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INTRODUCTION

The diverse studies of impact and motion of human and human ana-
Togues result in mechanical quantities described in reference
frames which vary from one instrumentation method to another.

In order to ensure precise comparison of mechanical responses
between subjects, it is necessary to refer all results to a "standard"
anatomical frame which may be easily identified. On the other hand, it
is impractical to require that transducers be aligned with this anatomi-
cal frame, since this would create problems which may not be satis-
factorily solved.

An alternative is to mount transducers in an arbitrary and con-
venient reference frame, then describe the transformation necessary to
convert the data from this frame to the desired anatomical one (1)*

We now have three reference frame to worry about: the instrumen-
tational, the anatomical, and the inertial (lab). This paper presents
a fourth frame used at HSRI, one that is related to the kinematics
of impact.

Instrumentation Reference Frame

The method used at HSRI to measure the 3-D motion of the head em-
ploys nine accelerometers mounted on the head in three clusters. Each
cluster is a triaxial unit which measures the components of the accelera-
tion vector at its center in three orthogonal directions, which are the
same for the other two clusters. These orthogonal instrumentation direc-
tions are arbitrarily chosen for convenience of mounting and are such
that the centersAQ1, Q2 andAQ3 of the three triaxial clusters will
1ie on the axes El, éZ and £3 of the instrumentation frame, at known
distances R1, R2 and R3 from the origin P, as shown in Figure 1.

Given the coordinates of the origin P, and those of two points
Q) and Q2, the unit vectors E1 and E2 are determined by normalizing

* Number in parentheses indicate reference at end of paper.
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the distances PQ1 and PQ2. The third unit vector E3 is then obtained
by cross-multiplying El by E2. However, it is experimentally more
practical to supply the coordinates of all three points Q1, Q2 and

Q3, as well as the distances from them to the origin P, then compute
the coordinates of other points necessary to define the instrumentation
frame completely in the 3-D space.

The anatomical i-axis is defined along the intersection of the
Frankfort and midsagittal planes in the posterior-to-anterior (P-A)
direction. The j-axis is defined along the line joining the two superior
edges of the auditory meati, in the right-to-left (R-L) direction. This
3-axis, which Ties in the frankfort plane, is perpendicular to the
midsagittal plane at the "anatomical center," which is taken as the
origin of the anatomical frame (Figure 2). Finally, the k-axis is
defined as the cross-product of the unit vectors of i- and j-axes,
and therefore, will 1ie in the midsagittal plane perpendicular to the
Frankfort plane, and will be in the inferior-to-superior (I-S)

direction.

Thus, the anatomical reference frame (?, 3, Q) can be completely
defined once the four anatomical landmarks are specified.

Laboratory Reference Frame

~

It is desired to describe the instrumentation (E1, £2, §3) in
terms of the anatomical (i, j, k) unit vectors:

E] j
E2 § = (] J (m
E3 K

where [E] is an orthogonal transformation matrix made up with the nine
unknown direction cosines. This matrix may be determined by first
expressing each of the (E], éZ, §3) and (%, 3, Q) in terms of an ar-
bitrary frame (i, j, k):

El I i i
E2 = [U] J and K = (v) £ (2)
E3 K K K
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then eliminating the (I, J, K) between the two expressions to obtain
the matrix [E]:

-1

(E] (ul - Iv] (3)

Since [U] and [V] are determined from coordinates of several
points, the arbitrary frame (f, 5, ﬁ) will simply be the laboratory
frame in which these coordinates are measured. The x-ray method used
at HSRI to measure these points automatically defines the Tlaboratory
frame.

Frenet Triad

For any moving point, such as the anatomical center of the head,
the absolute position, velocity and acceleration vectors are given in
the laboratory reference frame as:

R=x(t) I +y(t)d+z(t) K
R - x(t) I+ y(t) d+ 2(t) K (4)
R=x(t) I+ y(t) J+32(t) K

As the point moves in space, it travels along a trajectory defined by
x(t), y(t) and z(t). This trajectory may be thought of as a skewed
"one-way track" which is fixed in the laboratory (f, j, K) reference

frame.

The distance traveled along the trajectory is a function of time,
s(t). This function determines the position of any point on the
trajectory, and the tangent to trajectory curve at this point is de-
fined as a unit vector:

. dR
T= T (5)

&%

but since R =
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then

48 L8 T o ) T (6)

The quantity v (t) is called the speed of the point, and is
equal to the derivative of s(t) with respect to time. It is clear
that v(t) is precisely the resultant of the velocity vector, i.e.,

w(t) = /%2 + 2 432 (7)

Any plane containing the tangent T is called the tangent plane to
the trajectory. Any line perpendicular to the tangent T is called
a normal line, and the plain containing all the normal lines is called
the normal plane. Since the derivative of any vector is normal to
the vector, the principle normal of the curve is defined as:

Kﬁ
ds ’

=2
]

x>0 (8)

where N is perpendicular to T and « chosen so that N is a unit vector.
Finally,, the cross product T X N defines a third vector, perpendicular
to both the tangent and principal normal, and is called the binormal:

B=Tx N. (9)

The three orthogonal unit vectors (%, ﬁ, é) shown in figure 3 form
a right-hand triad, called the Frenet triad. As the rigid body moves
in 3-D space, each body point moves along a space trajectory; there-
fore, each point of the rigid body leaves behind a unique track charac-
terized by individual Frenet triads attached to that trajectory. For
a given trajectory,, the collection of its triads is often called a
"field," which is stationary in 3-D space.
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Curvature and Torsion of a Trajectory

It is often useful to study, in 3-D space, the turning and twisting
of the trajectory of a point on the rigid body such as the anatomical
center. The Frenet formulas provide mathematical measurements of the
turning and twisting, given the inertial components of the position,
velocity and acceleration vectors of the point of interest.

