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Nonlinear Viscoelastic Behavior of Brain Tissue
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ABSTRACT

Two Aonlinear constifutive models were wxed to deveribe the dvnamic viscoelavtio behavior of brain
tissue,  Small disc-shaped samples af bovine brain tissue were tested in simple shear using forced
vibrations (0.5 to 200 Hz) with finite amplitudes (up to 20% Lograngian shear strain).  The samples
response fo simple. double, and triple harmonic inpis were determined to characterize the nonlinearities
of up to the thivd-order. A quasilinear viscoelastic model was proposed (o deseribe the sparial
nonlinearity. A fully nonlinear viscoelastic model with produci-form multiple hereditary integrals was
proposed to describe the spatial as well as the temporal nonlinearitics. The fully nonlinear model way
superior at high frequencies fabove 44 Hz).  Under finite sirainy the lincar complex moduluy showed
nanrecoverable asympiotic strain conditioning behavier. The discrepancies observed in the previous
studies and the threshold of functional failure of the reural tissue were shown to be relored to the strain
conditioning effect

INTRODUCTION

raumatic brain injury (TB1) caused by direct impact or sudden movement of the head is one of the

major causes of fatality and severe disabilities (Gennarelli, 1993). The development of particular TBI
begins with mechanical deformation of the skull, intracranial blood yessels, and brain (Thibault et af,
1990). In order to study the generation and propagation of mechanical stresses and straing that can cause
focal and/or diffuse brain injuries, it is necessary to have an understanding of the mechanical behavior of
brain tissue. Currently, the geometry of the skull and brain can be modeled with a high degree of
accurncy using the available medical imaging techniques. The key element in developing a more realistic
numerical (eg., finite element) model of the head-brain complex is to improve our knowledge of the
system material properties and boundary conditions.  Such models are extremely useful in studying the
mechanisms of TBI, in developing better predictive measures for head injury, snd in improving the injury
prevention technigues such as helmets, padding, and automotive restraint systems.

Brain tissue, like most other soft tissues, exhibits viscoelastic behavior, In a typical erash scenario, brain
is subjected to deformation impulses with duration of only a few milliscconds (Meaney ef ol 1996),
Therefore, dynamic test methods are more appropriste for charactenizing its viscoelastic behavior
{Lockett, 1972). Although the brain material behavior is nonlinear (Mendis er af, 1995; Donnely and
Medige, 1997; Takhounts, 1998), previous studies on dynamic viscoelasticity of brain fissue were all
based on the assumption of linearity of the constitutive relation (Fallenstein er al, 1969; Gallord and
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MecElhaney, 196%; Wang and Wineman, 1972; Shuck and Advani, 1972; Arbogast, and Margulics, 199%),
The nonlinear effects in the brain constitutive relation are of particular imporance for two reasons. First,
8 nonlinear model is more accurate for finite deformations. The existence of finite deformation in bram
under representative inertial forees has been reported by Margulies (1987) by observing the response of
physical models of the head. Thibault er af, {1990} also showed thay functional failure of the neural tissue
under tension occurs at finite strain levels (15% to 20%), Second, the injury pattern predicted by a
nonlinear model can be potentially very différent what a lnear model predicts. According (o the Hocar
theory of materials with memory, the wave produced by n step-wise input is diffusive in character,
broadening with time, whereas the nonlinear theory permits the existence of self-preserving waveforms,
The nonlinear theory also permits the development of discontinuities in the form of shock wave or
geceleration wave (Spence, 1973).

METHODS

In this study, the nonlinear dynumic viscoelasticity of brain lissue was investigated vsing the Foreed
vibration method. By usmg this method, compared to the other dynomic methods (ie., the resonunce
method, the free vibration method, and the wave propagation method), two particular advantages were
gained: 1) vibrations with finite amplitudes were generated in the material that was necessary to produce
significant nonlinearity in the response; and 2) below the sample natural frequency, the inertial forces
were assumed to be negligible and the stresses and strains were related only through the constitutive
relation (Lockett, 1972),

Experimental Considerations

The brain material is almos! incompressible (Stalnaker, 1969} and as a result its deformation is mainly of
the shear type. Since there is currently no reliable experimental method w perform vibration tests with
finite amplitude on the brain tissue in vivo, an in vitro methodology was developed in which small dise-
shaped samples of brain tissue were placed between two parallel plates and were subjected fo oscillatory
shear delormation (Figure 1). Torsional deformation was not considered because samples of brain tissue
under finite angular deformation are likely to go unstable and buckle and in addition, interpretation of the
experimental resulis will be more complicated.

