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ABSTRACT 
 
The frontal airbag in a vehicle is considered a supplemental restraint to the safety belt restraint system and is 
important in lowering measured injury assessment values for Anthropomorphic Test Devices (ATD) during 
vehicle crash testing.   Neck injuries for the right front passenger occupant are especially sensitive to the 
passenger airbag (PAB) shape.  Therefore, multiple sled tests and Computer Aided Engineering (CAE) 
simulations are required for PAB development to arrive at a balanced restraint system and achieve optimal 
performance for occupant injury metrics. 
The purpose of this study is to establish a design procedure and optimization process for passenger airbags by 
using CAE techniques to minimize development time. 
In this study, a design method to create a new baseline airbag is introduced.   Surrogate sled CAE models were 
generated to make efficient use of computing resource availability.  Validation of CAE surrogate models was 
performed using sled tests.  A direct optimization method, not meta-model based, was developed for airbag 
shape optimization across multiple load cases.  Parameterized airbag shape and morphing techniques were used 
in the optimization.  The objective function is US-NCAP performance, however, major injury criteria from 
FMVSS208 (belted and unbelted) as well as airbag volume were used as constraint conditions.  All 
optimization processes were automated, and airbag shape is optimized per objective functions and constraint 
conditions.  Additionally, different optimization algorithms were compared to find the most efficient method 
for airbag design. 
 
 
INTRODUCTION 
 
Since the current USNCAP rating protocol was 
introduced in 2007 [6], passenger side frontal airbag 
(PAB) design for the US market is more challenging 
compared to driver side airbag design.  This is 
because the Hybrid III 5th percentile female occupant 
Anthropomorphic Test Device (ATD) is used for 
passenger side frontal US-NCAP injury ratings, and 
it is more sensitive to injury, especially neck injury, 
than the Hybrid III 50th percentile male ATD when 
considering airbag design.   Traditional methods such 
as 5”-30 ms criterion are freqently used for airbag 
design without CAE analysis [7].   However,  airbag 
design should consider many factors simultaneously, 
such as vehicle pulse, interior trim design, safety belt 
sytem, airbag inflator etc.  A good starting point is 
critical to achieve balnced performance in airbag 
design for different load cases while minimizing 
development time.   In this study, a design method 
for frontal passenger airbag using CAE techniques is 
introduced.  CAE models representing sled bucks 
were built for use in developing belted and unbelted 
occupant performane, and validation work was 
performed using physical tests.   A new baseline 
airbag model was incorporated into these sled models 
for the next optimization process.   A parametric 

airbag shape optimization method was developed 
considering multiple loading conditions.  
Several optimization algorithms were used and 
compared for airbag shape optimization. 
 

MODELING AND AIRBAG DESIGN 

CAE models, LS-DYNA [5], were used to export 
ATD positions for base line airbag design with 
proposed target time to fire (TTF).   Simplified sled 
models, which have rigid instrument panel (I/P) trim, 
were built for this purpose.   When the corresponding 
full-vehicle CAE model became available, a detailed 
occupant sled model was built again, and validation 
work was performed considering available data from 
tests.   Sled tests were performed with airbag 
hardware which were proposed by the airbag 
supplier.   Therefore, this supplier’s airbag was 
replaced in CAE models by the baseline airbag in 
order to perform airbag shape optimization. 
 
Simplified sled models for airbag design 
Full vehicle CAE model with interior components 
such as I/P, A-Pillar, roof trim are not usually 
available in the early stage of vehicle development.   
The show surfaces (A-surface) of trim components 
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were extracted from CAD and defined as rigid 
parts.   Simplified CAE sled models were built 
incorporating these rigid trim components for the 
purpose of generating a baseline airbag design.   
Figure 1 shows these rigid trim parts, for example, 
I/P, windshield, and A-pillar trim.   Rigid-to-rigid 
contact [5] with a force based function was defined 
to characterize contact between the ATD and rigid 
I/P trim.   Figure 2 shows a simplified sled model 
of the belted 5th ATD which was used for airbag 
design.   Airbag door and tear seam were not 
considered in this model. 
 

 
Figure 1.  Isometric view for rigid trim parts 
 
 