Let P be a point on tne given trajectory and P' a neighboring
point shown in Figure 3, such that:

arc (P ,P') = aAS (10)

and let T and T' be the tangent vectors to the trajectory at P and P'
respectively, such that the angle between T and T' is:

(?,f') = Ao (11)

The definition of a derivative of T is given by:

. Ao
= = Lim — (12)
ds A0 As

and that of the normal unit vector ﬁ is given by

N=w 3 (13)

But N is a unit vector, « must be the resultant (absolute value)
of the tangent, so that

dT |

Ao
ds |

2im — .
AS~0 as (14)

Therefore, as P] approaches PO, the above 1imit is defined as the

-

curvature of the trajectory at point PO. The radius of curvature 5
is defined as the inverse of «:

1 |
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A slow turn of the trajectory is characterized by a large radius ¢
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(or small curvaturex), while small radius (large «) indicates a sharp
turn of the trajectory. A numerical value of the radius o is therefore
extremely useful in quantitatively describing the sharpness of the
turns in the trajectory of interest.

In order to calculate the radius of curvature o, consider the
velocity vector of a point along the trajectory,

>  dR _ds : (17)

A

-
The acceleration vector may be obtained by differentiating R:

AL R _ds  dT, ds: 8
R=T * & T (18)
but
dT _ dT ds | 1. ds (19)
dt ds dt o) dT
so that
;_.‘IdS?'A dZSA 20
R—Oa'E)N+at——T ()

Thus, the acceleration vector may be broken along two orthogonal
components, one along the tangent (called tangential acceleration) and
one along the principal normal (called the normal acceleration). By
cross multiplying the above equation by the unit f vector, we have:

(=¥

-~ 1 s22 -
TxR == (F)TxHN )
but since f and R are defined by the components of the absolute velocity
and acceleration vector, it is possible to express all terms in the

above equation as functions of (x, y, z) and (x, y, z) to obtain the
radius of curvature p:

(x* +y2 + 22)

o= 2 Z

(3 - %)+ (3 - 2)

2
<

+ (zX - xz)
Next, we turn our attention to the binormal vector é defined
earlier. The derivative of B with respect to s may be shown to be:



d A ~ -A
s - @ (TxN=Tx 5 (23)

Thus, in addition to being perpendicular to é, the derivative is
also perpendicular to T and, subsequently, must be along the normal
direction ﬁ, i.e.,

I = TN (24)

where T is called the torsion of the trajectory, and may be either posi-
tive or negative. The radius of torsion X is defined as the inverse of
the torsion T, and, in a manner similar to the curvature, may be shown
to be

>

1 ds : S
A = - = = ] Q]m — 25
T d8 rog DB (25)
where 48 is the angle between two adjacent binormals to the curve at

two points separated by As.

[t is possible to show that the radius of torsion X may be cal-
culated from the velocity ﬁ(i, y, 2) acceleration R (X, ¥, 2) and jerk

- ote

R (X, ¥V, z) vectors first by forming the mixed (triple) product

R R R L 45yl
m= (R, R)* R=- = (g - (26)

so that A is calculated by
IR x

A= (_F-lx

2

el

sl IBZ

- (27)

- R

The radius of torsion A is a quantitative measure of the amount
of turning that the trajectory makes at a given point. Because of its
similarity with the curvature, the torsion is sometimes called the
second curvature. The only difference between the two is that the radius
of curvature is along the normal vector, while the radius of torsion
is in the binormal direction. Since torsion invoives the jerk vector
(derivative of acceleration), and since jerk is difficult to measure
experimentally and must be obtained by numerical differentiation of
the measured acceleration, the computed radius of torsion carries errors

which are amplified by the differentiation scheme.
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The key to the successful study of the geometry of a given trajectory
is to use the Frenet triad (%, &, é) whenever possible, instead of the
inertial laboratory frame (i, 3, k), for the field of Frenet Triads is
full of information about the trajectory, while the laboratory reference
frame contains none at all.

Some examples of the way this frame can be used are the following.
These examples come from a series of direct head impacts in which the
subject was positioned in front of the HSRI pneumatic cannon with the
head surface to be impacted approximately normal to the cannon
impacting surface, and the centerline of the impact approximately
through the head center of gravity.

Padded rear impact

Examination of the tangential and normal component in Figure 4
shows right away that during impact the anatomical center moves almost
exactly in a straight line until almost the end of impact. At this
point not only does it move off the line of impact (normal acceleration) but
there is also a negative acceleration along the tangent, indicating a force
acting on the skull other than that caused by the impactor.

Rigid impact

Figure 5 shows a rigid impact in which the skull was fractured
(depression under the impactor). The skull is loaded very rapidly.
The force then drops, during which the tangent drops to zero; the
normal increases rapidly, indicating that the large unfractured por-
tion of the skull is not in complete contact with the impactor and
that the only acceleration is from the change in ?. This short-Tived
change of ? (rotation) ends when the impactor comes in complete con-
tact with the skull, evidenced by a rapid increase of the angular
velocity. Once the unfractured portion of the skull is back in com-
plete contact, the angular velocity drops and the tangential accelera-

tion increases.
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