Samples Preparation. Four boving brains were obtained immediately afier the animals (npe < 1 vear)
were slaughtered. Bovine brams were used because of their availability. [t has been shown that in stress
relaxation tests, the viscoelastic behavior of bovine brain is close to that of human brain { Takhounts,
1998), During transportation and storage, the tissues were submerged in a solution of physiological saline
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and bovine serum that simulated the cerebrospinal Muid. The solution temperniure was kept ut about 0°C.
The brains were cut inte thin slices (4.8 mm) within 24 heurs postmoriem. Two braions were sliced in the
sagittal direction, one in the anterior/posterior direction, and one in the transverse direction to evaluate the
effect of ansotropy (Table 1), The above directions were chosen because of the ease of extrueting
samples and implementing the anisotropic matenial properties in a finite element mode! of the brain. It is
expected that the neural tissue is transversely isotropic with the plane of symmetry being perpendicular to
the nerve fibers (Arbogast, and Murgulies, 1998). With few excéptions (e.g, brum stem and corpus
callosum) the directions ol nerve libers in brain are very complicated. A detailed topography of these
directions is needed before a realistic anisowropic model of the brain can be developed. The total storage
time of a slice in the refrigerator, before excision of the samples, was betweéen 3 to 16 days (average = 12
days). Subsequent test results showed no correlstion between the stornge time and the varation in
mechanical propertics. Additionally, as it will be discussed later, the measured linear material properties
were close to the available data in the literature with storage time less than 24 hours.  Therefore, it was
pssumid that the postmortem material propertics were preserved under the deseribed storage method.
Disc-shaped samples (15 to 20 mm diameter) were extracted from the cerebral neural tissue {(corona
radiata) perpendicular 1o the slice surface. The amount of gray matter in the samples was estimated based
on its surface area compared to the white matter. Samples with 0% to a maximum of 4016 gray matter
were selected for testing and were assumed 1o be homogeneous and isotropic.

Table 1. General Specifications of the Samples,

Smllll Brain  Section  Section Waight Aroa m%‘
Number 10" Number Direction™ Numbsr Sample Location™ Matarial™ [gml  (mm3"  (kgim

1 B1-3-2 1 1 3 postarior - left W+ =20%G o7 174.25 B45.74
z B1-5-2 1 1 5 posterior right W+ =100 19 |7 21 100702
] B1-6-1 1 1 [ Laft W+ <100 0.8 1T A BFZ 70
4 BZ-d-1 2 ] 4 wriberir left W+ <40%G 11 24511 944,79
5 B3-3-1 3 2 3 oerider W 21 4teTs OS2
<] B4-3-1 4 1 3 pastation -right W =BG 10 230 85 811.82
7 Bi-5-1 & 1 8 anterior — left W 22 43005 105275
] Bd-7-1 F i 7 nit racondid W+ <300 27 BE2B1 1008.88

Y Gample 10's &8 given in Barvish (200057 Direstion 1. sagiitnl, numberad fram the base of the brain. Direction 2, ranaverse,
numbered from keft, Direction 3 posterior fo anterior, Each section was 4.8 mm thk, ™ Sample [ocation i given with respect fo
tha location of the lateral veniricles in the section,™ W = white matter, G = gray matier. Perceatages of ibe gray matter were
esfimatad based on its surface area In the samples™ Areas were measured by approximating the samples cross-sections as
ellipsse. All samples were comprassed o 4. 75 mm thickness (1 0%) durimg the last

Test Apparamis, Samples were attnched 1o the smtionary and moving plates with approximately (1.3 mm
layer of cyanoacrylate mstant adhesive (Loctite, CT, model 454 Prism) and were compressed by 1.0%
between the two plates to 4.75 mm thickness 1o ensure secure adhesion in large deformation.  The
mechanical excitation of the moving plate was provided with a digitally controlled electromagnetic shaker
{ Vibration Test Systems, OH, model VTS 65) with 200 N maximum peak force, 19 mm stroke and DC-
6500 Hz frequency response (Figure 2), The reaction shear force 4t the stationary plate was mepsured
using uniaxial piezoresistive load cell (Sensotee, OH, model 31) with 245 N (250 gf) full scale, 27.5
mV/N sensitivity and 5.74 kHz bandwidth. The computer programs required for signal generation, data
acquisition, and digital signal processing were developed m-house using LabVIEW  graphical
programming software (Mational Instruments, TX, version 5.1). Each sample was tested immediately
after excision from the slice and its tempernture during the test was maintained at the body remperature
(37°C) by spraying warm saline solution on it,
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Figure 2, Schamatic diagram of the experimental apparatus.

