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ABSTRACT 
Since the last decade, development efforts by academia and industry for automated driving functions have 
increased significantly. Also, the European research project AdaptIVe is looking into this topic. Due to the 
large operation spaces and various complex situations that are covered by these functions, efforts for 
evaluation increase also significantly. Within AdaptIVe, a comprehensive evaluation approach for automated 
driving functions ranging from SAE level 2-4 has been developed [1]. The approach splits the evaluation into 
technical, user-related, in-traffic and impact assessment addressing safety and environmental effects of 
automated driving. For each evaluation type appropriate test tools and methods are selected e.g. field test 
for technical assessment, trials on test track and in real traffic for the u ser-related assessments and 
simulations for the in-traffic and impact assessment. Next to the assessment type also the characteristics of 
the function must be considered when deciding for specific test tools. Hence, besides to the level of 
automation [8] the automated driving functions are classified into continuous and event-based operating 
functions. Whereas event-based operating functions are only operating for a short period in time (e.g. 
automated parking), continuous operating functions are, once they are active, operating for longer time 
periods (e.g. highway automation). Based on the classification the aspects to be evaluated and test methods 
are selected for all assessment types. The developed methodology has been applied to several automated 
driving functions developed within AdaptIVe. As an example, for the technical assessment of continuous 
operating functions it has been assessed whether the driving behavior of the developed functions is similar 
to human driving behavior and therefore not disturbing human traffic. In the user-related assessment, issues 
related to driver behavior, understanding of automation, trust, mental workload, resuming control, vigilance, 
usability and acceptance has been looked at. In this paper the key aspects of the AdaptIVe evaluation 
methodology for technical, user-related, in-traffic and impact assessment are presented as well as the key 
results of the application of this methodology on the within AdaptIVe developed automated driving 
functions.  
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INTRODUCTION 

Automated driving is a vision since the early 20th 
century. A first step towards this vision was the 
introduction of ADAS (advanced driver assistance 
systems) in the last decade of the 20th century. 
Following the successful introduction of ADAS 
research on higher automated driving functions is 
ongoing since many years. These functions were 
intensively investigated and demonstrated during 
the DARPA Challenges [2] [3] as well as activities of 
Google and their so called Google self-driving cars 
[4] in the US and in Europe by the Berta Benz Drive 
[5] and the GCDC [6]. This chosen path is continued 
by the European research project AdaptIVe. Within 
AdaptIVe, 21 different automated driving functions 
for different speed ranges and target areas are 
developed [7]. 
 However, with the increasing complexity of 
ADAS and automated driving functions, assessment 
efforts are expected to rise dramatically as stated in 
[8]. Therefore new assessment methods which are 
enabling an efficient assessment of these functions 
have to be designed. Besides new methods and 
frameworks for assessment, metrics for measuring 
the performance of automated driving functions 
have to be identified as well.  

AIM 

The aim of this paper to present the key aspects and 
results of the evaluation approach [1] developed 
within the European reseach project AdaptIVe, 
which feature a comprehensive evaluation in the 
areas of user-related, technical, in-traffic and impact 
assessment. All considered evaluation areas are 

presented in figure 1.  

 
Figure 1. Evaluation areas in AdaptIVe 

METHODOLOGY 

As described previously, different aspects are 
analysed in the several evaluation areas. In the 
technical assessment the performance of the 
functions is investigated. The user-related 

assessment analyses the interaction between the 
functions and the user, trust, usability, as well as 
acceptance of the developed functions. The in-traffic 
assessment focuses on the effects of automated 
driving on the surrounding traffic as well as non-
users. The impact assessment determines the 
potential effects of the function with respect to 
safety and environmental aspects (e.g. fuel 
consumption, traffic efficiency). The overall 
approach for the evaluation in AdaptIVe is shown in 
figure 2. 

