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ABSTRACT 
 
Truck platooning has great potential for reducing transport costs by lowering fuel consumption and increasing 
traffic efficiency. The short time headway between trucks in a platoon makes detecting the behaviour of other 
road participants essential for safety. Current safety controllers rely only on the traffic situation at the same 
instant, but accurate predictions of traffic behaviour are necessary to optimize the distance between the trucks 
and use the full potential of truck platooning in a safe way.  
 
This study aims to show the potential of applying machine learning techniques to in-vehicle sensor data for 
predicting a cut-in manoeuvre by a passenger car. We have trained several algorithms, ranging from linear 
regression to Support Vector Regression and LSTM neural networks, on a dataset of naturalistic driving that 
contains 146 cut-ins. The results were compared to a benchmark of linear extrapolation under the assumption of a 
constant speed of the passenger car.  
 
The results show that many machine learning algorithms are no viable alternative to the constant speed 
benchmark, with the exception of linear methods and Support Vector Regression. Further development of the 
Support Vector Regression algorithm in a direct-recursive hybrid forecast framework (dubbed dr-SVR) shows 
improvement of the error in the longitudinal distance and speed with more than 40% compared to the 
benchmark. Testing the trained algorithm on a truck platooning dataset shows an improvement of 15%. 
 
The dr-SVR model has the potential to improve the safety of truck platooning by predicting the behaviour of 
passenger cars after a cut-in. More training data, especially including rare outliers and cut-ins representative for 
merges in a truck platoon, are needed to improve the accuracy and make the method suitable for application in 
safety controllers in the platooning trucks. 
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INTRODUCTION 
 
In truck platooning two or more trucks are driving 
with short inter-vehicle distance to reduce fuel 
consumption and improve traffic efficiency [1]. 
These short distances can be accomplished in a safe 
way by using Vehicle-To-Vehicle (V2V) 
communication to inform about the intended 
behaviour of the lead truck to the other trucks in the 
platoon, that are operated automatically. At these 
levels of automation the drivers of the following 
trucks cannot be considered as fallback option in 
safety-critical situations, so operational safety (like 
collision avoidance) must be ensured by the 
automated driving functions.  
 
The trucks in the platoon are equipped with on-
board sensors to detect the surrounding traffic. 
Based on this information unsafe situations can be 
predicted and collisions can be avoided [3]. An 
important situation for operational safety is a cut-in 
of a passenger car in front of one of the trucks, 
which is the focus of this work. Early prediction of 
the behaviour of the car performing the cut-in will 
help to increase operational safety, because the 
controllers can use this additional information to 
anticipate the behaviour of the car, which is 
especially important in case the V2V communication 
fails.  
 
Modern cars are equipped with sensors to detect 
the surroundings of the car for use of advanced 
driving assistance systems and automated driving 
systems. This means that more and more data of 
naturalistic driving become available. The aim of this 
work is to determine the potential of applying 
machine learning algorithms to these data to 
improve the prediction accuracy of the behaviour of 
cars during and after a cut-in. Such algorithms can be 
used in the controller of the following trucks to avoid 
hazardous situations caused by other road 
participants or V2V failures. 
  
 
PROBLEM DEFINITION 
 
The objective of this study is predicting the 
behaviour of a passenger car (hereafter the target) 
after a cut-in action. An example of such situation is 
shown in Figure 1, where a passenger car cuts in 
between two trucks in a platoon. Defining the 
moment in which the target enters the field of view 
of the sensors of the host vehicle (which is the 

moment that the cut-in is detected) as ݐଵ, and 
assuming the cut-in is accomplished at ݐଶ ൌ ଵݐ ൅ 4s, 
the research question can be summarized as: 
Is it possible to predict the longitudinal distance, 
lateral position, longitudinal speed and longitudinal 
acceleration in an interval of time that goes from ݐଵ 
to ݐଶ? 
 

 
Figure 1. Cut-in action between two trucks in a platoon by 
a passenger car. 
 
 
METHOD 
 
The prediction algorithms were developed by 
training on vehicle-kinematics data of cut-ins that 
were extracted from naturalistic driving data. In this 
section we describe the datasets and the training 
procedure of the model. 
 
Datasets 
The training and validation of the prediction 
algorithm is done on a dataset of naturalistic driving 
of passenger cars that is part of the TNO Streetwise 
scenario database. This particular dataset describes 
a route of 48.5 km that was driven twice by 20 test 
persons, experienced drivers driving at least 5000 
km/yr. The route took approximately 1 hour and 10 
minutes to complete. The vehicle used was the TNO 
car lab Toyota Prius equipped with in-vehicle sensors 
as well as sensors looking at the environment like 
the radar and Mobileye system for lane detection. In 
addition to the in-vehicle signals, a video stream of 
the forward view and the GPS position of the vehicle 
was logged.  
 
