh 4L

g, -dtm Irlcf'+d3>.a“c +¢J~3a N
A L-"C + Alldr"‘ac al%dn&b (22)

1

€42 /tn
- doda Jadp ot e dndnsik
- Audd
da b * ¢ daadaa o’ >+ Ay dyyat’
&u- du 3 s M
. M + & Miat &
M, = os\M:.( A Mu. +CIM13

oyt o+ (,_1 M"
> 33
Ma“ “LM‘?I +{, Mh'

14



- a M uMll + J}M,,_[\']h_ * QtMlBMLs
Miy = o™ Moty + b MMy «C M3 Mag (Contimmnd )
May = o~ May My, "‘;quMn. ¢ C g May

R
N

where the ﬁd;js are minors of D.

In what follows, the discriminants of the various quadratic equations
are given names Ag. 4, are so identified because they give information on
the type of roots of the quadratic and therefore on conditions for contact
between the ellipsoid and the panel edges. For example, let us consider
Ay.

If the x-z plane intersects the ellipsoid in an ellipse, then the
ellipse will have an absolute minimum and an absolute maximum z value.
These are obtained by solving a quadratic equation, the minimum corresponding
to one root and the maximum corresponding to the other. If A;, the discri-
minant, is positive then these roots are different -- which means we have
an ellipse. If aA; is zero, then the roots are the same and the x-z plane
contacts the ellipsoid at a single point. If A; is negative, the roots are
imaginary and there is no intersection between the ellipsoid and the x-z
plane.

Now we list the formulas for the remaining three edges. (Refer to
figure 5).

) < 2

Edge 2: If o0 < ‘3—51 Z 4., weuse
{

@:/L(rpl 44’_71}“11“3:_}41

[(“‘:\-}1:.3*’ ;1_1)‘(‘33(@.11{‘&‘,#»){'\[;:6‘ #2M2M 4:.“"123:. J A‘FJ

(23)

S, = “F*

awrhare

s, = T

‘f’zux*w:.'hﬂn“},_

E Mo ha ¥ '&'zﬂtx)“‘o +(~‘1Mn.+ ‘}1

*&‘416.34' L}:.e»u)J =
e Qq_ = AP,_ ,L(,_-r 1%,_;1,,”““ ‘b% ‘\“1 Bg+'l‘{'1.‘hﬁn_+*a- e,
No contact with this edge if &, < ). %I} = ores)” (dat B)L

If %4.< ‘?'5-1_ , then we use

A

5;. 2 -Gt Jé,'; EC ta(.‘\ﬁ\.‘%) realMrai.) + a b ﬁ‘s]
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achsae
85 = &5 Cht Ao - (o Tl (e (0 1

No contact with this edge if a5 < 0. If Ys2 < 0, then we use

> i
§a= ~3,t 5 (’%6‘3-'},&;3 +ab~cf5},>
° %o 83 (25)
where
'\{—é‘o-:. )
8 =0
and
- _ P
63- e3 701-,1'(1—1'7‘0'\90 l"fL-/Y‘o ﬂL
There is no contact with this edge if a3 < 0.
Edge 3. If x; < Xs3 < X1 * X, then we use
= - gt [ bty VRS
(26)
where =
L ) ves ]
4‘6‘3 = Ay 4 e [-—/un.("}:_ *&u) ¢ e,
Crot
o ™
D, = M- (4-4) " (dat D)
No contact with this edge if A7 < O.
If »+4, < ng , then we use
A (27)

5, = ot & [(remlenrliog)e,,
+ o bre sz;;':]

Dy= €3~ (M- M+ (“x*"(’z'*o\x“r’1(*"‘”’-’*"\’0‘35‘1‘}}*“

16



No contact with this edge if ag < 0.

