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Abstract (500 Words) 

A number of automobile manufacturers have announced plans to bring automated driving technology to the 

road in the near future. In addition to economic and social benefits, potentially improved safety 

performance is one of the key factors motivating automated driving. With high-quality sensors working in 

parallel, automated driving is likely to offer safety benefits, since the system observes the environment 

continuously in all directions, whereas human visual perception is directly limited by the field of view and 

can be indirectly limited by the complexity of a scene or the cognitive burden . Humans are also subject to 

lapses of attention, e.g. due to fatigue. 

Assessing the difference in safety performance between automated and manual driving involves a det ailed 

analysis of this replacement. It is a more challenging task than assessment of “conventional” driver 

assistance systems, which usually address a more limited set of scenarios, and requires a comprehensive 

approach that includes the entire range of exposure of automated driving.  

In general, safety assessment utilizes evidence from a variety of sources, beginning with retrospective 

accident analyses and including a range of prospective techniques, such as so -called naturalistic driving or 

field operation testing (FOT). This paper presents a technique used by BMW for assessing safety 

performance of highly automated driving functions using virtual experiments , including two design 

approaches: virtual scenario-based trials and virtual FOT.  

The core technology in both designs is an agent-based Monte-Carlo simulation engine using our 

“stochastic cognitive model” (SCM) to describe human traffic participants, as well as sensor and functional 

models to describe agents with ADAS or automated driving. The paper will review key features of SCM 

developed to represent the behavior of virtual traffic participants (and their interactions) in real traffic. The 

simulation and models are parameterized base on different data sources like previous FOT -data, simulator 

studies, traffic data as well as accident data.  

The virtual scenario-based trial design to test a virtual automated driving function (ADF) is illustrated here 

for two highway scenarios. Virtual “humans” drive according to a “stochastic cognitive model” developed 

by BMW. In an “obstacle in the lane” scenario, the virtual drivers encounter an obstacle that may appear 

(from their point of view) suddenly. Drivers are thus forced to decide on an action (braking, swerving, etc.) 

under severe time pressure, obvious collision risk, and often with inadequate time for observation of blind 

spots. In a “jam approach” scenario, the virtual “human” drivers enter a realistically simulated traffic jam 

front (e.g., position of maximum speed gradient can vary among lanes). In jam approach, typical 

perceptual limitations of human drivers can result in inadequate braking or counter-productive lane 
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changes and ultimately in collisions. Target vehicles equipped with a virtual ADF achieve improved safety 

in both tested scenarios.  

 

INTRODUCTION 

Based on comprehensive, sensor-based detection of 

vehicle surroundings, the vision of automated 

driving has already become reality in research 

vehicles (e.g., [1, 2]). Today, advanced driver 

assistance systems (ADAS) support the driver in 

demanding, complex or hazardous situations and, if 

necessary, can perform maneuvers automatically. 

Higher levels of automation could, at least 

temporarily, free the driver entirely from the 

driving task, with enormous potential for individual 

benefits [2]. In addition to individual mobility 

improvement, vehicle automation could play a 

central collective and socio-economic role and 

provide significant positive impacts on road traffic. 

It is widely expected that automated driving will 

improve traffic performance in terms of traffic 

flow, energy demand and traffic safety [3]. 

In addition to automotive manufacturers and 

suppliers, public decision makers, regulatory 

agencies, insurance companies, and consumer 

protection organizations are key stakeholders in the 

evaluation of vehicle safety. Proof of reliability and 

equivalent or superior safety in all operating 

scenarios is an important prerequisite for the 

introduction of ADF.  

 

Figure 1.  Changes in traffic safety due to 

advances in driver assistance and automation 

(after [4]).  

Detailed safety performance assessment and 

optimization of ADF safety performance is a 

complex task. By its nature, automated driving 

involves long periods of relatively 

unchallenging, low-risk traffic flow as well as a 

broad spectrum of rarely occurring, but 

potentially complex or high-risk scenarios. 

Safety performance assessment in ADF is more 

challenging than in “conventional” driver 

assistance systems (ADAS), which usually 

address a more limited set of scenarios. ADF 

assessment requires a comprehensive approach 

that includes the entire range of exposure.  

Moreover, as in ADAS, occasional superfluous 

system actions or unintended consequences could 

theoretically arise in ADF due to the underlying 

uncertainties in detection and risk assessment -- not 

to mention the constraints imposed by the laws of 

physics as applied to vehicle dynamics. As a 

consequence, secondary risks cannot be ruled out a 

priori (e.g., rear-end collisions following an 

emergency braking maneuver).  

Furthermore, the interactions between ADF and 

human drivers or vulnerable road users could in 

principle have non-obvious negative impacts on 

traffic safety in a particular context. For example, if 

there is a perception that ADF responses to 

potential conflicts are more defensive than human 

responses, human drivers could be tempted to carry 

out otherwise risky maneuvers, such as close lane 

changes in front of automated vehicles. Other forms 

of risk compensation by human drivers are also 

conceivable. As a consequence, an objective metric 

of traffic safety must also include possible side 

effects [5, 6, 7, 8], in order to quantify the ratio of 

desired safety improvements to unwanted side 

effects, and to optimize the ADF regarding this 

ratio. 