 
Figure 2. Overall AdaptIVe evaluation approach 

The initial starting point for the evaluation is a 
detailed description of the function or system under 
investigation itself. Based on the description of the 
function or system a classification is done in order to 
determine which evaluation methodology for a 
certain assessment is most appropriate. 
 In the first step, the AdaptIVe functions and 
systems are classified according to the SAE 
classification [9] and the automation level they 
address. The automation level is only one aspect 
that needs to be taken into account when deciding 
on the appropriate test method. Another important 
aspect is the operation time of the function or 
system that describes how long a function operates 
while driving, since the operation time is linked to 
the type of test and the duration of a test. Here, the 
AdaptIVe functions and systems are divided into two 
categories: 

 Event-based operating functions:Functions 
that operate only for a short period of time 
(seconds up to few minutes). Typical 
examples are automated parking functions 
and minimum risk manoeuvre function 

 Continuous operating functions: Functions 
that once they are active, can be operated 
over a longer period of time (minutes up to 
hours). A typical example for this type of 
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functions is a highway pilot or a motorway 
automation function.  

Based on the classification it is decided on the focus 
of the evaluation and test methods to be applied. 
With respect to the applied test method depending 
on the tested function or system it is decided on test 
environment (e.g. test track, public road, driving 
simulator) as well as on the required test tools (e.g. 
balloon cars). Thereby already existing test 
environments and test tools will be used. By using 
already existing test tools the evaluation approach is 
enabling an efficient assessment of the developed 
automated driving functions. 

Technical assessment 
The objective of the technical assessment is the 
evaluation of the performance of automated 
driving functions. While the assessment 
frameworks developed in previous European 
projects, e.g. PReVAL [10], eIMPACT [11], 
interactIVe [12] and others dealt mainly with 
active safety functions or respectively ADAS, 
where the assessment focused mainly on testing 
of the functions in predefined use cases, the 
approach for continuous automated driving 
functions has to be different. Because contrary to 
active safety functions continuous automated 
driving functions are active for longer time 
periods and are operating in a huge variety of 
scenarios. Following these requirements existing 
assessment approaches have to be extended in 
order to ensure that the whole situation space 
which is addressed by the function is covered. A 
major challenge within this assessment is to limit 
the test effort to a feasible amount while ensuring 
that all important aspects are covered. Since 
automated driving systems address the whole 
driving process, nearly all driving situations are 
relevant for this assessment. It might be desirable 
to test the function’s behaviour in a high number 
of driving situations and in different variations of 
these situations. Considering the limited resources 
within the assessment, this is hardly feasible. 
Therefore, a prioritization of the test approach 
within the technical assessment is required. As 
already mentioned previously, the automated 
driving functions need to be distinguished in:  

 Event-based operating functions 

 Continuously operating functions 

For continuous automated driving functions a so-
called “scenario-based assessment” is used for 

assessment. Instead of defining single test cases a 
(small) field test is conducted for assessing the 
automated driving functions. During the field test 
the function must be able to handle driving 
situations that are covered according to the 
function’s specification and occur during the test 
drive. Afterwards, the driving data is clustered 
into relevant driving scenarios in which the 
functions are assessed. The functions are assessed 
by analysing two aspects:  

• Change of frequency of relevant driving 
scenarios compared to reference behaviour 

• Change of performance of automated 
driving functions in driving scenarios 
compared to reference performance 

In order to investigate the performance in the 
defined driving scenarios adequate indicators are 
to be defined. Besides the indicators, also the 
baseline to which the function behaviour is to be 
compared needs to be described. For this purpose 
the basic requirements of automated driving 
functions and systems needs to be considered. 
These requirements are: 

• safe driving, 

• to operate in mixed traffic conditions, 

• not affect other traffic in a negative way. 

These basic requirements imply that automated 
driving systems need to operate within the range 
of normal driving behaviour and should at least be 
as safe as non-automated driving. The baseline for 
the assessment should be the human driver 
respectively his/her behaviour. Since the driving 
behaviour of each human driver is different, it can 
only be described in distributions. These 
distributions of driver behaviour need to be 
obtained before the actual assessment is 
performed. For obtaining these distributions, data 
from euroFOT [13] has been used in AdaptIVe.  