If Xs < Xp, then we use 6, as defined previously.
edge3

There is no contact with this edge if A5 < 0.
Edge 4 If 0 < Y5, S Y2 then we use

duz Tt *f-?.#:.—lm‘h};»*‘t:‘):r‘ (%}‘“H?f"}"")(%‘3’:‘30”":4"?»}

taie i gnt it Y, (28)

stans
Y

‘?& :;2.‘ “2*1“""}L)4'-l1+‘]“: H\

[('fmp,_+4hpn)(¥0-ﬁh) f(‘axhtf*ﬁﬂn_)‘fo

Q,
+(83 Hv @ : .
( 3 u‘ﬁx)ﬁge,i-lh_xdbe,ﬂ-#&’;el

and
- = PR %
By = W5 o+ 1M, hia b B L = (oY, o eam ) ()
No contact with this edge if A5 < O.

If y, < ysu,.then we use 83 as defined previously.

There is no contact with this edge if &g < 0.

If y54 < 0, then we use
< l
5‘ = “3.0 + e‘; ['(Ah"\‘o)e(; - *3083,31' alh(,\)zl]
amstoae (29)
/*(q,l e X
‘a'l’l ~0°
M-a‘ kS
Q;_: 83 " M 411&0(/?‘_&‘!)/,(‘1_(*& "Vo)’./ul

17



No contact if 4, < O.

We also restate the results of Sections 2.2 and 2.3 in terms of this notation.

c UM
M T
Al - ul3 (30)
Thee = My -
U, dstD
P T4 Mo
Wk, ARD

Ly oo +Lr€ (&, .o /u-i\
t - N /L(_-L\ B‘U-T ¢ /
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2.6 Calculation of Edge Effects

When an ellipsoid approaches a planar panel from the side, the defini-
tions of penetration in the previous sections can lead to a discontinuity
in penetration when the tip of the ellipsoid intrudes below the panel.
Figure 7 illustrates this situation.

—-J

No
Pen TTRATTuN PR NETRA TToN

= 8C

e LT o >

— o ———

Figure 7. DISCONTINUITY AT EDGES

If the material is stiff, the resulting discontinuity in force can up-
set the tracking of the integration in a way which cutting down the inte-
gration time step will not be correct. In order to protect against this
type of discontinuity, force is linearly scaled on as a function of the
distance of the ellipsoid center from the panel edge which is closest.

The distance used to scale against is taken as the radius of the
sphere which circumscribes the ellipsoid. The scaling is adjusted so the
factor is .5 when the ellipsoid center Ties over the dominating edge.
Figure 8 illustrates the situation.

19



Fiqure 8. Edge Scaling Factor Zones

The Normal Force Scaling Factor (SF) is defined one when the ellipsoid
center is over the full contact panel zone (P1H-P2H-P4H-P3H-PIH) and is zero
when the ellipsoid center is outside the panel contact zone, (PIL-P2L-P4L-P3L-
PI1L). When the ellipsoid is within the panel contact zone and without the
full contact panel zone, the Scaling Factor takes on a value between zero and one.

The Normal Force Scaling Factor is defined as

SF:"[,‘_M(Q)M("-)'+-—?£- | + A}"—‘}")
A R (31

| + '7'2'1‘0"\‘;"}. [+ S N M"‘To"‘[‘;'ﬁ‘o)
£ 5 )

20



Jre, YV
(Af") “too ,}o)

( °, 0)0)
(4"""?:.,0)
(A1, 0,0)

Q = n

and

are the coordinates of the ellipsoid center in the
panel system,

are the coordinates of point P1 in the panel system,

(31)
Continued

are the coordinates of point P2 in the panel system,

are the coordinates of point P3 in the panel system,

1[&’;+l~a.’;

max (a,b,c) See Section 2.1 for definitions

of ellipsoid and panel system.

2.7 Tangential Forces

Many material panels resist motion along their surfaces as well as
motion into their surfaces. Two types of tangential resistance are appro-
ximated in this model: Coulomb Friction and "Snapback" Force.