Issues such as integrity of communication, data 

protection, and technical reliability are 

unfortunately beyond the scope of this paper. The 

focus here is on techniques for quantifying and 

optimizing the impacts of ADF on traffic safety.  

SAFETY ASSESSMENT APPROACHES  

Retrospective assessment and related issues 

One approach for structured assessment of impacts 

on traffic safety of systems is retrospective analysis 

of accident databases linked to vehicle equipment 

data (if feasible [9]). Clearly, this approach can 

only be applied to existing systems. However, even 

for assessment of existing safety systems, there are 

several statistical constraints, particularly due to 

lack of statistical power (low event rates) and 

confounding factors. Thus, low event rates imply 

that large samples from accident databases and long 

observation times [5] are required for retrospective 

statistical evaluation of accident avoidance; and 

safety effects could be confounded because 

vehicles in the sample often differ in multiple 

aspects, but not only regarding the safety system in 
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question. Differences of driver population or 

exposure to traffic scenarios are often correlated 

with the availability of the system. Moreover, like-

named safety systems from different manufacturers 

may have different functional characteristics, 

activation thresholds, intervention algorithms or 

interaction concepts with the driver.  

Such properties of retrospective studies make an 

unambiguous interpretation of results and 

conclusions about causality difficult or impossible; 

simple, comprehensive statements regarding safety 

performance changes (“effectiveness”) are not 

always valid [6, 7].  

In addition, evaluation of the consequences of 

system actions is practically impossible based on 

retrospective studies alone. The same warning or 

system intervention could have quite different 

impact on traffic depending on possible action and 

reaction of involved road users in the situation. 

Taking the situation with a pedestrian standing on 

the road edge as an example, the situation contains 

at this moment a potential risk, since in most cases 

the pedestrian would wait until the vehicles pass. A 

warning would be in that case unnecessary and 

interpreted as “false alarm” by the driver. However, 

it cannot be completely excluded that – contrary to 

expectation- the pedestrian makes a sudden move 

towards the road, albeit with very low probability. 

In this case, the same early warning could have 

increased the driver’s attention and facilitated a 

proper reaction.  

This discussion does not imply that the impact of 

system warnings or interventions are totally 

unpredictable, but it does imply that stochastic 

variations, particularly in human factors, need to be 

taken into account in a holistic system design and 

engineering approach. A thorough analysis of 

human factors can help to achieve the desired 

safety effects: The holistic approach includes 

choosing the right warning modality, directing it to 

the right place, modeling an intervention with the 

right gradient – and most importantly delivering the 

warning and intervention at the right moment.  

However, traffic dynamical processes beyond the 

control of the engineer will always play a strong 

role and influence the performance of a safety 

measure. System optimization, in particular, 

optimizing the sensitivity-specificity-trade-off, 

could contribute to minimizing the negative side 

effects, and to maximizing the safety benefits, 

which requires microscopic view of numerous 

individual cases to quantify the system impact in a 

particular class of traffic situations (Figure 1). This 

process cannot be achieved by purely retrospective 

assessment.  

Summarizing, retrospective studies can enable ex-

post evaluations, but can hardly be used for any 

optimization of ADF, due to the long feedback loop 

of development, retrospective evaluation, and 

redesign. There is an urgent need for reliable and 

valid predictions of traffic safety for design and 

optimization of ADAS and especially for ADF. 

However, truly prospective, controlled, and 

representative studies are not feasible on public 

roads due to ethical and practical considerations. 

This dilemma could be resolved using virtual, 

simulation-based traffic safety predictions of 

ADAS and ADF. 

Prospective safety assessment 

The concept of a virtual experiment or “trial” is 

expected to play a central role in comprehensive 

safety assessment of ADF (Figure 2).  

Here, real traffic is replaced by simulated traffic 

and other “real” components by models. Validity is 

the central requirement in this paradigm. 

 

Figure 2. Process of virtual assessment of 

ADF. 

The basic experimental design paradigm is the 

randomized controlled trial, comparing a “treatment 

group” to a control group (referred to as 

“baseline”). In place of real vehicles in real traffic, 

the subjects of the trial are virtual vehicles in virtual 

traffic.  

One virtual design approach, similar to Advance 

Driver assistance systems’ assessment, involves 

preliminary identification of specific (rare but 

important) scenarios that are potentially complex 

or high-risk.  

Typically, safety performance of automated 

vehicles is then tested by repeated virtual 

experimental units (simulations). These 

simulations usually have a short temporal and 

spatial focus and involve relatively few 

interactions.  
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In each experimental unit or trial, characteristics 

of agents and traffic environments are randomly 

drawn from appropriate model distributions. 

Target agents are assigned to treatment (system 

active) or baseline (system not present or inactive). 

Traffic safety indicators are captured as dependent 

variables, analogous to empirical tests. 