 

Figure 3. Method for technical assessment 
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For identification and classification of the defined 
driving scenarios, feature-based machine learning 
approaches [14, 15] are used for detection of the 
defined driving scenarios. The methodology 
developed is shown in figure 3. 

As presented already in the previous section, the 
assessment is done by analysing the change in 
frequency of the occurrence of defined scenarios 
and the change in performance with and without 
automated driving functions in defined scenarios. 
Therefore, these scenarios have to be defined 
before the assessment, see table 1. 

Table 1. 
Driving scenarios for technical assessment 

 
Scenario 

Semantic description 

Free driving/  
Vehicle 
following 

No predecessor, ego vehicle keeps lane 

Ego vehicle’s intention is to keep the 
lane and is influenced by a predecessor 
vehicle 

Lane change 
Ego vehicle’s intention is to change to 
the next lane 

Cut-In  
Another vehicle intents to merge into 
the lane of the ego vehicle 

In order to ensure that all relevant driving 
situations occurre during the test, the duration of 
the dedicated small field test is estimated by 
means of data from previous FOT, such as 
euroFOT [13]. The reference data of the field 
operational test is clustered in relevant driving 
situations by using a situation space approach. 
Afterwards, the distribution of frequencies of all 
relevant driving situations is calculated. In 
accordance to [8] a Poisson distribution for the 
occurrence of driving situations is assumed and 
the minimal test length for the occurrence of at 
least k = 5 driving situations is calculated. After 
classification of the relevant driving scenarios the 
predefined hypotheses can be tested. Based on 
the mean distance necessary for the occurrence of 
a single event sref, the necessary distance is 
calculated for the occurrence of k events with a 
probability of P = 95 %. The probability for the 
occurrence of a driving situation is given by: 

   
  

  
     Equation (1) 

Where: 

P  Probability 

  Expectation value 

k  Number of events 

The expectation value can be obtained by: 

  
  

    
  Equation (2) 

Where: 

sref  mean distance necessary for the 

occurrence of a single event 

   Distance for k events 

For determining whether the behaviour of the 
automated driving function is within the range of 
normal driving behaviour, and furthermore to 
quantify the deviation from normal driving 
behaviour, an appropriate method has to be 
identified. Therefore the usage of the quantitative 
measure ‘effect size’ is proposed in this approach, 
which is according to [16] a simple way of 
quantifying the difference between two groups, 
that reveals many advantages over the use of 
tests of statistical significance alone. As depicted 
in [16], the effect size is a standardized mean 
difference between two groups and emphasizes 
the size of the difference rather than confounding 
this with sample size. The effect size d is 
calculated in order to estimate the deviation of 
the behaviour of the automated driving function 
compared to human driving behaviour by using 
the following equation: 

  
                        

 
             

             
 

 

 
Equation (3) 

Where: 

              Experimental mean value  

              Experimental standard deviation, 

           Reference mean value  

           Reference standard deviation 

 

User-related assessment 
User-related assessment was carried out for the 
“Traffic Jam Assist” system providing automated 
speed control and lane keeping. If a lead vehicle is 
present, the automated vehicle adapts its speed in 



 

Roesener  5                                                                                                                                                                                            

order to maintain a pre-set time distance to the 
lead vehicle. 

Due to restrictions of driving by naïve drivers in 
real traffic conditions, assessment activities were 
limited to driving on a test track by a number of 
test drivers (employees at Volvo Car Company 
with administrative duties) to be demonstrated of 
the system.  

Fifteen persons took part in the study, 12 males 
and 3 females. To collect information trust, 
usefulness, perceived advantages, disadvantages, 
acceptance, and willingness to pay for the driver 
assistance system, after driving on the test track 
and experiencing the system in action, the 
participants filled in a questionnaire. 

To assess actual trust in the system a six-item self-
report scale proposed by Merritt [17] was used. 
To evaluate the users’ perceptions of the system, 
the System Usability Scale (SUS) [18] was 
employed. The system’s Usefulness and 
Satisfactoriness was assessed using a modified 
version of the method proposed by van der Laan 
et al. [19]. 