The Coulomb friction is defined as:
[ £

Fee = (Mo 40,54 M:d7) Fu wie (5=1)

CF
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Moy Moy by are the inputted friction coefficients,

S is the penetration,

Fro is the normal force due to load-deflection,

:é is the tangential velocity along face of panel,

and
v is the inputted velocity threshold for full
friction.

(32)
Continued

The Snapback force deals with the "piling up" of panel material in
front of the ellipsoid as it continues across the panel surface and is de-

fined as
m— — L
= 4+ Q
Feg a, § )
(33)

where

O ) Qg are the inputted snapback coefficients,
and

é is the distance along the face of the panel from

the point of contact.
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Coulomb friction and Snapback force are combined to form total tan-
gential force which is scaled to ramp on force for fast moving ellipsoids,

is also scaled for edge effects, and is also subject to an absolute maxi-
mum.

1 W(W(J)lne}) S (FLF‘\‘FSBJ;FTM‘\E

where (34)
. ‘o _

S‘—”"““(")M"“({)?,k}:n%)

ne} is the distance from the ellipsoid center and the lowest point
of the ellipsoid in the panel system,

FTM is the inputted maximum tangential force, and all other
quantities as previously defined.

23

L



2.8 Recognition of Being Behind the Panel

There are many circumstances in which an ellipsoid may be positioned
behind a panel without having penetrated through the panel (e.g., the feet
underneath the steering wheel or the dash). Automatic recognition of this
situation is handled initially by the simple criteria of whether the ellip-
soid breaks the plane of the panel and whether it has a non-zero penetra-
tion as defined in the previous sections. If both criterion are met, the
intrusion is defined to be from the front. In succeeeding times, the state
of being behind or coming from the front is remembered in a switch main-
tained for each interaction. The switch is modified back to the initial
condition if ellipsoid totally lies above the panel plane or goes out of
contact to the side of the panel.

2.9 Calculation of Solid Corner Effects

It is possible to designate that any panel is the face of a solid.
In this case, normal edge scaling is replaced with special corner
scaling when an ellipsoid is deemed to be following the solid round the
corner. If the user does not so designate a panel, then scaling is ap-
plied as explained above. Figure 9 illustrates a typical solid corner with
an ellipsoid moving around the corner. If these two panels are treated ac-

= t¢

me m O’

o\

s

Figure 9. The Solid Corner Situation
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cording to the rules of the previous sections, at the first two times, the
ellipsoid will be in full contact with Panel 2 and be beind Panel 1. At
time t3, edge scaling will reduce the ellipsoid contact with Panel 2 and
still no contact with Panel 1. At the last two times, we would see in-
creasing force due to Panel 2 and still no contact with Panel 1.

The Solid Corner Effect would produce non-zero force due only to Panel
2 at the first two times, due to both panels at ts and due only to Panel
1 at the last two times.

For programming convenience, an additional requirement is made that the
algorithm required to apply to each panel separately without knowledge of
the other panel(s) forming the solid corner. An enabling assumption is made
that the unknown panel(s) lie at right angles to the panel under considera-

tion.

o t 7

SCF - Vv A - Rt (gm0 (35)

where
Moyt 3o are the coordinates of the ellipsoid center in panel
systen,
and
n is the maximum semiaxis lenath nf the a11insoid.

Figure 10 illustrates the situation.
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PANEL INTERIOR

Panel Treated as Part of Solid Corner

Figure 10.
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The SCF is applied in addition to the edge scaling factors. The control
regions shown in Figure 10 are used to turn on and shut off computation
of SCF depending on the previous events. The current state and previous
history of a contact interaction is recorded by means of the values as-
signed to a set of "state" switches, the details of which will not concern
us here.