Constitutive Models

Two nonlinear viscoclastic constitutive models were considered, namely the nonlinear viscoelastic model
with Afultiple Hereditary Integrals (MHI) and the Green-Rivlin model (Lockett, 1972) and the
Casilinear Fiscoelastic (QLV) model with & single hereditary integral (Fung, 1993). The MHI model is
nonlinear with respect 10 strain (spatial nontinearity) s well as time (temporal nonlinearity) while the
QLY model is nonlinear only with respect o strain. For the sake of simplicity, it was assumed that the
material was moderately nonlinear of the third-order.  This assumption was supported by the fact thal
functional fodlure of brain tissue occurs at Lagrangian shear strain levels of 10% 1w 15% (Thibault ¢f of,
1990; Ueno er al., 1996). A constitutive model for brain tissue is practically useful at strain levels below
the threshold of its functional failure,

The sample deformation was modeled as simple shear detined by:
x =X+ KX, x, =X, w =4, {1

where x, and X' represent the spatial and material coordinates respectively and A1/) is the amount of shear
{Figure 1). A finite element model (300 hexahedral solid elements) of u sample (20 mm diameter and
4.75 mm thickness) with isotropic material properties of Shuck and Advani (1972) was developed 1o
evaluate the nssumed deformation field and the effect of geometric nonlinearity in the sample response.
The model was solved with LS-DYNA (LSTC, CA, version 950). Since the simple shear deformation is
isochoric, the incompressibility condition was assumed to be satisfied regardless of the magnitude of K(7).

Tire MHI Model, Using the MHI constitutive model the sample shear stress can be written as (Darvish,
2000
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in which L .(#) is the shear component of the “transformed back™ or “pulled back™ Cauchy stress tensor o
the frame that is rotated with the rotation component of the deformation gradient at time £

X=X =a,+'K do,- ", K a,- " K da, (3

where da = ay) — o, is the “normal stress effect” due to large rotations, and £,, = £, = 'y K is the
Lagrangian shear strain. The second integral in equation (2) is due to the normal strain £, ='7s K present
in finite shear deformation. w, ., and y, are the first-, second-. and third-order material relaxation
kemel functions respectively. These functions, for all real materials, are symmetric with respect o
multiple time arguments ¢ — 7, (k=12,3), monotonically decreasing for ¢ — 5, = 0, and identically zero for
t—1,< 0. It should be noted that in derivation of equation (1}, to account for temporal nonlinearity, all
the possible “cross-effects™ or “interactions” are considered 1o be present in the higher-order kernel
functions, In pddition, it is assumed that the material has no plastic deformation and it is “non-aging”™,
i.e., its materinl properties do not vary with time.  The MHI model has had very limited experimental
applications because of the large number of experimental data that is needed for characterizing ns
material properties and od hoc nonfinear models were used instend (Findley er al, 1976). With the
advancements in digital data acquisition and signal processing, characterization of the MHI model has
become now feasible. The major advantages of the MH1 model with respect to ad hoc nonlinear models
are 1) it is general purpose, i.e., it can be used for any loading condition and 2) it can describe all the
possible nonlinearities in the response of materials with memory, namely the spatial and temporal
nonlinearities.

The QLV Model, To assure a nonlinear response in shear, the elastic response of the QLY mode| was
assumed 1o be governed by a second-order Rivhin stroin energy density function:

W= f,'m.“J -3)+ Cm'.'r;"jl " Cu”t‘ 3“-’;‘ 3) {4)

where €, €, and (| (all positive) are the material constants, and /, and /, are the first and second
invariants of the left Cauchy-Green strain tensor. The sample shear stress can be written us (Darvish,
2000):

Ty =0y =24, Iﬂ'{f ~ )14 12, (1)), ()T (5)
]

in which ¢, = e, = /s K is the Eulerian shear strain, and g, = 2(C,, + €, ) and y =20 (C, + C;,) are
the linear elastic shear modulus and the nonlingarity coefficient respectively.  G{/) is the reduced
relaxmtion function that describes the time dependency of the response (0 < G(f) = | with  G{0) = 1). The
important additional assumption in equation (5), compared to equation (2), is that the “cross-effects”™ are
neglected. Therefore the QLY model is linear with respeet to time and nonlinear only with respect to
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strain.  Since it has a single hereditary integral, the QLY maodel, compared to the MHI model, requires
less experimental duta for material characterization,

Dynamic Material Characterization

The third-order nonlinear material properties were charncterized by applying simple, double, and triple
harmonic inputs. The MHI model (equation 2) Is considered subject to superposition of »# harmonic shear
strain inputs that can be writien as:

E. (1) =3 A, sin(a,r) (6)
k=l

in which 4, and e, represent the input amplitudes and frequencies respectively. Roman numeric (f, [1 111
ete) is used for the frequency index. For a simple harmonic input (n = {), the siress response can be
written as

. (=R =[4E (o) +%A,JE,[M,,&J, o, )|sin{e, 1)

(M
—1 A, E (w0, 0,)sin(3a, 1)
in which E,(.) and E (....) represent the lincar and the third-order complex moduli defined by:
E (o)) = iww, (a),) (8)
E.ltw.,@,,0,) =400V, (0,0, + o) -
— Ty, e W (60, 10, 6y )
The hars over the relaxation functions represent their generalized Fourier transforms defined as:
ey, ..o )= _[ Iw,,{r, ..... r)expl—iaf, —...—daf )dt, ...dt_ (1)
For double hanmonic imputs (n = ), the stress response can be written as:
i
L) =) R + R}, (11
=l
where
Ry =2 A,A A E (@) 0, ~o), )sin{a )+ A E (@ -, .0, )sin(w,1)]
i
~ Y B A ) Efo, 0,1 0, Jsin 20, + (1), )] (12)
k=)

4 3 %AH E,l e (=1) @y (=1) @y jsm{“’-’: +(-1)" 2, ]l}]

Far triple harmaonic inputs (n = [T, the stress response can be written as:
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] 1
H:.H.ﬂ? = _%-l", AHA.IW ZZi_I}l ‘._11"5][”! '[_']]i mﬂ"f-l}quﬂj I:I*jti
Ftl: it

S:III{ e, + (- 1 iy +(-1)" L ]'}

Distortions in the Stress Response, T is evident from equations (7). (12), and (14) that the stress response
in the MHI model containg infermodilation distorifons or frequency components that are combinations of
the fundamental frequencies a, @, , and o, and their integer harmonics (harmomic distortions). The
fregquency components of the stress response were determined from windowed Fast Fourier Transform
(FFT) of the measured force and displacement signals (15 kHz sampling rate, 32 KB frame size, Exact
Blackman window) (National [nstruments, [998), By changing the input frequencies independently, the
linear and the third-order complex moduli were determined. Due to the symmetry of the relaxation
functions with respect o their time arguments, the complex moduli are also symmetric with respect 10
their frequency arguments. Therefore the [requencies were selected a3 @, 2 @, 2 @, during the
experiment. [t was practically more convenient to perform the tests in three stages: In the first stage, a
single harmonic input was applied and the moduli corresponding 1o the harmonic distortions were
determined using equation (7). In the second and the third siages, superpositions of two and three
harmonic inputs were applied respectively and the moduli corresponding 1o the intermodulation
distortions were determined using equations (11) to (14). To simplify the calculations, the frequencies
were chosen such that their integer and noninteger harmonics did not overlap.

Two distortion measures were used to evaluate the nonlinearity of the response: 1) The third harmonic
distortion (HD,) that is the relative distortion of the first 3 harmonics with respect to the fundamental
frequency, and 2) The total harmonic distortion plus noise (TD) (National Instruments, 1998), HD, shows
how much the response deviates from the linear response and 70 shows that the deviation from linearity
15 random (e, due 1o noise) or it is because of nonlinearity in the system. When HD, = TD all the
distortion is caused by up to the 3™-order nonlinearity of the system. The effect of the broad distortion
caused by the patural frequencies of the sample on the distortions caused by forced vibration was
evaluated by directly examining the output spectrums. Although the shaker system was designed 1o be
linear, it was inevitably slightly nonlinear (due to friction, the magnetic ficld, and the amplifier) especially
al Tow frequency-large amplitude applications. The distortions of the sample were approximated by
subtracting the distortions of the response (force signal) from the corresponding values of the input
(displacement signal), This approximation becomes invalid when the input distortions ure close 1o the
putpud distortions and may lead 1o negative distortion medsures for the material,

The Linear Complex Modulus, Two methods were used to determine the linear complex modulus: 1)
applving simple harmonic inputs with maximum 0% root mean squared (rms) Lagrangian shear strain
and sweeping the input frequencies from low to high, and 2) applying white noise input with 4.6% to
7.6% rms strain (2 kHz bandwidth, 8192 samples) and caleulating the transfer function between the FFT
of shear stress and the FFT of shear strain. In the second method, onlv a single measurement was
required o determine the sample complex shear modutus, which in wrn, significantly reduced the st
time. However, this method is valid only for linear systems. The linearity of the response at low strain
levels was verified by the coherence function (Mational Instruments, 1998),
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The linear complex moduli were modeied using a diserete spectrum approximation:

. L i@
}’:,{m}=§;m+‘ﬁ* (15)

in which €, and f ure the relaxation amplitudes and the decay rates of the associated relaxation function
respectively. The first constant term was determined based on the matenal response at | Hz. The second
and the third decay rates were arbitrarily chosen at 10 s and 100 87 to perform slight local adjustments 1o
the model.  The Fourth decay rate and the relaxation amplitudes were determined using an iterative
scheme to optimize the mean squared error (MSE) and the coefTicient of determination (7).