For testing the prediction algorithm, a truck 
platooning dataset was used. In this dataset the 
following truck in the platoon was equipped with a 
front-facing radar and camera. Thus all cut-ins 
recorded happened between the trucks in the 
platoon, as depicted in Figure 1. 
 
Cut-in extraction 
An internally developed cut-in detection algorithm 
was used for automatic extraction of cut-ins from 
the datasets. The intended application of truck 
platooning requires cut-ins on the highway, so we 
only considered cut-ins where the speed of the host 
vehicle was higher than 50 km/h. The start of the 
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cut-in is defined as the moment in which the target 
car crosses the lane marker. The behaviour of the 
target is followed for 4 seconds, which is the 
maximum prediction horizon of the algorithm. The 
relative position, absolute speed, and absolute 
acceleration of both the target car and the host 
vehicle are used as input for the prediction.  
 
The training set contains 146 cut-ins which were 
used for training and validation of the learning 
models. In addition, 17 cut-ins from the the truck 
platooning dataset were used for testing the trained 
model. 
 
Reference model 
The results of the prediction algorithm are compared 
to a baseline model that assumes that the speed of 
the target vehicle remains constant during and after 
the cut-in. For example, that means that the 
longitudinal distance at time ݐ௜ is given by 
௜ሻݐሺݔ∆  ൌ ଴ሻݐሺݔ∆	 ൅ ሺݐ௜ − ଴ሻݐtargetሺݒ଴ሻሺݐ −  ଴ሻሻݐhostሺݒ
 
In Figure 2 we compare the predicted longitudinal 
distance of this model with the ground truth. We 
also report the root-mean-square error (RMSE) of 
the predictions, computed as  
 

RMSE ൌ	ටଵ௡ ∑ ሺݕ௜ − ො௜ሻଶ௡௜ୀଵݕ ,                  (Equation 1) 

 
where ݕ௜  is the ground truth of the predicted value, 
and ݕො௜ the prediction. The baseline model performs 
very well, showing that cars do not often change 
speed during a cut-in. After 1 second the average 
prediction error is 24 cm, while after 4 seconds the 
error has grown to 2.4 m. However, this model is not 
able to catch the outliers that are most interesting in 
terms of safety. For the prediction algorithm to be 
useful in practice it needs to perform better than 
this baseline and be able to predict outliers. 
 

 
Figure 2. The prediction as function of the ground truth 
for the longitudinal distance as predicted by the linear 
model. 
 
Forecasting strategy 
Time series forecasting is a well-known problem in 
machine learning, used in many different fields (see 
[2] for a review). Often only a single time step ahead 
needs to predicted. However, this study focusses on 
predicting the behaviour of the target car at multiple 
times in the future. Several strategies exist for this 
so-called multi-step forecasting, for example:  

• Direct forecast: develop a separate model 
for every forecast time step. 

• Recursive forecast: a one-step model that 
uses the output of the previous time step as 
input. 

• Multiple-output forecast: a single model 
that is capable of predicting the entire 
forecast sequence at once. 

• Direct-recursive hybrid forecast: a separate 
model for every forecast time step, that 
takes the output of the previous time step 
as input. 
 

In the following we describe our experiments with 
different strategies to determine which method suits 
this problem best.  
 
Machine learning models 
 
Spot-checking In machine learning there is no one 
model that works best for every problem, the “no 
free lunch” theorem [4]. It is therefore important to 
perform spot-checking: quickly try out different 
machine learning algorithms without optimisation, 
to select the one that is best suited to the problem 
at hand for optimisation. In this study we have used 
several algorithms for direct forecasting to 
determine which one to use in direct-recursive 
forecasting.  
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The algorithms used are: 
• Linear regression: Similar to ordinary least-

squares fitting. 
• Ridge regression: A linear model imposing a 

penalty on the size of the coefficients.  
• Lasso: A linear model that estimates sparse 

coefficients. 
• K-nearest neighbours: Prediction is based 

on the mean of the K most similar 
instances. 

• Decision trees: Prediction is based on a 
binary tree model of the data. 

• Support vector regression: Prediction is 
based on the idea that it is possible to build 
a hyperplane that can separate two 
different sets of objects. 
 

The input for all these machine learning algorithms 
consists of the relative position, absolute speed, and 
absolute acceleration of both the target car and the 
host vehicle at the start of the cut-in.  
 