In-traffic assessment 
The objective of the in-traffic assessment is to 
provide a generic framework for assessment of 
automated driving functions (ADF) in a complete 
range of traffic situations. For the in-traffic 
assessment, the set of test cases should resemble 
the variation found in actual real-life traffic. 
Automatically, in terms of frequency, normal 
driving scenarios are most common, while safety-
critical scenarios are rare and collision scenarios 
are close to absent, depending on the 
functionality. 

Estimates of the amount of hours that need to be 
driven by a vehicle with ADS before it can be 
regarded as being able to safely handle all 
scenarios range from one million to billions of 
hours. If not infeasible, this is at least very costly. 
Therefore, simulation based assessment should be 
used. Here, the challenge is to define proper test-
scenarios. These test-scenarios can be knowledge-
driven or data-driven [21]. A drawback of 
knowledge-based test-scenarios is that they do 
not allow to generalize the results to the 
performance of the system-under-test when 
operating in traffic, i.e. the test cases may not be 
valid or representative for real life traffic. 

Therefore, a data-driven approach is chosen, 
which allows generalization of the results.  

Within the in-traffic assessment, a way of 
assessing the in-traffic behavior of automated 
functions using parameterized scenarios which are 
extracted from recorded driving data is presented. 
These parameterized scenarios are used for 
generating test cases for Monte-Carlo simulations. 
As real driving data is used, the assessment allows 
to draw conclusions on how the ADF would 
perform in real traffic. Since the simulations allow 
for probabilistic results, there is no need to 'drive' 
all (billions of) kilometers to draw conclusions. 

The process can be roughly divided into three 
steps. The first step is referring to the collection of 
the real-life scenarios. A scenario combines the 
actions of the ego vehicle, the static environment 
(e.g. infrastructure and weather), and the ongoing 
activity of the dynamic environment (including the 
other traffic participants) for a certain period of 
time. Typically the duration of a scenario is of the 
order of seconds [21]. 

The second step concerns the generation of new 
test cases based on the recorded scenarios. First 
the scenarios are parameterized. Kernel Density 
Estimation (KDE) [22] [23] is employed to fit a 
distribution to model the scenario parameters. 
The KDE can then be used to generate new test 
cases. 

The final step is the simulation of a generated test 
case and the post-processing of the resulting data. 
The combination of generating new test cases and 
their simulation form the basis of the Monte Carlo 
Simulation approach. 

Safety impact assessment 

In AdaptIVe a virtual assessment approach is 
applied for the safety impact assessment that 
combines scenario-based stochastic simulations 
with continuous operation simulations. The 
chosen approach is illustrated in figure 4.  

The traffic scenario respectively continuous 
operation simulation works in a virtual traffic 
environment, which considers many different 
traffic participants. The virtual traffic environment 
has the objective to analyze the automated 
driving functions’ behavior in the traffic context 
considering changes in the frequency of certain 
driving scenarios. Therefore, the traffic scenario 
needs to provide a representative variation of 
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traffic context to trigger realistic variation of 
system response.  

 

Figure 4. General procedure of safety impact 
assessment of automated driving functions. 

The driving scenario simulation focuses on safety-
relevant driving scenarios, which are limited in 
time and space and represent different conflict 
types. Safety performance of human driver and 
the automated driving functions is determined 
and compared by simulating the driving scenarios 
in a replicable way. In principle, an automated 
driving function can affect nearly all accidents 
scenarios. Due to limited resources an 
investigation of the all situation is not feasible. 
Therefore, it has been decided to focus on 
relevant scenarios for the detailed analysis, the so 
called “Top scenarios”. These scenarios consider 
driving scenarios, in which the effect of 
automated driving functions is questionable 
respectively are of high relevance for the traffic 
safety, see table 2.  