The aging or tme ranstation effect of the linear complex shear modulus of brain tissue with respect o
shear strain was mvestigated.  This phenomenon was called serain canditioning. Understanding the strun
conditioning of brain tissue is of crucial importance for development of constitutive models that are valid
for large struins and particularly repetitive loading.  The varintions in the magnitude and the phase of the
linear complex modulus with respect to strain were determined at 3 Hz, The root-mean-squarcd (RMS)
ol Logrmngion shear stroin was first incrensed from 3% to 21% (loading). Afierwards, the strain was
decrensed back 1o 3% (unloading), The steadyv-state linear complex modulus was measured at several
strain levels during loading and unloading.

The Nonlinear Complex Moduli.  In order o reduce the number of parameters of the MHI model, a
product-form (PF) model (Nakada, 1960) was explored in which the ath order complex modulus can be
wrilten as:

E @) =al E(e)...Ele,) (16)

where @) is defined as the coefficient of product-form nonlinearity of the ath order. For a material with

product-form  nonlinearity these coefficients should be real comstants (independent of the input
frequencies and amplitudes). In the QLY model, it can be shown that the higher order complex moduli
are linearly related 1o the linsor complex modulus (Darvish, 2000), which can be written as:

f:'1I.l|{r"ur"""“f""ll-" =H:EI{MI +_‘.+f1.]"] (HT}

where o is defined as the coefficient of quasilinearity of the ath order, For a QLY material all of
should be real constants. Using equation {1 7). the nonlinearity coefficient of the QLY model (equation 5)
can be written as y = e!. The third-order complex moduli were represented in two-dimensional plots
by mapping the three-dimensional space of the input frequencies to a one-dimensional space of freguency
combination index (FCT) given in the appendix (Table A-1), The third-order nonlinearity eoefficients o/
and ¢ were determined by an iterative solution technique. Three measures were used for evaluating the
goodness of fit for the magnitude and the phase: 1) the average relative error ( ARE), 2) the mean squared

error (MSE), and 3) the coefficient of determination (R7). The relative error was defined as the difference
between the analylical and experimental values divided by the absolute value of the experimental value,
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RESULTS

Basic Asswmptions.  In the ideal simple shear deformation the stresses and strains are expected to be
constant throughout. The finite element model of sumples showed that the coefficients of variation of
shear strain uand shear stress for 10% Lagrangian shear strain were 2.3% and 15.6% respectively, The
model showed an overall geometric nonlinear effect (equation 3) of 0.42%, 0.33%, and 0.18% on the
average shear stress at 10%, 20%, and 30% Lograngisn shear strain respectively.  This effect was
considered to be negligible and it was assumed that £, = o,

The Nenlinear Response. The Lissajous curves of shear stress versus Lagrangian shear strain for simple
harmonic inputs showed strong nonlinearity in the viscoelustic response of the samples even at shear
strains s low as 1% (Figure 3), Comparison between the computed HO, and 7D showed that the
observed nonlinegrity wis miinly of the third-order (Figures 4 and 5), The broadband hump in the output
spectra that was due to the sample natural frequencies near 440 Hz gave rise 1o the measured total
harmonic distortions of sub-harmomics between 27 He and 87 He

The Linvar Compley Modeli. The magnitode of linear complex moduli showed approximately one order
of magnitude rise between 10 Hz und 100 Hz (Figure 6) that was in agreement with the assumption of
discrete spectrum spproximation given in equation (15). A resononce of the sample holders occwrred m
about 60 Hz that caused o ripple in the magnitude of the complex moduli close o that frequency and
disturbed the phase dam above 30 Hz. Only the phase data at low frequencies (below 30 Hz for simple
harmonic inputs and below 10 Hz for white noise input) were used in determination of the samples
material properies. The material parameters derived for the lmear complex moduli using simple
harmonic input and white noise input are given in Tables 2 and 3 respectively. The results showed
different anisotropic behavior at low and high frequencies (Figure 7). At | Hz, corresponding to the
coefficient C,, the moduli in the antenor/posterior and the transverse directions were about 35% lower
than the modulus in the sagittal direction. At about 100 Hz, comresponding to the coefficient O, the

modulus in the anterior/posterior direction was about 15% higher than the moduli in the sagittal and the
transverse directions.
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Figure 3. Lissajous curves of sample 7 al 5 Hz.
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Figure 6. The linear complex moduli of samples 2
and 3 (white noise strain = 7.58% rms).