Referring to Figure 10, when an ellipsoid has been in contact with
the interior of a panel which has been designated part of a solid corner
and the center of the ellipsoid makes its way into Rxor lies above R1, then
normal edge scaling is used. When an ellipsoid center enters Ra» normal edge
scaling continues as long as deflection is not increasing, but when de-
flection increases, corner scaling begins in addition to edge scaling.
When the ellipsoid center passes below R3, the ellipsoid is considered
behind the panel. When an ellipsoid has been behind the panel and its
center passes into R1, motion towards the midpoint of the panel is moni-
tored. If motion is away from the midpoint, the ellipsoid is still con-
sidered behind the panel. If the motion is towards the midpoint then
corner scaling is used until the ellipsoid center crosses into R, when
the contact is considered to be interior from the top (full on). A simi-
lar computation is used for each of the other panels forming the solid
corner when they are separately considered.
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3.0 Load-Deflection Properties

Ellipsoids and Panels each can have load-deflection properties spe-
cified by the user. This section describes the characteristics which
it is possible to ascribe to ellipsoids and panels. The five following
sections deal with loading characteristics, unloading characteristics,
reloading characteristics, bivariate tables, saturation and breakdown.

3.1 Loading Characteristics

Three general classes of loading curves are allowed. First is the
bivariate polynomial. Second is the bivariate table. Third is null or
Zero properties.

The bivariate polynomial is of the form

I
F = Z dip 3 §t (36)
0= +,4< 6,
0<it4 26
of which at least one aij must be non-zero.

There are a maximum of twenty-seven such terms which may be used

to describe polynomials up to a homogeneous equation of
degree six (case when i + j = 6).

The random bivariate table can be described as a set of triples
(61, 51, Fi) for i =1, ..., N where N is at least four. Tables may
also be specified on a fixed lattice and/or with dependence on only deflec-
tion or deflection rate alone. A succeeding section discusses the ap-
proach taken to interpolation in each of these cases.

The null possibility enables some special effect such as tangential
resistence coupled with no normal resistence to simulate "wind".

3.2 Unloading Characteristics

Four basic types of unloading characteristics are provided. The
first type is unloading back down the loading curve. If the loading
curve contains rate dependence then a hysteresis effect can be simulated
in this way. It is also possible to specify "elastic behavior as a

28



variation in which only the magnitude of rate is used in computing rate
terms. The second type is unloading down a bilinear curve computed
from G and R ratios. The third type is unloading down a linear curve
of specified slope. The fourth type is unloading down a linear curve
computed using only the G ratio.

The G ratio is defined as the ratio of permanent deformation to
deformation beyond previous permanent deformation. G = 0 represents a
completely resilient material. The R ratio is defined as the ratio of
conserved energy upon complete unloading to potential energy at turn-
around. R =1 describes a completely energy-efficient material. The G
and R ratios are not completely independent and it is the users respon-
sibility to maintain an appropriate relationship between the two. Either
G and/or R may be specified as a constant or as a tabular function of
turnaround deflection. Clearly the following two inequalities must
always be satisfied. 0= G < | omad o< R = | (37)

The turnaround deflection (Q) is defined as that deflection for
which deflection rate is zero. This deflection is approximated from the
current deflection and deflection rate together with the last two such

pairs.
5. . 8 .
<L = (*"- )(——if— dy - (___:__ -é:* 3.,
5'1°CS° cS_.(‘ S 5—:."5—4 é.-( ‘50
S V[ s (37)
+ - : p ; -
J‘l -5"\ J‘l‘;‘)
where
8o 50 are deflection and deflection rate at current time step

§_1> 5_4 are deflection and deflection rate at last previous time step

§_ps 5_2 are deflection and deflection rate at next to last previous
time step
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If any of the denominators in (38) vanish then

_ﬂ = M(SQJ'S-I)J-;.] o bl (3?>

Permanent deformation and conserved energy are computed using
Wy = G (-wy) |

N (40)
Ec=RE ’

where

£

permanent deformation

m
il

current potential energy

If bilinear unloading is being used then

o{\ - Ec_\’ (4()