Table 2.  
Top Scenarios for the safety impact assessment 

Driving Scenario 

Proportion in 

GIDAS accident 

database 

Top 1 Cut-In 16,1% 

Top 2 End in lane 1,1% 

Top 3 Obstacle in the lane 3,3% 

Top 4 Approaching traffic jam 14,4% 

Top 5 Motorway entrance 1,8% 

Top 6 Rear-end accident 15,8% 

Top 7 Single driving accident 20,6% 

 
Environmental impact assessment 
The general approach for the environmental 
impact assessment that is applied to analyse the 
considered effects (energy demand and travel 
time) is given in figure 5. It can be expected that 
different user groups will benefit in different 
manners. Therefore, the environmental impact 

assessment analyses also the benefit of different 
user groups. 

 

Figure 5. Method for environmental impact 
assessment 

The evaluation is conducted by means of 
simulation and considers different traffic 
scenarios. In each traffic scenario the effects are 
analysed for high numbers of vehicles and a 
certain road section.  

First, the relevant environmental parameters in 
dependence of the analysed function are 
identified and aggregated in relevant scenarios. 
These scenarios are forming the reference and 
thus the baseline for assessment. Afterwards, the 
automated driving function which should be 
assessed is added to the previously defined 
scenarios in order to estimate the effect in the 
scenario. The used indicators for the analysis are 
given in the table 3. 

Next to quantification of the effect per traffic 
scenario, the effects for different driver types are 
investigated. The different drivers are described 
based on the travel behaviour (km driven per year 
and proportion usage of different road types). For 
each driver type the (spatial) frequency of the 
different traffic scenarios is obtained. For this 
purpose different data sources (FOT data, traffic 
observations, questionnaires, and statistical data) 
are used. 

Table 3.  
Evaluation aspects and indicators for 

environmental impact assessment 
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Once the effect in certain driving scenarios, the 
frequency of the scenario as well as the driven 
distance per year are obtained, the effect for 
different driver types can be calculated; see Eq. 4. 
In the last step, the single results for each defined 
driver type are scaled up on national or European 
level by means of considering the driver 
population. 

                             
 
                  (Equation 4) 

KEY-RESULTS 

Technical assessment 
In this section the previously presented method 
for technical assessment is applied to the 
AdaptIVe highway demonstrators. First, the 
changes of frequency of the considered scenarios 
are analysed between human driving from 
euroFOT and automated driving. Afterwards, the 
performance of the automated driving functions is 
compared to human driving performance in the 
considered scenarios. For this assessment, 
euroFOT data [13] from 98 vehicles and in total 
8000 h of driving has been clustered in the 
considered scenarios 

Changes of frequency of relevant scenarios  

For assessment of automated driving functions 
first the changes of driving scenarios compared to 
human driving are analysed, see table 4. The 
results show that the frequencies for both lane 
change and cut-in scenarios are increasing.  

Table 4. 
Change of frequencies of the occurrence of 
driving scenarios for human and automated 

driving 
 

Indicator 
Human 
driving 

AdaptIVe 
highway 

automation 

Lane change per 
km  

0.33 km
-1

 0.39 km
-1

 

Cut-in per km 0.15 km
-1

 0.30 km
-1

 

Changes of performance in relevant scenarios 

In this section the effects of automated driving 
functions within the considered driving scenarios 
are presented. In the following the driving 
scenarios “lane change” and “vehicle following” 
are considered. The effects of automated driving 
in the scenarios are estimated by calculating the 

statistical indicators “effect size”. Regarding the 
lane change behaviour of automated driving 
functions, it turned out that there are only slight 
differences between human driving behaviour. 
While the maximum lateral acceleration shows a 
small effect of automated driving 
(effect size = 0.10), the effect concerning the 
indicator “manoeuvre time of lane change” is 
smaller (effect size = 0.18), see figures 6 and 7. 

 

Figure 6. Indicator “maximum lateral 
acceleration” in scenario lane change 

Even more, the share of lane changes with small 
durations (manoeuvre time < 3 s) can be reduced 
which leads to a more determined and predictive 
lane change manoeuvre. This leads to a driving 
behaviour of automated vehicles which can be 
more anticipated by other (human) traffic 
participants which will result in an increase of 
safety.   