The variations in the magnitude and the phase of the lincar complex shear modulus with respect o strain
ot 5 Hz is shown in Figure 8, The results showed strain conditioning in the form of decrsase in the
magnitade of the linear complex shear modulus and increase in its phase, both to asvmptotic values. The
loading paths of samples 2 to 5 {strain and frequency) and the magnitude of their lnear complex shear
maduli are plotted in the three-dimensional space of strain-frequency-modulus in Figure 9. Samples 2
and 3 were strain conditioned at 1 Hz and the magnitude of their complex moduli at 5 Hz, were slightly
lower than the moduli of samples 4 and 3 {at the same strain level) that were strain conditioned at 5 Hz
This shows that strain conditioning was independent of the loading path in the strain-frequency plane.

The Nonlinear Materfal Properties, The magnitudes and phases of the experimental, the PF-MHI, amd
the QLY third-order complex moduli are shown in Figures 10 and 11, The calculated third-order

nonlinearity coefTicients (&) and &) )are given in Table 4. For sample 6 and for the average third-order

coefficients, the linear complex modulus was assumed to be the avernge model given in Table 2. The
average Lagrangian shear strain for double and triple harmonic inputs was 12% rms with 3% standard
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Table 2. Matarial Constants of the Linear Complax Moduli Determined from the Simple Harmonic Input

Test Results.
Goodness of Fit
Goodness of Fitin Goodness of Fit in in Phases
Magnitudes (<100 Hz) Magnitiedes (< 40 Hz) {= 30 Hz)
¢ ¢ B & B € B MSE
Sample (kPa) (kPa] (1/s] (kPa)] (1/s) (kPa) (Vs) MSE(kPa’) F MSE(kPa’} R jdeg’) 7
2 048 OOF 10 00f 100 330 5500 0,319 0524 0,008 0.ge2 5535 0757
3 035 010 10 00% 100 300 5500 0.082 0,808 o.008 OGRT 5374 0BG
Aversge 042 008 10 001 100 316 5500 0277 0,850 oo 0543 5334 0B48

Table 3. Material Constanis of the Linear Complex Moduli Delermined from the White Noise Inpul Test

Resulls.
Goodness Goodnass Goosdnees
af Fit in of Fitin of Fit In
Magnitudes Magnitudes Phases
[< 100 Hz} {= 40 Hz) {= 10 Hz}
White Mokse cl- c1. ’f c.t #.t cj #I "3&;’ & MSE & MSE | ﬂ’lﬂl.'!
Sample  Strain (rms%]  (kPa) (kPa) (i/s] (kPa) (1/s) (kPa) (1ls) (kPa") (kPa’y
1 453 058 Q7 10 005 100 310 S500 0278 0O7BE 0080 Q710 1.452
4 588 D37 020 10 0OO8 100 AT0 5500 0484 0018 0028 0855 0.oa3
5 T.ar 035 020 W 008 100 330 5500 0082 0054 0032 0758 1.313
B 484 DB0 030 10 020 100 360 4000 022 0033 0048 Q820 0587

deviation. The magnitude of the PF-MHI third-order modulus, at identical frequency arguments above 44
Hz, was significantly lurger than the QLY model. However, at nomdentical frequency arguments, the
magnitudes of the two models were close (Figure | 2).
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Based on the average linear complex modulus given in Table 2 and @] = 10.5 (Table 4), the clastic
material constants of the average QLY model were calculated as g, = 16.01 kPaand y = 2,62, The Rivlin
material constants, assuming C,, = 0.9C,, (Mendis et al, 1995), were derived as C\, = 3.79 kP, €, =
421 kPa, and C, = 10.51 kPa, Thee normalized elastic shear response (with respect to the elastic shear
modulus g) 15 shown in Figure 13,

DISCUSSION

Strain Hardening of the QLV Elastic Resporse. The instantancous clastic response of the LV model
showed hardening for Lagrangian shear strains above 10%. This behavior was in contradiction with the
QLY models proposed by other investigators for brain tissue (Figure 13), The model of Mendis er o/
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Table 4. Material Constants of the Third-Order Complex Moduli