LSTM neural network In addition to these direct 
forecasting methods, we have also applied a Long 
Short Term Memory (LSTM) neural network. These 
networks are designed to have a memory and are 
thus the form of deep learning that is best suited for 
time series. In contrast to the methods discussed 
above, LSTM neural networks can take multiple time 
steps as input. It is therefore a recursive forecasting 
method. As input we have used the time vector in 
the first second of the cut-in for the same set of 
parameters described above. Because the number of 
cut-ins is limited, we used a small network of 4 
neurons, bigger networks would overfit and produce 
less accurate results. 
 
Training All algorithms were trained on the 
passenger car dataset using leave-one-out cross 
validation. In this procedure, the models are trained 
on ሺܰ − 1ሻ samples from a training set of ܰ 
samples, and the prediction error of the model on 
the remaing sample is computed. This procedure is 
repeated ܰ times. As error measure for the 
prediction error we used the RMSE (Equation 1). 

RESULTS 
 
Direct forecast 
In Figure 3 we show the results of the direct 
forecasting methods. For clarity the focus is on the 
prediction of the longitudinal distance only.  
 
With the exception of the Lasso, the linear methods 
(linear regression, ridge regression) perform very 
well, with an average error less than 2 meter for a 
prediction horizon of 4 seconds. This is not surprising 
since the naïve constant speed model, that is also a 
linear model for the distance, shows similar results. 
Almost all the non-linear methods do not perform as 
well and have much higher errors than the constant 
speed model. The positive exception is the SVR 
model, that shows performance equal to linear 
regression. Because (in contrast to linear regression) 
SVR is capable of catching non-linear behaviour, we 
chose this algorithm for further development in the 
direct-recursive framework.   
 

 
Figure 3. The RMSE in the longitudinal distance as 
function of time for prediction using linear regression, 
ridge regression, lasso, k-nearest neighbours, decision 
tree, support vector regression and the constant speed 
model. 
 
LSTM neural network 
In Figure 4 we show the prediction error for the 
LSTM network. The network has as input the time 
series of the input between 0 and 1 second, hence 
the forecasting starts at 1 second. Despite this 
additional information, the LSTM network performs 
worse than the three best direct forecasting 
methods. Most likely this has to do with the limited 
number of cut-ins in the training set. Neural 
networks require more data than other methods for 
optimal performance. For this reason we decided to 
focus on the direct-recursive method instead. 
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Figure 4. The RMSE in the longitudinal distance as 
function of time for prediction using an LSTM neural 
network consisting of 4 neurons. 
 
Direct-recursive Support Vector Regression 
In the direct forecasting results the Support Vector 
Regression (SVR) algorithm shows the most 
promising performance. Here we show the results of 
using SVR as a direct-recursive hybrid forecasting 
algorithm: dr-SVR. For every prediction time step we 
train a separate SVR that takes as input the output of 
the previous time step. We trained four separate dr-
SVR models for prediction of the longitudinal 
distance, the lateral distance, the longitudinal speed 
and the longitudinal acceleration. The results of the 
vanilla dr-SVR were further improved by optimising 
the penalty term for misclassifications, the kernel 
scale and the error distance.  
  
Prediction error Figure 5 shows the prediction error 
in the longitudinal distance to the host vehicle, the 
lateral distance to the lane marker, the longitudinal 
speed and the longitudinal acceleration of the target 
car as function of time for the passenger car data, 
for both the optimised and non-optimised dr-SVR. 
For reference we also show the baseline model and 
the direct forecast of the SVR.  
 
The optimised dr-SVR outperforms all the other 
models, reducing the error with 48%, 26%, 44% and 
19% for respectively the longitudinal distance, lateral 
distance, speed and acceleration, as compared to 
the baseline model at a prediction horizon of 2 
seconds. The dr-SVR results show an improvement 
of around 30% compared to direct forecasting with 
SVR. 

 
Figure 5 The RMSE of the prediction of the longitudinal 
distance, the lateral distance, the longitudinal speed and 
the longitudunal acceleration with dr-SVR (both 
optimised and non-optimised) as compared to direct 
forecasting with SVR and the baseline model, for the 
passenger car dataset. 
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Figure 6. The RMSE of the prediction of the longitudinal 
distance, the lateral distance,  the longitudinal speed and 
the longitudunal acceleration with dr-SVR compared to 
the baseline model, for the truck platooning dataset. 
 