B\: "QL!U) )
tl
ok, = &, )
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where
~
S is force value at turnaround deflection -
X = IEE; = unloading slope for straight 1ine from turnaround
to permanent deflection -
AN is the changeover deflection
&, & are coefficients of lower linear segment —
de . Ba are coefficients of upper linear segment
>)
and unloading force is defined as
&(é“f‘et "(~ w5280 hd
Fu -
Ad 48 o4 asss L -
-
If linear unloading based on G ratio alone is being used then -
< < .
F =ds+8, wd=Ll
-
A =¥
= LW
ant @ ¢

If Tinear unloading based on slope is being used then

E - A+ 8 , W ed = <L -

(43) -
Ahﬂk&mu.
w o= pepPted Ao, -
g= ~*W,
ok €
w—_(\L_'_ &~ ‘
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3.3 Reloading Characteristics

Two basic types of reloading characteristics are provided. Regular

reloading scales on deflection up to the corresponding force at the maxi-

mum deflection and the current deflection rate. Alternate reloading

uses the original loading curve pushed so that the zero point corresponds
to the permanent deformations.

The equation used for regular reloading is as follows:

(5-QR)F + (N-38)F

= - o

oF £ -F

R T (44)
(=28

N A AR v i e

where

3.4

(s,

i

<o is the deflection at which unloading changes to reload, the mini-
mum value

F is the unloading force at

Fis a generalization of F obtained by loading force evaluation
with 6=0 and & = current &

Equation (44) then linearly scales from the turnaround point (&.,o0)
in the 6,8 plane to the point along the §=Q line corresponding to
the current value of deflection rate. This scaling has the property
of producing continuous forces with the resumption of the loading
curve when §>Q.

Alternative reloading simply evaluates force as F(5-w,d).

Bivariate Table Interpolation

The most general form of table available is a random set of triples

s 57, Fi) for i =1 to N. In the input section, a lattice of boxes
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is set up in the §-8 plane and the triples are sorted into boxes. When
interpolating for an arbitary point (5,§), a search starts in the box
containing (§,8) and then continues in increasing surrounding tiers un-
til the three closest points are identified. A planar interpolation is
then done using those three points. If the input is given for a regular
or irregular lattice in 6-§ plane then the lattice box is found containing
the (5,8) and computed with 1inear interpolations along the top, bottom,
and the vertical line containing the point.

F = F2FL + P Fu (45)

amrfranse, ’

P~ is:_.{o_
&, - 9, ’ FL:%(FIf'P;F)_ ,

%’--.- JI-S - !_ - —
& - 3, P ) f-“:%( Fy top F4 )
J‘J ;(“C)'

= 2 =z — = |-
Pl 5l~50 ’ T)—I 5!"50 Pl

and the four corners of the lattice box are (60,50,F1), (61,5°,F2),
(6096] ’F3) ’ (6] 361 9F4) .
Bivariate tables can be also simplified to tables in deflection or

deflection rate alone. If this is the case, piecewise linear interpola-
tion is used and only pairs are stored (61’Fi) or (éi’Fi) as applicable.

3.5 Saturation and Breakdown

Saturation is a force maximizing. The normal definition of loading
force is modified

FL AnNQn F < Fg

Fs M

) (46)

A
"

where FL is normal loading force,

and FS is inputted saturation force.
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If force is not saturated all normal unloading and reloading options
exist as described in previous sections.

If force is saturated then unloading and reloading is governed by a
straight 1ine which is computed either as slope unloading or G-unloading.

F ;1. Jd> o
F = §-w NAz24d2w
4 =Y
O
where )
OL):‘-G'S (-CL—JQ) ”f6'5<0,
or £
W = -[L -5 ,,f G_g>O
G‘S { )
F:S is inputted saturation force,
Gq is inputted saturation slope,
and sc is the yield deflection.