 
Figure 7. Indicator “manouevre time” in scenario 
lane change 

Besides manoeuvre time and maximum lateral 
acceleration of a lane change, the time headway 
at initiation of a lane change is assessed as well, 
see figure 8. Regarding human driving from 
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euroFOT, the standard deviation is about twice as 
high compared to automated driving which leads 
to more lane change manoeuvres initiated at 
smaller time headways to the front vehicle. This 
results in an effect size of d= 0.62. 

 

Figure 8. Indicator “minimum time headway” in 
scenario lane change 

For the scenario ”vehicle following” the indicator 
time headway is assessed and compared with 
human driving behaviour. While the human driver 
population shows a time headway distribution 
with a large standard deviation, the automated 
driving function is showing a smaller standard 
deviation, see figure 9.  

 

Figure 9. Indicator “time headway” for vehicle 
following 

The small standard deviations of the automated 
driving function are leading to fewer situations 
with small headways. Hence, a positive effect on 
safety induced by automated driving is observed. 

User-related assessment 
Most participants thought that “the system was a 
competent performer” and they also had 
“confidence in the advice given by the system”. 

The majority expressed that they “can rely on the 
system to do its best every time”. Considering 
whether the driver can depend on the system the 
majority of the answers were on the “disagree” 
side and partly neutral, only one respondent 
agreed strongly that he/she can depend on the 
system. Considering the statement “I can rely on 
the system to behave in consistent ways”, most of 
the responses were in the middle, i.e. close to 
neutral, however two participants agreed 
strongly. Considering “trust in the system”, most 
of the responses were in the middle, i.e. close to 
neutral, neither agree or disagree, with two 
participants agreeing strongly. Most participants 
found the system easy to learn and use, and not 
unnecessarily complex. They were confident using 
the system and they would use the system 
frequently. However, there was not strong 
support to the statement that the “various 
functions of the system were well integrated” and 
there was not much disagreement with the 
statement that “there was too much inconsistency 
in this system”.  

The total System Usability Scale (SUS) score is 80 
which is considered high usability. On the 
Usefulness/Satisfactoriness scale, the system was 
perceived as useful (“useful”, “good”, “effective”, 
“assisting” but not “raising alertness”) and partly 
satisfactory (“pleasant”, “nice”, but not 
“desirable” or “likable”). The combined rating of 
Usefulness – Satisfactoriness is shown in figure 10. 

 

Figure 10. Combined usefulness and 
satisfactoriness rating of the “Traffic Jam Assist” 
system 
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Considering the HMI solution, the participants 
found that it was easy to activate the function 
with steering wheel paddles, they found the way 
to turn on and turn off the system intuitive and 
they felt safe when enabling the system. The 
participants felt acceleration and braking while 
the car drove itself comfortable. Concerning “the 
comfort of the steering while the car drove itself” 
and “how good the system was to drive the car on 
the whole,” there was a wide variance of answers 
and the “mean” answer cannot be differed from 
“neither comfortable nor uncomfortable”. The 
participants found that, the information given in 
the displays was understandable and the 
information given in the displays was not 
distracting. 

The participants’ answers indicate that they are 
not fully aware of the system’s limitations. There 
are clear expectations in decreased fuel 
consumption and increased driving comport 
among the respondents. The participants 
estimated the highest usage rate of the system on 
motorways in their everyday driving. The majority 
of the participants indicated that they would be 
willing to pay between 10,000 and 40,000 SEK for 
purchasing the system.  

Answering the question about what they would do 
while “driving” the autonomous car regularly, a 
wide range of answers were given, i.e. from full 
monitoring of driving to completely relaxed 
presence and doing other things than driving 
related activities.  

Some worries were expressed about relying on 
the system in real traffic – “does the car 
constantly handle new and different situations 
consistently in real traffic with a lot of drivers 
around who cannot drive a car and do a lot of 
stupid things”. Also, one respondent felt that 
driving pleasure disappears with automated 
driving. 

In-traffic assessment 
In this section, a simplified application example of 
the presented in-traffic assessment methodology 
is presented for a Traffic-Jam-Assist (TJA). Of 
particularly interest is in this case the influence of 
the Automated Driving Function on its 
surrounding traffic.  