Effectiveness of a system can be quantified based 

on comparison to the baseline regarding these 

indicators, using appropriate statistical tests.  

A second design approach is a “virtual FOT” 

simulation, involving generic initial conditions, a 

longer road section and many interactions. The 

virtual FOT can reveal scenarios whose risks are 

not evident a priori, but which emerge in the 

course of simulation.  

An obvious advantage of prospective virtual 

assessment is the ability to perform controlled 

experiments in high-risk traffic environments. 

Another key advantage is generation of adequate 

sample sizes: quantification and statistical testing of 

safety effects requires an adequately large and 

representative sample of events. The number of 

events needed is typically related to the square of 

the relative safety effect size, just as in a 

randomized, controlled trial. However, since events 

(i.e., accidents) are inherently rare events, generally 

a very large sample of scenarios or very long 

observation periods are required. In contrast to 

empirical studies or test driving, virtual samples 

can be produced fast and with minimal cost. 

Finally, virtual testing can capture any data desired 

for evaluation, including virtual human factor data. 

 

Figure 3. Categorization of possible system 

response in temporal sequence (following 

[10]). 

Due to the high complexity of possible safety 

effects of an ADF, an appropriate metric for 

characterization of these effects is required. An 

ideal metric includes effectiveness quantification at 

two levels. The first level quantifies the relative 

frequencies of all possible fields in the situation-

system-response-matrix (Figure 3). A key 

characteristic, adopted from medicine, is the NNT 

(“number needed to treat”). NNT can be defined as 

the ratio between all system actions and true 

positives, i.e., desired system actions [11, 12, 13]. 

NNT can be calculated separately for each type of 

system action (warnings, interventions). 

The second level quantifies the primary effects 

including both avoided accidents and mitigation 

(reduced injury severity or fatalities in the 

remaining unavoidable accidents), but also 

secondary effects including possible “new” 

accidents and their injury severity. 

Probability models can be used to derive injury 

severity based on detailed accident characteristics 

in the target scenario. To calculate the metric, two 

steps are required: first, calculating the impact of 

the system on accident characteristics in the target 

scenario; second, applying a conditional probability 

model of injury severity depending on these 

characteristics. 

To model injury severity – quantified as MAIS 

(Maximum Abbreviated Injury Scale), for example 

– depending on accident characteristics, there are 

several complementary approaches. A commonly 

used method is the construction of statistical 

models (e.g., regression models) from existing 

accident databases (e.g., [12, 14, 15, 16]). Another 

approach is “co-simulation”. Here, a representative 

sample of time series from accident simulations is 

generated and analyzed using a high-resolution 

crash simulation, which is capable of rapidly 

calculating injury indicators [17, 18]. 

Modelling safety-relevant processes in virtual 

traffic  

The safety performance of ADF depends on a 

number of interacting processes, beginning with 

exposure variables and related to traffic flow, 

dynamics of the driver-vehicle unit including 

human factors, technical systems, and the 

environment. In the context of safety assessment, 

the goal of simulation models is to achieve a 

simulation fidelity (quality) capable of capturing 

the effects of ADF on all safety-relevant processes. 

This objective is far more challenging than those of 

typical traffic simulation applications in the past, 

which were concerned with understanding traffic 

instability, optimization of macroscopic flow 

characteristics, or incident detection by traffic 

reconstruction. The simulation model should be 

capable of capturing the real-world performance of 

a system by considering the stochastic properties of 

all relevant technical and human processes in 

traffic, including responses to the safety system 

under assessment. 

There are many possible interactions within a 

driver-vehicle unit and between traffic participants 
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and their surroundings. For ADF, the interaction 

between driver and vehicle may possibly be very 

limited (Figure 4). Traffic safety is a result of all 

elements of the driver-vehicle control loop [19], 

together with other factors, such as infrastructure or 

regulations. 

 

Figure 4. Possible interactions of driver-vehicle-

surroundings including ADAS or ADF; each 

including possible interactions with another 

human driver (after [20]). 

In principle, all relevant dynamic and human 

processes are represented as time series of states 

within the simulation. The simulated changes of 

those states can have both “deterministic” and 

“stochastic” characteristics, and it is often the 

stochastic variations that are important in accident 

processes. Simulation models must therefore be 

capable of representing not only deterministic 

processes but also stochastic properties. For 

example, the duration from a collision warning to 

braking by the driver will vary widely within a 

population of drivers and therefore must be 

regarded as stochastic [21]. The yaw rate of a 

vehicle on a dry surface is primarily 

deterministically dependent on steering wheel angle 

and speed, but slippage introduces an effectively 

stochastic component that could be important in 

extreme situations. 

 

Figure 5. Generic process chain of ADF 

(without interaction with the driver) [22]. 

For technical systems, the entire process chain must 

be represented. The process chain generally 

consists of sensors, traffic environment modeling, 

algorithms (logic), vehicle dynamics controllers 

and actuators (Figure 5). Additionally, the system 

impacts and feedback loops on driver, vehicle, and 

traffic are modeled. 