Breakdown occurs when deflection increases beyond the breakdown
point. Breakdown supercedes all other loading options including satura-
tion. Breakdown proceeds linearly from the force obtained at the break-
down point to zero at the breaking point. Once the breaking point is
reached, no further force will be generated under any circumstances. If
unloading occurs, the regular unloading options specified is used. If
reloading occurs, it is linear from the unloading force at the turnaround
deflection at the maximum deflection reached in breakdown loading. Be-
yond that point, breakdown loading resumes.
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Breakdown loading is

T s o, (de-3) s,

where
Sp is inputted breakdown deflection
Fp is loading force at &, and current &

GF is inputted breaking or failure point

Reloading to breakdown is o> e FeL,
”~\ — — -
; -F —
F’.n_ = (5-R)+F Jyea<de
-

where previous definitions apply.
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4.0 Shared Deflection

When two physical bodies are pushed together, both will deform.
Figure 11 illustrates the situation. The shared deflection algorithms
approximate the amount of deformation of each body. Let us define
A(s,38), the force imbalance function as

A(s,§): Fis, §)-6(s..5.) (50)

where

F:(J}JJJ = force function for first body
6(51.)5,) = force function for second body
] )5} are deflection and deflection rate for first body

5")52.
The shared deflection problem can then be stated: given 8,8 find
61516252 such that
LI B |

are deflection and deflection rate for second body

1. A(d, ) =0
2. 5‘+Jg_:5 ) oﬁJ)J’)SL (S')

3. 9,468, =4

Since & and & are functions of the overall problem, in general (51)
can not even be written. The approach taken is to set up one or more
new problems at each new time step based on current values of §, and §
?nd applicable forms of F and G and then require continuity of 51§1§and
8, with past values of these quantities. Viewed in this light, the
problem becomes one or more highly non-linear first order differential
equations in §,. The multiple equations come from the loading-unloading-
reloading options previously explained which F and G depending on ranges
in 51§1§2)aﬂd §5.
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Figure 11. Mutual Deformation of an
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A general interactive procedure was developed and is presented in
the next section. An algorithm for the special case when both F and G
are first order in both deflection and deflection rate is taken up in
the next sub section. The next section discusses the situation when
both F and G are sixth order polynomials in pure deflection or pure de-
flection rate. The next subsection deals with the general function of
deflection alone. The final subsection deals with the case when F or G
or both are bivariate tables.

This multiplicity of approaches was dictated by the gross simplifica-
tions necessary to get even a crude approximation to the solution for
this problem.

4.1 General Algorithm

If A is considered a function of §;, and 51 alone and is plotted over
the §;-8; plane, then A(6%51)=0 is a closed contour which changes shape
from one time step to the next. Only one print on this contour is cor-
rect for the physical condition and the materials involved. The general
algorithm is designed to find the contour and then follow it around un-
til the appropriate point on the contour is found. This is a two step
process.

The first step starts with the solution found at the last time step
on the old contour and extrapolates in time to the new contour.

2G P’ .
. a(@&,ﬂ%(d—&ﬁﬂulg 5,

o F
+ LAz 55

Qllw
ool T

, ' (53_)
S, =8p t '?.A*(‘S’ - Sip)
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where

J. 4 are the combined deflectionand deflection rate,

C;P J are the combined deflection and deflection rate at the
YEPR tast time step,

At is the time step,

9/’:'; 9_{: Q—— 26 are the corresponding partials
ad;f ) Bé;p ) Bd;, ) ad;p evaluated at the last time step.

The second step in the general procedure involves trying to improve
the solution by moving around the contour to find the point that fits.

This is achieved by combining the expression for zero differential
of A with a first order continuity expression.

oL B (s g ke (G ) 20
}

" 248 APy

—_— 4+ o
23, 24, (53)
N 201 5
.- e Ty d
cS& - !
201
DI

where
the i subscript denotes the iteration being stepped off from,
the i subscrint denotes the iteration being computed,
the p subscript denotes a value from the last time step,

= G-
2(‘4@...._
EEE;L = —_Ef :;AT;_)
24d;
and
A aF 4 25
i;zi = 24, Bcfh .