 

To validate the dr-SVR model for the intended 
application of truck platooning, we applied the 
trained model to 17 cut-ins from the truck 
platooning dataset, without re-training the 
algorithm. The truck platooning dataset does not 
contain information on the lane markers, therefore 
the model was changed in order to predict the 
relative position to the truck and not the lane 
marker. Figure 6 shows the RMSE of the forecast of 
the longitudinal and lateral distance to the host 
truck, the longitudinal speed and the longitudinal 
acceleration of the target car. The improvement of 
the dr-SVR model compared to the baseline is less 
evident, but still present, especially in the 
forecasting of the longitudinal distance and speed: 
the dr-SVR shows an improvement of the prediction 
of both the longitudinal distance and longitudinal 
speed of up to 15%.  
 
Prediction examples 
Figure 7 shows an example of a prediction for a 
typical cut-in. Although the speed during the cut-in is 
not far from a linear extrapolation, the dr-SVR is able 
to reduce the error in the prediction by predicting 
the non-linear behaviour correctly, especially from 
2.5 to 4 seconds. After 4 seconds, the error of the dr-
SVR prediction in the longitudinal distance is 1.5 m, 
in the lateral distance 0.25 m, in the longitudinal 
speed 0.05 m/s and in the acceleration 0.15 m/s2. 
 
In Figure 8 we show an example of an outlier where 
the prediction of the dr-SVR has large errors. This 
figure shows an a-typical cut-in where the target car 
accelerates after 2.5 seconds. This behaviour is not 
picked up by the dr-SVR, resulting in large prediction 
errors after 4 seconds. 
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Figure 7. Example of the prediction of the longitudinal 
distance, lateral distance, longitudinal speed and 
longitudinal acceleration for a typical cut-in in the 
passenger car dataset. The ground truth is shown in 
green, while the prediction is shown in red. 
 
 

 
Figure 8. Example of the prediction of the longitudinal 
distance, lateral distance, longitudinal speed and 
longitudinal acceleration for an outlier in the passenger 
car dataset. The ground truth is shown in green, while the 
prediction is shown in red. 
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DISCUSSION 
 
The results of this study show that in a typical cut-in 
the behaviour of the target car is well-approximated 
by linear extrapolation of the longitudinal speed. The 
dr-SRV is able to improve on this by predicting small 
non-linearities. This shows that the dr-SVR is a 
promising algorithm for behaviour prediction after a 
cut-in. However, the improvement of the dr-SVR in 
the prediction of outliers is small. The reason is the 
few training examples of a-typical cut-ins. In order to 
catch this behaviour, the algorithm needs to be 
trained on more of these cut-ins. Given the ability of 
the dr-SVR to predict small non-linearities in the 
behaviour, we expect a substantial improvement in 
prediction accuracy of outliers with more training 
examples. 
 
The trained dr-SVR generalises quite well to truck 
platooning data, although the prediction accuracy is 
less than for the passenger car data. This is due to 
the difference in cut-ins that occur when a 
passenger car merges with a truck platoon: the 
space for the manoeuvre is smaller, and usually the 
target car performs a cut-through manoeuvre to 
take an exit road on the highway. To include this 
kind of behaviour, the model should be trained with 
this kind of cut-ins as well. 
 
 
CONCLUSIONS 
 
The safety of truck platooning can be improved by 
predicting the behaviour of the surrounding traffic. 
In this study the potential of machine learning for 
the development of a cut-in prediction algorithm 
was determined. Our conclusions can be 
summarised as follows: 

• Linear extrapolation assuming a constant 
longitudinal speed predicts the behaviour in 
typical cut-ins well. Many direct forecasting 
methods and LSTM neural networks are not 
able to improve on this baseline. 

• The dr-SVR is able to accurately predict 
small non-linearities in the target car 
behaviour, thus improving the prediction 
accuracy of the linear benchmark. We 
expect that with more training data, the 
accuracy of predicting outliers will improve 
substantially. 

• The dr-SVR generalises well to truck 
platooning data, although the performance 

is expected to improve when more training 
data is available.  
 

For application of the cut-in prediction algorithm in 
the safety controllers of a truck platoon, the 
accuracy needs to be improved. Collecting more cut-
in data, especially outliers, to better train the dr-SVR 
model is one way of reducing the prediction error. 
Further improvement of the prediction is expected 
by taking the kinematics of the target into account. 
Instead of predicting the longitudinal distance, 
speed, and acceleration with separate dr-SVR 
models, the relationship between distance, speed, 
and acceleration can be taken into account to 
further improve the accuracy of the prediction. As a 
separate application we aim to extent the algorithm 
to include early prediction of cut-in intention: 
predicting a few seconds beforehand, when the 
target car is still in the other lane, that a cut-in is 
going to happen.  
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