By far the most important stochastic processes are 

related to human factors. It is known for instance 

that the reaction times of human drivers vary 

considerably [21] in response to even a controlled 

stimulus. Most accident processes involve at least 

some aspect of human factors, and the impact of 

ADAS or ADF cannot be evaluated virtually 

without taking human factors into account.  

To this end, the integrated Stochastic Cognitive 

Model (SCM) for highway driving has been 

developed within BMW and applied to safety 

impact assessment. A core aspect of the SCM 

driver behavioral model is the application of 

stochastic methods in order to represent the 

behavior of different drivers (Figure 6). 

 

Figure 6. Overview on the used driver model for 

the safety impact assessment. 

The SCM consists of five different sub-models that 

are briefly described in the following: 

Information acquisition. This sub-model considers 

in principle auditory, haptic and visual perception 

of the driver. In particular in the information 

acquisition sub-model is focused on the visual 

perception, which considers the peripheral and 

foveal field of view of the driver as well as the gaze 

distribution.  

Mental environment. This sub-model describes 

recognition of situation patterns. This sub-model 

considers the current information of the information 

acquisition sub-models as well as information from 

memory respectively previous time steps. All 

gathered information are aggregated to describe the 

microscopic traffic properties and extract features 

of the environment that are needed in the next 

model.  

Decision making. In this sub-model the current 

situation is assess according the information 

derived in the previous step. Based on the outcome 

of the assessment a decision is taken about the next. 

For the selection of the taken action also 

statistically variations are considered.  
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Action Patterns. This sub-model divides the taken 

action base on an action pattern catalogue into 

primary (acceleration, deceleration, steering and 

constant driving), secondary (indicator use, light 

activation, use of the horn etc.) and tertiary driving 

actions (e.g. telephone or navigation use). 

Action Implementation. Finally, the information of 

the previous sub-models are used in order to 

determine the pedal position – accelerator as well 

as braking pedal – and steering wheel angle that 

result in the longitudinal and lateral acceleration of 

the vehicle. By this the movement of the vehicle for 

the next time step can be determined. 

CHALLENGES FOR VIRTUAL 

ASSESSMENT OF AUTOMATED DRIVING 

FUNCTIONS  

Safety related ADAS act by means of warning or 

intervention in sporadic events shortly before 

imminent collision would occur. Automated driving 

functions in contrast operate and intervene 

continuously in the driving behavior. Consequently, 

safety related effects of the functions – positive as 

well as negative – in traffic flow as a whole, not only 

in certain target scenarios, must be considered in the 

assessment of AFD (Figure 7). 

 

Figure 7. Identification of top scenarios for the 

assessment of AFD based on relevant situations 

as well as on continuous traffic simulation. 

In general, automation has not only a potential for 

selective accident prevention from the perspective 

of the ADF-vehicle, but could, given sufficient 

penetration, increase overall traffic safety due to 

collective effects such as harmonization of traffic 

flow (see, for example, [25]). For example, traffic 

literature shows (e.g., [26]) that inappropriate speed 

is not only limited to individual drivers, but may be 

a collective phenomenon of the traffic stream. A 

high penetration of traffic with ADF-vehicles could 

thus also avoid accidents for non-equipped vehicles 

(due to the collective effects of early speed 

adjustment). 

On the other hand, due to the continuous action of 

ADF in traffic, the situation space will be 

substantially larger than for current ADAS, and 

prediction of all relevant situations will be difficult. 

This causes fundamentally new issues and 

methodological challenges arise for the virtual 

safety assessment of ADF. These issues complicate 

the assessment. A possible approach is an 

integrated and agile development and assessment 

process using a comprehensive tool chain.  

Any methodology for continuous safety assessment 

during development requires a comprehensive 

understanding of various existing methods and their 

specific role and contribution in such a complex 

process. Figure 8 provides an abstract overview of 

the roles of different testing instances within an 

integrated development and assessment process.  

 

Figure 8. Development and assessment process 

including exemplary testing instances. 

Referring to Figure 8, the scenario database as 

well as other models play a key role for all 

development and test tools. The scenarios and their 

frequency (in terms of an exposure model) can be 

stored in a scenario database and reused for 

different test instances. 

Summarizing, the key of virtual assessment of ADF 

can be broken down in following aspects: modeling 

all relevant processes representatively and 

realistically, covering the large and partially 

unknown test space, and managing and utilizing 

both empirical and synthetic data. The following 

sections will briefly address these aspects without 

claiming to be exhaustive. 

Process of assessing automated driving in virtual 

continuous simulation  

In addition to traditional research methods (e.g., 

theoretical risk assessments, testing on the road, 

etc.), virtual continuous simulation offers new 

opportunities for “discovery” of relevant scenarios; 

especially, when it comes to combinations of 

factors which are rare and difficult to derive from 

theory. 
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One approach to discovery of “unknown” scenarios 

is observing longer durations or distances by long-

running continuous simulation: safety-critical 

scenarios are not explicitly generated (e.g., by 

certain given constraints), but arise spontaneously 

from a stochastic comprehensive model of traffic 

flow. 