In the example, three cars are driving behind each 
other. The first vehicle starts with a constant 
speed and after ten seconds, it decelerates to a 

new constant velocity. The third vehicle 
represents a human driver by means of the 
Intelligent Driver Model (IDM) [22]. We are 
interested in the different performance of the 
third vehicle, depending on whether the second 
vehicle is operated by a human, modeled by 
means of the IDM, or the TJA.  

Figure 11 shows an example of a velocity profile of 
the first vehicle. The velocity profile is 
parameterized using three parameters: the 
velocity reduction   , the total time of braking 
       and the end velocity     . 

 

Figure 11. Definition of braking profile of 
predecessor. 

To extract the scenarios from real-life data, 60 
hours of naturalistic driving data is used. From this 
data, approximately 3600 braking scenarios are 
extracted. KDE is employed to fit the distributions 
from which infinitely many unique test cases can 
be generated.  

In total 10000 test cases are generated and 
simulated. Six different Performance Indicators 
(PIs) are used to measure the performance of the 
third vehicle for each test case, see table 5.  

Table 5. 
Definition of the Performance Indicators (PI) 

used for the In Traffic Assessment. 
 

PI Unit Description 

    s Minimal Time-To-Collision (TTC), 
defined as the ratio of the 
clearance and the relative velocity 

  m Minimal distance 

    s Minimal Time Headway 

     m/s
2 

Minimal acceleration 

     m/s
2 

Root mean square of acceleration 

     m/s
3 

Root mean square of jerk 

For each performance indication, a Cumulative 
Probability Distribution (CDF) is constructed using 
the results of the 10000 simulations. As measure 
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of the influence of the TJA, the Kolmogorov-
Smirnov test is applied for the two different CDFs, 
i.e. the CDF of the simulations with the second 
vehicle modelled with TJA and the CDF of the 
simulations with the second vehicle modelled with 
IDM. With the Kolmogorov-Smirnov test the 
maximum difference between two CDFs is 
estimated. 

Figure 12 shows the CDF of the minimal Time-To-
Collision (TTC) between the second and third 
vehicle. As can be seen, the TTC is in general 
smaller if the second vehicle is equipped with TJA. 
This maximum difference between the two CDFs is 
0.133. The difference can be explained from the 
fact that the TJA will react later to the braking 
vehicle, compared to the IDM (mostly due to 
sensor delay) and therefore, it has to brake 
harder, which results in a lower TTC between the 
second and third car. The results for the other PIs 
are presented in table 6. 

 

Figure 12. Cumulative probabilities for the 
minimal Time-To-Collision. The second vehicle is 
modelled with TJA (blue) or IDM (red). 

Table 6. 
Results of the Kolmogorov-Smirnov tests applied 

for the different PIs 
 

PI Results 

    0.133 

  0.115 

    0.015 

     0.173 

     0.052 

     0.304 

Safety impact assessment 
For the impact assessment the described top 
scenarios have been simulated with the simulation 
environment OpenPASS, see Figure 13.  

The overall simulation results of the simulation 
show a safety benefit of the automated driven 
vehicles compared to the by the SCM-model 
driving vehicles The results are reported in detail 
in the AdaptIVe deliverable D7.3 [23]. In this 
paper only brief explanation on how the results 
are derived is given.  

 

Figure 13. Simulation of the “obstacle in the 
lane” scenario in OpenPASS. 

To analysis the safety effect of automated driving 
functions for each simulation run it has been 
analyzed, whether a collision of a relevant vehicle 
- automated or human driven – and if, at which 
time point the collision occurs. In the second step 
it analyses along the simulation flow how many 
simulation run remain without any collision. An 
example of the resulting figure in the obstacle in 
the lane scenario is given in figure 14.  

 

Figure 14. Simulation results for the “obstacle in 
the lane” scenario (automated vehicle). 