Third-Ordar
Sampls Modal Coefficient ARE (%) MSE R

@l or @ Mag  Phass  Mag. (kPa’) :L.'“n',‘; Mag.  Phase

3 aLy BE 02 1381 10595818 17.080 0687 0000
PF-MHI B2 04 515 6131688 27082 0B84 0030

y aly a3 03 27T Ge2BEZ 20082 0368 0,000
PF-MHI 19.7 02 508 487005  Z7TE13 0613 0.016

P aLv 166 o1 236.8 BAS 21378 D08 0.052
PE-MHI 278 03 1969 B18 28523 00T 0100

PO - i 08 80 208.0 1293631 19994 D4e5 0000
A PE-MHI 212 3 1108 Ba1 766 27881 OB42  0.038

(1995), derived from uniaxial compressive stress relaxation test results, predicts a linear behavior in
shear. The model of Prange of al. (1998), derived from shear stress relaxation tests, predicts a low rate
softening behavior. The rise time in the experiments conducted by Prange er al. (1998) was 60 ms. The
difference between \he short-term elastic reésponse, determined from the vibration test results, and the
long-term elastic response, determined from the stress relaxation test results, indicates that the rate of

13
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relaxation increases with strain.  Therefore, the tissue exhibits temporal nonlinearity that is more
significant m the short-term response and becomes almost negligible in the long-term response.

The PF-MHI Model Versus the QLY Model.  Overall, the third-order PF-MHI model, compared to the
QLY model, was a better predictor of the expenmental results.  For the magnitude of the third-order
complex modulus with identical frequency arguments, ot higher frequencies (above 44 Hz) the PF-MII
model was significantly superior whereas st lower frequencies the QLY model was slightly better (Figure
12a), For nonidentical frequency arguments, the two models described the experimental magnitode datn
almost equally (Figure 12h). Both models at low frequencies (FCF < 24) deseribed the lower bound of the
magnitudes. Although the PF-MHI model phase data showed more variations than the QLY model, both
models did not satisfactorily describe the scattered experimental phase data.

The Linear Complex Modulus and Strain Condiioning. It s a well-known fact that in order 1o establish a
bnigue constitutive relation, biological soft tissues should be preconditioned (Fung, 1993), In this study,
material charneterization was based on the steady state responses and hence the samples were effectively
preconditioned,  Neventheless, the results of this study showed thal another form of conditioning existed

14
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thot was due to-strain and was called sirain conditioning. Stain conditiomng was manifesied us a decrease
i the magmiude and an inerease m the phase of the linear complex modulus 10 asymprotic values ( Figure
8). Before the linear complex modulus became asymptotic, strain conditioning was partially recoverable
and after that i was almost fully nonrecoverable, In this study, only shori-term recovery, within few
minutes after the initial loading, was studied. Whether long-term recovery from strain conditioning
exists, especially in vive, would require more investigation.

At 5 He input frequency, the threshold of asymptotic strain conditioning was 15% Lagrangian shear
sirpin.  This threshold appeared to decrease at higher frequencies. Below 50 He, the magnitudes of the
linear complex. moduli obtaned using simple harmonie inputs were lower than the ones oblamed using
white noise imput and their phases were higher (Figure 6). This difference can be explained based on the
strain conditioning effect with regard to the Fact that the low frequency rms strain amplitude of harmonic
inputs (10%) was larger than the white noise mms sirain amplitode (7.58% ms).  However, the two
moduli al frequencies ubove 50 He became indistinguishable, which indicated that both had been strain
conditioned asymptotically.

The strain conditioning effect can be used to explain part of the variability that is observed in the moterial
properties of brain tissue reported by other investigators. Generally, in previous studies, when larger
struins were applied at low frequencies, lower magnitudes and higher phases were measured for the linear
complex modulus. As the input frequency was gradunlly increased, less vanability can be observed in the
reported material properties (Figures 14 to 16).

The results of Arbogast and Margulies ( 1998) were obtained by perfomming oscillatory shear deformation
on samples from porcine brain stem, Their results, compared to the results of this swdy, show a lower
nse m the magnitude of the complex shear modulus and no significant viscoglastic tansition below 20()
Hz (Figure 14 and 15). In the presen study, the discrete spectrom approximation that was selected to
model the rapid rises in the magnitudes of the complex shear moduli, suggested a significant viscoelastic
transition at about 150 Hz. Due to inertial effects, this transition could not be verified with the
experimental phase daty,  Although Arbogast and Margulies (1998) applied low surain levels (2.5%, 5%,
and 7,5% engineering shear strains), their results show reduction in the magnitude of the complex shear
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Figure 14. The linear complex shear modull derived in this study com pared to

the results of other investigators.
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modulus with strain that is due to strain conditioming (Figure 15}, In addition, at frequencies above 100
Hz, all their results converge to the results of this study that can be attributed to asymptotic strain
conditioning, results is high because It was approximated by

Shuck and Advani (1972) performed oscillatory torsion tests with small strains (below 3.5% engineering
shear strain) on human brain tissue. In the swept sine test results (starting at low [requencies), they
observed a viedding behavior (Figure 16). In order 1o avoid yielding, they applied the high frequency
inputs individually, and denived relatively high magnimdes for the complex shear modulus (Figure 14). 1t
should be noted that both magnitude and phase of their yielded results, after about 80 Hz, approaches the
results of the present study which suggzests that what they observed as yielding was in faet asymptotic
strain conditioning.