In general, traffic has a very high complexity – due 

to the numerous direct interactions between traffic 

participants and indirect interactions between 

individuals and the collective traffic flow. 

Nevertheless, traffic flow has several collective or 

“macroscopic” characteristics. Examples are 

“fundamental diagram” (empirical relationship 

between traffic flow and average speed on a 

freeway section) or “capacity” (characteristic traffic 

demand above which traffic flow tends to become 

unstable). Changes in macroscopic characteristics 

of traffic flow, in this context, due to ADAS or 

ADF, may in turn have effects on traffic safety. 

Automated vehicles can affect direct interaction 

between vehicles, interaction between individual 

vehicles and traffic flow as well as collective 

characteristics of traffic flow. Since all of these 

changes can affect conflict and accident probability, 

they must be included in traffic safety assessment. 

To this end, many processes in normal, non-assisted 

and non-automated traffic will need to be re-

assessed by considering high context sensitivity and 

other skills or typical strengths of human drivers 

(see also [27, 28, 29, 7, 30, 19]). 

An open question and subject of research and 

development is, to what extent automated vehicles 

will have capabilities comparable to those of human 

drivers. Some safety-relevant characteristics, such 

as anticipation and defensive driving, could be even 

more pronounced with ADF than with human 

drivers. 

Thus, the approach of assessing ADF by means of 

virtual continuous simulation implies challenging 

requirements for comprehensive modeling. These 

include reproduction of all relevant processes (also 

error processes) in traffic flow, with their respective 

frequencies. Modeling the frequencies of all 

relevant processes and scenarios, essentially 

constitutes an advanced exposure model. 

An initial set of scenarios can be specified using 

expert knowledge, field operational tests, and 

virtual test runs. Virtual testing generates many 

representations of stochastic processes in traffic 

based on models of traffic contexts, sensors, 

drivers, vehicles, and traffic dynamics. The 

objective is to provide a representative sample of 

the overall situation space taking into account the 

large number of potential scenarios including low-

probability events [31]. 

In a virtual test operation, these scenarios could be 

checked automatically representing a kind of safety 

cycle. The frequency of scenarios could depend on 

different factors, for example, countries or 

environmental conditions. Virtual testing would 

fulfill the requirements of a safety assessment in 

this construct, as described above. 

Process description for assessing highly 

automated driving in top scenarios  

A portion of possible positive contributions of ADF 

comes from consideration of relevant and 

potentially hazardous scenarios where the 

advantages of ADF help avoid potential accidents 

or mitigate their consequences. “Scenario” in this 

context refers to all potentially hazardous traffic 

situations that can lead to a certain type of conflict. 

Virtual testing by simulation of a single scenario 

results in quantification of effectiveness of an 

automated system in this particular scenario. The 

safety performance of automation then can be 

estimated from scenario specific effectiveness 

weighted by respective frequencies, i.e. “exposure” 

of the scenarios. The scenarios of particular interest 

for an ADF are referred to in the following as “top 

scenarios”. 

Using virtual experimental design (as for ADAS), 

an appropriate reference sample of relevant 

scenarios can be defined and considered. For 

scenario-based assessment, representative scenarios 

are needed. The contribution to effectiveness due to 

ADF can be quantified using a sample of virtual 

experiments, once the scenarios and their 

frequencies are known: From the set of relevant 

scenarios, individual situations are “sampled”, i.e., 

created virtually. The values of all stochastic 

variables are drawn from appropriate distributions. 

Sampling may be repeated or independent. In 

repeated sampling, each randomly generated 

scenario is simulated multiple times (e.g., with / 

without ADF), whereas in independent sampling, 

new samples are drawn for each run. 

The effectiveness of ADF is, among other things, 

determined by the system limits. These can 

theoretically depend on the traffic context (such as 

vehicle speed or road class given by a digital map), 

environmental conditions (light conditions, 

weather) or on conditions for automatic system 

activation or deactivation. Furthermore, system 

activation by the driver or other human factors can 

influence effectiveness. 
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Detection systems in traffic are subject to system 

limits and to various uncertainties and latencies. As 

a consequence, in practice, detection systems 

themselves often show stochastic characteristics. 

For example, the time for stable object recognition 

by means of a camera can depend on partial 

occlusion of the object or complexity of the traffic 

scene. The algorithms for situation detection and 

action usually rely on measurements from the 

detection systems; the derived characteristics (such 

as estimated “time to collision” for a detected 

object) are therefore also subject to corresponding 

latencies and uncertainties that require appropriate, 

mostly stochastic, modeling. Also, system actions 

often act indirectly by stimulating a driver reaction 

(e.g., warnings) or interact with (stochastic) driver 

actions (e.g., by lowering the threshold for brake 

assist). Overall, stochastic characteristics have a 

major impact on the overall safety assessment of 

ADF. 