 
Figure 2. Simplified belted 5th sled model 
 
 
Vehicle pulse and dummy positions 
The X-component of vehicle pulse was extracted 
from full vehicle structure models for 40kph and 
56kph full frontal loading conditions.   Vehicle 
pitching and rocker drop were not considered in 
order to maintain consistency to sled tests. 
Next, occupant analysis with simplified sled 
models was performed for 40kph and 56kph full 

frontal loading conditions with 5th & 50th ATDs.   
The airbag was not deployed, but the safety belt 
system was present and engaged for the belted 
ATDs.   The design H-points of occupants were set 
according to the design specified seat travel 
window, because actual measurements of occupant 
positions in hardware were not available at that 
time.   Typically, actual measured occupant seating 
positions are preferred for airbag design.   Then, 
ATD positions for 40kph unbelted 5th & 50th and 
56kph belted 5th & 50th were extracted along with 
the target time-to-fire (TTF) for the airbags.   For 
instance, assuming 35ms as passenger side airbag 
fully deployment time, the target TTF of airbag is 
18ms for 40kph full frontal impact.   When ATD 
travels in free-flight for a total of 53ms (= 35ms + 
18ms), the airbag is supposed to be fully deployed.   
Subsequently, ATD positions are extracted for use 
in deciding the desired depth of the airbag 
(longitudinal direction).   Figure 3 shows an 
example of extracted ATD positions for both 5th 
and 50th percentile occupants from different 
loading conditions. 
 

 
Figure 3. Example of extracted dummy positions 

 
Airbag design 
The intent is to design the PAB profile according 
to the vehicle environment and the extracted ATD 
positions.   The width of the airbag (horizontal 
direction) can be decided by the vehicle A-Pillar.   
If there is too much interaction between the airbag 
and A-Pillar, the airbag can be skewed and/or 
rotated.   If the airbag doesn’t cover the A-Pillar 
well, the possibility of hard contact between the 
occupant head and A-Pillar will increase for the 
30° right angular loading condition.   The airbag 
should also fit well considering the windshield and 
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I/P geometry.   If it does not, the airbag can wiggle 
and/or rotate, both of which are not desirable 
airbag kinematics.   This behavior can also cause 
instability in terms of occupant injury metrics.     
Proper depth of airbag (longitudinal direction) is 
also an important factor to consider for occupant 
injury.   If the depth of airbag is too great, the 
ATD head may contact the airbag before it is fully 
deployed.   If the depth of the airbag is too small, 
this can also lead to increased injury.   The ride-
down effect offered by the restraint system also 
plays a role in lowing occupant injury, but if the 
ride-down effect it too great, it can increase neck 
injury.   Because of different ATD sizes, positions 
and loading conditions, airbag performance needs 
to be optimized to provide the best possible 
protection considered.   Figure 4 shows an example 
of airbag design considering proposed vehicle 
geometry, pulse, restraint systems, TTF etc. 

Figure 4. Example of airbag design 
 

CAE evaluations for factors affecting airbag 
performance, such as airbag kinematics and ATD 
injury metrics, are needed to verify airbag design 
parameters.   It is recommended to generate several 
different airbag variations in order to find an 
optimally designed airbag which shows robust and 
balanced performance for both belted and unbelted 
loading conditions.   Airbag cushions stretch 
during deployment, because of the internal 
pressure of the airbag and the characteristics of the 
selected airbag cushion fabric material.    
Therefore, the fully deployed airbag shape is 
slightly different from the design airbag geometry.   
Internal tethers in the airbag can be considered and 
used to control the fully deployed airbag shape.   
Figure 5 shows examples of statically deployed 
airbags: one has two tethers and the other, the 

baseline airbag model, doesn’t have any tethers.   
Figure 6 shows the work flow for airbag design 
method. 
 

Figure 5. Static deployment of new baseline 
airbag (left; w/ tethers, right; w/o tethers) 

 

 
Figure 6. Work flow of airbag design 

 
SLED TESTS AND VALIDATION WORKS 

Sled tests were performed with an airbag which was 
proposed by the airbag supplier, not with the baseline 
airbag model from the airbag design procedure.   It is 
important to verify sled CAE models for subsequent 
optimization work.   Otherwise, work done to 
optimize the airbag shape may be misleading.   When 
the full vehicle model with precise interior trim 
components was available, sled models which have 
fully deformable trim parts were rebuilt .   Validation 
work was performed with unbelted / belted 5th and 
50th ATDs for 40 and 56kph full frontal loading 
conditions. 
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Sled models validation 
Sled tests were performed using an airbag 
proposed by the airbag supplier.   Figure 7 shows 
the comparison between an airbag provided by the 
supplier and a baseline airbag which was derived 
from the previous airbag design procedure. 

Figure 7. Comparison of airbag model (left; 
supplier’s airbag, right; new baseline airbag) 

 
Sled tests were performed with unbelted & belted 
5th & 50th percentile ATDs for 40kph and 56kph 
full frontal loading conditions.   Sled models were 
rebuilt using precise deformable interior trim parts.   
In a given High Performance Computing 
environment, there are limited computing 
resources, whereas optimization work requires a 
great deal of computing resources.   Due to 
limitations in computing resources, model run time 
was optimized by rearranging contact models and 
rigidizing the Body-In-White.   This resulted in a 
43% reduction in run time.   These new sled 
models are referred to as surrogate models for this 
study.   Validation works were performed for sled 
test results with surrogate models.   The level of 
validation was assumed to be good enough for 
subsequent optimization work.   Figure 8 shows 
the surrogate sled model which is going to be used 
for subsequent optimization work. 
 