The results of Wang and Weinman (1972) were based on in vive forced vibralion tesis on Rhesus
monkey, Their results agree very well with the “non-yielded” results of Shuck and Advani (1972}, They
applied only a# single input frequency (80 Hz) and as result no strain conditioning was oceurred.  Galford
and McElhaney (1969) performed free vibration tests on human brain samples in compression. The
magnitude of the shear modulus corresponding to their results is high because it was approximated by
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assuming a constant Poisson's mtio of 0.5, The results of Fallenstein er af. (1969} were obtained by
studying the resonunce of human brain samples in simple shear. Thedr results are very close to the results
of the present study and show strain conditioning as they increased the engineering strain level from 7%
to 24%, Tukhoumnts [ 1998) conducted streds relaxation tests on human and bovine brain samples in simple
shear. His proposed linear relaxation function was valid for engineering shear straing below 10%,
Donnelly and Medige (1997) performed constant high strain rate tests on human brain samples with up o
100% engineering shear strain and 180 s strain mte. The linear relaxation functions of the two latter
studies that were modeled by Prony series were transformed into the frequency domain using equation
(15). Since in both test methods the short-term effects could not be measured, the two models show
“faise saturntion™ at 100 Hz and 20 Hz respectively. Below the saturntion frequency, their resulls ane in
agreement with the low frequency results of this study. Donnelly and Medige (1997) applied the largest
strain levels and hence their resulis show the highest level of strain conditioning.

{ne possible hypothesis may be that strain conditioning is due to mechanical failure of the weaker bonds
in the gha. Glial cells, that are twice as numerows as nourons, provide the structural stability of the neural
tissue and form a complicated three-dimensional network. While the ghial cells become fully stretched,
the complex moduli reach their asymptotic values. As aresult, the neural fibers become load bearing and
therefore the risk of their functional failure increases. The functional failure of newral tissue at low
loading rates is believed 10 pecur in the range of 10% 10 15% Lagrangian shear strain ( Thibaull er af
1990) which is in close agreement with the threshold of asymplotic strain conditioning (15%) found in
this study at 5 He Strain conditionng predicts that repetitive loading would make the brain tissue
structurally weaker and therefore more susceptible to injury. More mechanical test data as well as pre-
and posi-lest histological data of the samples are needed for better understanding of the mechanism of
strain conditioning,

Anisotropy of the Linear Compley Modulus, Shuck and Advani (1972), using the same global axes as in
this study, in the frequency range of 2 Hz to 10 Hz, observed about -30% snisotropy in the
anleriot/postérior and transverse directions compared to the sagittal direction. Their result is in close
agreement with the results of this study at | He. However, the results of this study at higher frequencies
showed that anisotropy was frequency dependent. Cme possible reason for this phenomenon may be the
directional dependency of strain condiioning.  Preliminary observations suggest that strain conditioning
has more effect in the fiber direction (that is penemlly the stiffer direction) and maokes the tissue to
hecome almast isotropic,

CONCLUSIONS

The mechanical behavior of brain tissue n shear was shown 1o be nonlinearly viscoclastic. Two third-
order nonlinear models were developed to describe this behavior: a fully nonlinear model with product-
form multiple hereditary integrals and a quasilinear viscoelastic model. The fully nonlinear model was
shown Lo be superior especially at frequencies above 44 Hz. The elastic response of the quasilinear model
showed strain hardening for shear strains above 0%,

It was shown that finite strains introduce nonrecoverable changes in the material properties of brain tissue
that were referred to as stroin conditioning.  Under strum conditioning the magnitude of the linear
complex modulus decreased and its phase increased to asympiotic values. The discrepancies observed in
the mechanical properties of brain tissue in the previous studies and also the threshold of s functional
failure under mechanical loading were shown to be related (o the strain conditionimg etfect,
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APPENDIX

The values of the three frequency components associated with the frequency combination indices that
were used for determination of the third-order complex moduli of samples 2, 3, and 6 are given in Table
A-l,
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Table A-1. Frequency Combination Indices (FCI),
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