With increasing complexity of the systems, an 

abstract representation of the functionality of an 

automatic driving system may require considerable 

effort. Also, verifying that an abstract system model 

actually behaves like the real technical system 

poses a challenge with increasing system 

complexity. To meet this challenge, alternative 

approaches are possible: 

Instead of abstract models, real components can be 

directly connected to the simulation using an 

appropriate test facility (e.g., Hardware-in-the-loop) 

[28]. In addition, findings from such test benches 

can be used for calibration and validation of 

relevant models in the simulation even without a 

direct connection. The actual code may be used in 

the simulation instead of an abstract model of the 

system logic. This results new challenges for the 

simulation and the models used due to the technical 

interfaces used. 

Philosophy and procedural approaches for 

validation and verification  

A key issue concerns the validation of process 

models and, by extension, plausibility of simulation 

results. Validation of models involves utilization of 

appropriate testing procedures for each particular 

method in the development chain. Each method, for 

instance test driving or a driving simulator, is used 

for validating the vehicle model or for MMI 

concepts. A validated model database is the 

prerequisite for the reliability of virtual testing; the 

quality of the models is of key importance for the 

development chain and the validity of the 

assessment result. 

Verification of simulated system actions represents 

another important element of the inspection 

process, by drawing samples from all simulations 

and testing these in recognized test institutes.  

APPLICATION OF THE ASSESSMENT 

METHOD  

The virtual scenario-based trial design to test a 

virtual ADF is illustrated here for two “top” 

highway scenarios. In an “obstacle in the lane” 

scenario, the virtual drivers encounter an obstacle 

that may appear (from their point of view) 

suddenly. In a “jam approach” scenario, the 

virtual “human” drivers enter a realistically 

simulated traffic jam front (e.g., position of 

maximum speed gradient can vary among lanes). 

The two scenarios illustrate the approach of Figure 

7 for either a technically challenging scenario 

(obstacle in the lane) or a statistically frequent 

scenario (rear-end collision while approaching the 

end of a traffic jam). Both scenarios are described 

in more detail in the following.  

Obstacle in the lane scenario  
In this scenario the safety potential of a 

hypothetical automated driving function is 

investigated for an “obstacle-in-the-lane” scenario. 

The virtual experimental design for this scenario is 

illustrated in Figure 9.  

The obstacle is located in the middle lane of a 

three-lane motorway, so that vehicles can attempt 

to either brake or maneuver to the left or right to 

avoid collision with the obstacle.  

 

Figure 9. Scenario “obstacle in the lane” with 

the three target vehicles (light blue) and the 

obstacle (orange).  

For the analysis, impact assessment focusses on the 

first three vehicles that approach the obstacle. The 

three target vehicles are either driven by the SCM 

driver model (human driver) or by the automated 

driving function. The vehicles of the surrounding 

traffic are all controlled according to the SCM 

driver model. 

This scenario presents a rather complex challenge 

for human drivers. It requires several timely and 

generally irrevocable decisions that depend on the 

currently perceived state of surrounding traffic. The 
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main options include (1) braking in lane; (2a,b) 

swerving (left or right) just enough to avoid the 

obstacle, but returning to the original lane; (3a,b) 

changing lanes (left or right), a combination of 

braking with swerving (4a,b) or lane changing 

(5a,b), both limited however by controllability 

(friction ellipse). Drivers are thus forced to decide 

on an action (braking, swerving, etc.) under 

severe time pressure, obvious collision risk, and 

often with inadequate time for observation of 

blind spots.  

The default option (0) is to wait too long and crash 

into the obstacle. Since the time required for a 

human driver to choose among n alternatives (here 

n=9) tends to increase with ln n [32], option (0) is 

unfortunately quite common in practice, even if the 

driver has good perception of surrounding traffic.  

In simulations of the obstacle-in-the-lane scenario 

with SCM drivers, two main types of collisions 

were observed: 

Collision with the obstacle by one of the three 

target vehicles. A typical chain of events leading to 

collision is that a preceding vehicle that blocks the 

target driver’s view of the obstacle executes its lane 

change rather late. In this case, even if the target 

driver begins one of the response options (1) – (5) 

discussed above, it will often be too late to avoid 

the obstacle -- due to the laws of physics. These 

phenomena depend of course on the individual 

(stochastically modelled) response characteristics. 

Collision between a target vehicle and another 

vehicle. A second typical accident sequence occurs 

when a target driver decides to change lanes (or 

swerve) urgently, without sufficient safety check on 

the intended adjacent lane. Here, the known threat 

from an obstacle ahead could outweigh the 

uncertain threat of possible adjacent conflicts. This 

thoroughly rational risk-minimization strategy will 

not always succeed. For example, another vehicle 

could have recently entered the conflict zone due to 

a relatively fast approach. Moreover, the perceptual 

data available to a driver confronted with an urgent 

threat is uncertain, and his intuitive decision 

process can have irrational (reflexive, emotional) 

components. 

In target vehicles equipped with a virtual ADF, 

several main differences compared to the human 

SCM models are assumed: first, instead of data 

acquisition (perception) from an area of interest 

(AOI) only after gaze fixation on that area of 

interest, the ADF sensor is assumed to perceive all 

visible AOI continuously and simultaneously. 