By this curves (analogue to a Kaplan-Meier 
survivorship curve) it cannot only be analyzed, 
what is the overall benefit, but also at which time 

Obstacle
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significant safety benefits occur. In the given 
example major safety effects can be observed in 
the time span from 2 s to 17 s. This is the time 
frame, at which the vehicle approaches the 
obstacle in the lane. After the relevant vehicle has 
past the obstacle only minor difference between 
both analyzed simulation configurations (human 
vs. automated driving) can be observed. The 
resulting overall benefit in terms of not having an 
accident in this example is about 28 %. 

Environmental impact assessment 
From the analysis of the different data sources 
and the clustering of the people’s driving 
behaviour driver types can be determined. They 
are defined by their driving profile, which consists 
of single traffic scenarios, e.g. intersections, new 
speed limits or free driving. Figure 15 shows the 
effect of the automated driving function on the 
mean velocity of all driver types depending on the 
daily mileage. 

 

Figure 15. Effects on the mean velocity for all 
driver types depending on the daily mileage 

The chart shows that the mean velocity, in case of 
a penetration rate of 10%, is slightly reduced for 
nearly all driver types. For a penetration rate of 
50% the mean velocity increases for the most 
driver types. Particularly for higher daily mileages 
the effect is relatively high because longer trips 
have more sections of free driving, which cause a 
continuously increase of the mean velocity for 
vehicles with an automated driving function 
compared to human drivers, whereas scenarios 
like crossings with priority rules or roundabouts 
do not raise the mean velocity because they are 
not addressed by the function. 

The following Figure 16 shows the equivalent 
effects for each driver type concerning the 
Positive Kinetic Energy (PKE). 

The effects of automated driving functions on the 
PKE are obviously stronger than the effects on the 
mean velocity. For a penetration rate of 10% the 
reduction of the PKE is, independently of the daily 
mileage, between 1% and 2%. It increases up to 
16% for driver types who drive high daily mileages 
when half of the vehicles are equipped with 
automated driving functions. 

 

Figure 16. Effects on the PKE for all driver types 
depending on the daily mileage 

To get an overall effect of the automated driving 
functions for the mean velocity and the PKE, the 
effects of the different driver types have to be 
weighted. For this, the mentioned data sources 
have been used to determine the occurrence of 
each driver type in the driver population. In 
Table 7 the effects for the entire driver population 
are given. 

Table 7. 
Overall effects of the automated driving function 

for the whole driver population 
 

 
Mean 

Velocity 

Positive 
Kinetic 

Energy (PKE) 

10% penetration -0.12% -1.54% 

50% penetration 0.53% -12.77% 

The presented results are based on data sets from 
Germany because the amount of data there is 
quite comprehensive. For other countries with a 
similar data basis the method can be adapted and 
used as well. 

 
CONCLUSIONS 
 
In this paper the comprehensive framework for 
evaluation of automated driving which has 
been developed in the European research 
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project AdaptIVe is presented. Based on a 
classification in continuous and event-based 
operating automated driving functions, the 
test tools are assigned to the several 
evaluation aspects. Thus, for technical 
assessment, the driving behaviour of the 
automated driving functions is assessed within 
a small field test and compared with human 
driving from euroFOT. The results indicate that 
the driving behaviour of the AdaptIVe 
automated driving functions is in line with 
human driving behaviour. Even more, due to 
their deterministic behaviour, their driving 
behaviour might be more predictive and thus 
increasing safety. For user-related assessment 
tests on a test track were carried out. Here, 
the results have been collected with a 
questionnaire. The test persons expressed 
some worries about relying on the system in 
real traffic. Overall, good results for 
satisfactoriness and usefulness of the system 
have been reached. Concerning the in-traffic 
assessment, a data-driven approach for 
assessing the interaction with other vehicles 
has been developed which is simulation-based. 
The results have been analysed with the 
Kolmogorov-Smirnov test. The safety- and 
environmental impact of automated driving 
functions developed in AdaptIVe has been 
analysed by using simulations. While for 
safety-impact traffic and driving scenarios are 
considered, for environmental-impact solely 
traffic scenarios have been analysed. The 
results indicate that automated driving is 
leading to a reduction of energy demand.  
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