4.2 First Order Bivariate Polynomial Case

Assume that

F(J(,é,): a\é-g+0~2;,-u .}-0\°

and
G (5r,d8,) s Aydu+brad,vrl,
then
(54
J1 = j<;g. ) )
S, % &4
where
‘ ;b-nJ-vam_a;ﬂLbo-ao
¥ (ali_‘b'l)&“{'vﬁé\:d’b)-)di )
o
- = W( ' ) d’.\ >
and
2? is the inputted deflection at which the rate terms

become fully effective.
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4.3 Sixth Order Univariate Polynomial Case

Assume that
z 3 4 5

453<£5 *‘L2<Jf

F (5,5,
ot

3 ¢
L~°+b~,a‘,_+!f,_;:+435;+1’451 +
v w.- p- ] lrﬁ
P I R s (55)

s ¢ 3 2 v e =0
e §C+Cs S tcqdfic gt GE AT

2 dn)

where

b 8+ by 8l §H4 by G el 4 0 S Fhya,

N
o
Y

6Lgd +Shsdt talrg 53 +3L; JH 2l Srlta,

()
1)

z s
c = tshrpats (0hsd 466y 8" 3y ~Latbn
Ca= "0'(’6;3+'°1’§5L+41»¢J+6~340\3
ce = Is g s s & - bg + g

(o= 6hg &+ bstag

il

Cg /"6"6‘5
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4.4 General Pure Deflection Case

In this case,

F(s,,8,)

it

{080
$ (5.)

n

G‘ (JL)J'-J.)

where f and g are arbitrary functions of the appropriate deflections.
Likewise A becomes a single variabled function in terms of &, and the
task to find its appropriate zero. We use a three step iteration, the
first of which takes advantage of the previous history.

6 (§-d )z arae [ 5C2) -8 (#-0%) ]
LFrGy+6(s-4)]1

a‘{(t): J’(X“d‘t}-f'

(5¢)

tTt-4t
where alc;
G'(J'(r(): ;l—d—_"
i _ dF
F(d) Ir

The second step is a direct application of Newton's method.

Q(dn)
&A.' {ﬂ - Q'(Ju) (577

\

where

the second subscript on the §'s signifies the iteration step number

and AN
8z gyt e (57)

The third step employed depends upon the outcome of the second step.
If the second step or any later step is on the opposite side of the zero
of A(8;) from the previous step, the method of halving the interval is
employed to complete the iteration.
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- %i ( éyl+ + érl— )

1M~

where §;  and §;- are chosen from all previous values of &; such that
A(81+)>0, 4(61-)<0, and |8,+ - §1-] is minimized.

If at the third step or later steps it has not yet happened that
two evaluations of A(8§;) have straddled the zero point, the classical
secant method is employed.

A(&)m—l) EJI)M..] - JI)M—).]
A (<51,A~~1J -4 ( JZ.)AA-\)

glm = d-l,m-\ -

This type of step is continued until a point is obtained for which
the value of A(8;) has the opposite sign of previocus evaluations. The
total number of steps due to all methods is limited to an inputted num-
ber.

4.5 Tabular Case

If the Toading force of at least one of the materials is specified
to be tabular, then the approach taken is to reduce the problem to a
sequence of simple problems, each with a range of validity. When a
solution is found within the range of validity, then the solution is
accepted. If not, the problem is set up again shifting the range of
validity in the direction of the last invalid solution.

A table is always reduced to a planar form: F = a&i + béi +c
with the range of validity determined from the table points used to
compute the coefficients.

If a polynomial is involved and the polynomial is linear, then the
algorithm of Section 4.2 is used to obtain a tentative solution. If
the polynomial is pure deflection, then the algorithm of Section 4.3 is
tried. Any other case, the algorithm of Section 4.1 is used. Work re-
mains to be done in the handling of table-general polynomial. The thought
is to set up a planar form of limited validity for the general poly-
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nomial as well as for the table and use Section 4.2. The details of the
appropriate reduction of the general polynomial to planar form with the
same range of validity as the planar form fitted to the table remains

incomplete at this writing as does better handling of the pure deflec-
tion-bivariate table case.

a4