Second, the ADF algorithm is assumed to compute 

a braking reserve time to the preceding vehicle 

using sensors that are assumed to accurately detect 

speed differences. (The estimated braking reserve 

time in the ADF is of course still somewhat 

uncertain due to uncertain dynamics of the 

preceding (human driven) vehicle.) Third, the 

decision to brake, swerve, or change lanes was 

programmed deterministically based on the most 

likely safe outcome if one exists, otherwise, the 

default here is braking. Finally, the modelled 

response time for action implementation (Figure 6) 

is only slightly stochastic and on the average faster 

for an ADF-equipped target vehicle than the mean 

of the statistical distribution for human drivers.  

For each of the 40,000 experimental units 

(simulation runs) considered here, we record 

whether (and if so, when) a collision has occurred, 

and whether one of the three target vehicles was 

involved. The data is “censored” at the time of 

simulation termination, i.e., it is unknown what 

might have occurred after the simulation 

termination, and accident risk is quite dynamic as 

discussed below. Moreover, the simulation run 

terminates after any accident, including accidents 

not involving a target vehicle. An appropriate 

representation of safety performance in this virtual 

experiment is to compute “survival” probability 

curves (Figure 10) by the well-known Kaplan-

Meier or product-limit method. The relative safety 

performance of the ADF and SCM driver models 

can then be tested using the log-rank statistic. 

 Figure 10. Overall results of the simulation of 

the “obstacle in the lane”-scenario. 

The overall simulation results of the simulation 

show a safety benefit of the ADF target vehicles 

over “human” (SCM-model driven) vehicles. 

Overall the probability of “survival” (target not 

having an accident) in this scenario was 28.3% 

higher with automated driving (+94% relatively 

speaking). In addition, in case of collisions, the 

mean velocity difference between the involved 

vehicles is 15% lower for the automated driving 

vehicles. 

Incidentally, the Kaplan-Meier curves illustrate the 

dynamics of risk exposure for the target vehicles in 



 

 Wang 10 

 

this simulation scenario, which can be thought of in 

two phases. The first phase includes the approach 

and possible avoidance of the obstacle by the target 

vehicles. The phase takes about 17 s (for the 3 

target vehicles) on the average and includes the 

main potential benefits of the automated driving 

function. The second phase describes the time after 

the target vehicles have passed the obstacle. During 

this phase, driving challenges are less severe for the 

target vehicles, although secondary accidents could 

still occur, for example, due to human drivers 

returning to their original lane after braking and 

swerving. However, the impact of automated 

driving appears lower than during the first phase. 

The dependence of ADF safety performance on 

environmental factors in this scenario (traffic 

volume and range of visibility is summarized in 

Table 1. 

Table 1: Environmental factors and their 

influence on ADF safety performance in the 

obstacle-in-the-lane scenario 

Scenario Probability of remaining crash-free [-] 

Para-

meter 
Value 

SCM 

Driver 
ADF 

Delta 

(absolute) 

Delta 

(relative) 

Overall - 29.9% 58.2% -28.3% -48,6% 

Traffic 

volume  

900  

veh./h 
30.9% 61.6% -30.5% -49,8% 

1200 

veh./h 
28.9% 54.8% -25.9% -47,3% 

Range 

of view 

250 m 30.4% 56.5% -26.1% -46,2% 

125 m 29.5% 59.9% -30.4% -50,8% 

 

The absolute accident risk decrease with the 

automated driving function was between 25% and 

30%. If the traffic flow is reduced, the probability 

of survival for automated and manual driving is 

increased. The same applies for an increased range 

of view. 

Traffic-jam-approach scenario  

Figure 11 illustrates the scenario “traffic jam 

approach” by a target vehicle (simulated as the 

fourth vehicle in the right lane).  

Here, a rear-end conflict occurs while the target 

vehicle is approaching the end of the traffic jam. 

The main challenge in this driving scenario is the 

higher speed difference between the target vehicle 

and the rear end of the traffic jam, which is either 

standing still or slowly moving (approx. 30 km/h). 

 

Figure 11. Scenario “approaching traffic jam” 

with the target vehicle (light blue) and the 

surrounding vehicles (black) 

The existence of a large speed gradient in traffic 

flow presents severe challenges to a human driver. 

To avoid causing a collision, a driver must perceive 

the situation correctly (and in time) and respond 

appropriately. Whereas late perception or 

inadequate braking response are likely to lead to a 

rear-end collision, incorrect perception (with 

inappropriate response) could lead to misguided 

swerving or lane changes, causing possible 

secondary conflicts with approaching vehicles in 

adjacent lanes.  

Accidents caused by a simulated “human” target 

vehicle occur most frequently when the target 

vehicle is not capable of slowing down in time to 

prevent a rear-end collision. However, accidents 

with the target vehicle can also occur if the driver 

performs a lane change while approaching the 

traffic jam and fails to perceive a potential conflict 

in surrounding traffic in this demanding situation.  

As above, target vehicles equipped with a virtual 

ADF have continuous, simultaneous data 

acquisition from all AOI. They will decide 

deterministically how to respond, and respond 

faster on the average.  

As above, for each of the 8000 experimental units 

(simulation runs) considered here, we record 

whether (and if so, when) a collision has occurred, 

and whether the target vehicle was involved. Due to 

censoring, the results are shown in terms of 

“survival” probability curves (Figure 12).  

It is important in this design to note that many 

accidents involving the target vehicle and 

included in the statistics are caused by another 

driver, for example, the driver to the rear. Hence, 

many of the accidents are not addressed by the 

ADF.  

Figure 12. Probability of remaining crash free 

for SCM vs. ADF by traffic variance (high vs. 

low) and jam speed (30 km/h vs. 0 km/h) in 

jam approach scenario. 
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Figure 13. Probability of remaining crash free 

for SCM vs. ADF by traffic variance (high vs. 

low) and jam speed (30 km/h vs. 0 km/h) in 

jam approach scenario. 

The accident reduction for target vehicle due to 

ADF was considered for low and high traffic 

variance and for jam speed 30 vs. 0 km/h at the jam 

front. The system was effective in all cases. Table 

1 shows a moderately greater effectiveness of the 

ADF in the case of the 30 km/h jam and a rather 

small difference depending on traffic variance, 

which might have affected the probability of last-

minute lane changes.  

Table 2. Accident reduction of target vehicles 

due to ADF in different experimental conditions. 

 

Traffic jam 

speed  

0 km/h 

Traffic jam 

speed  

30 km/h 

Traffic 

variance low 27.9% 48.7% 

Traffic 

variance high 37.6% 46.2% 

 

CONCLUSION AND OUTLOOK  

The task of safety assessment and optimization of 

automated functions raises new issues. In contrast 

to ADAS assessment, quality measures of traffic 

safety are principally related to all traffic scenarios 

in which a function is active. Since automation may 

change collective traffic characteristics, safety 

analysis must go beyond isolated human errors in 

currently occurring traffic processes and the impact 

of automation on these. Newly emerging, 

automation-related, scenarios have to be considered 

for a comprehensive safety assessment. 

Validation and safety assessment of automated 

functions have to be understood as continuous and 

iterative tasks during development, not as singular 

activities at the end of the development phase. Due 

to the variety of possible influences, the necessary 

assessment of automation approaches during 

development would be extremely problematic 

based, for example, solely on fleet testing, since 

detection of rare effects requires correspondingly 

long observation periods. In addition, testing would 

have to be repeated, in principle, after every single 

change of the function. 

The approach of simulation-based virtual 

experiments can be interpreted as knowledge 

synthesis. Still, some challenges for the assessment 

of automated systems arise. Relevant scenarios for 

automation are a priori unknown and can only 

partially be identified using existing methods. Due 

to the generally larger situation space involved in 

automation, modeling results in considerably more 

complexity as for the assessment of ADAS. 

Quality requirements for traffic simulation are 

correspondingly higher, especially in terms of 

process models used. Traffic simulation will need 

to consider error processes and their resolution in 

normal traffic in more depth. The challenges 

include improved modeling of psychological 

processes, e.g., attention or activation (Yerkes-

Dodson) [33]. An important aspect of the safety 

potential of ADF arises from avoidance of errors 

resulting from lack of driver activation and 

resulting attention lapses.  

Despite sophisticated technology, systems will still 

be subject to system limits within the near future. 

Virtual experiments could make an important 

contribution to design and optimization of take-

over requests to human drivers, in addition to safety 

assessment. 

Critical traffic situations can require a decision 

among several unfavorable alternatives for action. 

Here again, virtual assessment can support the 

development of transparent decision algorithms, 

including possible ethical considerations. A general 

discussion of such alternatives has already begun in 

public [34]. Potentially, all stakeholders can 

achieve consensus on best-practice guidelines for 

the prioritization of alternative actions, prior to 

market introduction.  

Many (novel) projects, initiatives, organizations, 

and research activities are focusing on the effects of 

ADAS regarding traffic safety. So far, however, an 

international consensus on methodological issues in 

the context of an overall safety assessment of 

ADAS and ADF is still lacking. 

Consequently, the objective is an international 

consensus and implementation of scenarios, 
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models, and the overall assessment approach by all 

relevant stakeholders in an international context.  

Considering the importance and complexity of 

decisions and challenges, the initiative “Prospective 

Effectiveness Assessment for Road Safety” 

(P.E.A.R.S.) has the objective of developing a 

standardized and harmonized method for the 

overall effectiveness assessment of new systems, 

such as ADAS or ADF, which is accepted by all 

stakeholders. Both benefits and potential risks 

should be quantified as part of the assessment. The 

objectives are, among others, a higher degree of 

legal predictability, and adequate and objective 

consideration of individual and societal interests. 

This open platform provides important prerequisites 

for a global harmonization and standardization. 

Other important influences on safety such as 

integrity of communication, data protection, and 

technical reliability were beyond the scope of this 

paper, but could be addressed by stochastic 

simulation methods as well. 
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