Figure 8. Surrogate sled model for belted 5th 

 
Surrogate sled models for airbag optimization 
The supplier’s airbag initially used for the 
surrogate sled model was replaced with a new 
baseline airbag generated by the previous airbag 
design procedure.   The CAE analysis runtime 
decreased by 38% simply by replacing the airbag 
model, because a uniform pressure airbag model 
was used for the baseline airbag model, whereas 
the Corpuscular Particle Method (CPM) [5] was 
used in the supplier’s airbag model.  
 
OPTIMIZATION OF AIRBAG SHAPE 

The baseline airbag results in a 4 star US-NCAP 
rating score, satisfing the injury targets for 40kph 
unbelted 50th percentile and 56kph belted  5th & 
50thpercentile occupants whereas one of the neck 
injur parameters is out of target range for the 40kph 
unbelted 5th percentile occupant loading contion.   A 
better airbag design could be ahieved by evulating 
several airbag profiles, but only one baseline airbag 
had been generated during this study.   Airbag shape 
optimization will be introduced starting with baseline 
airbag design in this section.    
The goal is to get a 5 star US-NCAP rating score 
while satisfying injury targets for frontal 40kph 
unbelted and 56kph belted loading conditions.   
Airbag kinematics are also considered indirectly by 
applying the constraint condition of airbag volume 
during optimization and by confirmation of CAE runs 
after optimization. 
A geometric morphing technique is used to modify 
the finite element airbag mesh data within 
optimization process.   The airbag shape is 
parameterized and these parameters are used as 
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control factors for the optimization process.   Noise 
factors are not considered because robustness is not 
covered in this study.   The concept of airbag shape 
optimization is similar to topology optimization.   
Therefore, a direct optimization method, not a meta-
model based method, is chosen.   Evolution 
Alogorithms (EA) including Gentic Algorithms (GA) 
are used and compared in this optimization scheme.   
Figure A-1 in the appendix shows the work flow of 
the optimization process. 

 
Loading conditions 
Sled tests and validated CAE models showed that 
the most vulnerable loading condition is frontal 
40kph unbelted 5th percentile for this particular 
case.   Neck injury is relatively high for 40kph 
unbelted 5th percentile when compared to other 
loading conditions. 
Optimization work requires significant 
computational resources.   Therefore, the most 
vulnerable loading condition, i.e. 40kph unbelted 
5th percentile, and US-NCAP loading condition, 
i.e. 56kph belted 5th percentile are chosen for 
optimization work with the goal of saving 
computational resources.   Both models are 
concurrently evaluated during airbag shape 
optimization. 
 

Control factors 
A geometric morphing technique is used to modify 
the airbag finite element mesh data.   The airbag 
shape was parameterized by defining 5 factors 
which were used in morphing airbag mesh data.   
Width (horizontal direction) and height (vertical 
direction) of the airbag are not considered in this 
parameterizing scheme for airbag shape, because 
these design factors are decided by the vehicle 
geometry as noted in the airbag design section.   
Figure 9 shows parameters for morphing the airbag 
shape. 
The response of ATDs are affected not only by 
airbag shape, but also by airbag internal pressure.   
The vent size of the airbag is considered in order 
to compensate for the effect of changing airbag 
pressure. 
 

Figure 9. Parameters for morphing airbag  

 

Objective conditions 
The goal is to achieve a 5 star US-NCAP rating 
score, while satisfying injury targets for major frontal 
loading conditions per the US FMVSS 208 
regulation. 
The US-NCAP rating score consists of head, neck, 
chest, and femur injuries for the frontal impact 
loading condition, and all of these injuries are 
combined as “joint probability of injury (Pjoint)” 
[6].   Figure 10 shows that CAE results for sled 
with an airbag proposed by the airbag supplier 
suggest the following: 

• The probability of neck injuries is the 
most important factor on NCAP. 

• The second factor is the probability of 
chest injury. 

• The probability of head injury is much 
smaller than neck and chest injury. 

• The probability of femur injury is much 
smaller than neck and chest injury. 

Neck injury is also possible for the frontal 40kph 
unbelted 5th loading condition.   These sled results 
suggest that one of the major areas of injury is the 
occupant’s neck.   Therefore two objective 
functions are defined in this optimization process, 
one is “probability of neck injury (Pneck)” and the 
other is “joint probability of injury (Pjoint)”.   A 
weighting factor of 0.5 (W1) was applied for 
probability of neck injury, whereas a weighting 
factor of 1.0 (W2) was applied for joint probability 
of injury to give more priority on NCAP 
performance in (Equation 1). 
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Figure 10. Comparison for probability of injury 
on NCAP rating score (Pjoint) 

 

21 int)()( WPjoWPObjective neck +=  (Equation 1) 

 
Constraint conditions 

All injury criteria from FMVSS 208 were chosen 
for use as constraints.   A specific margin of safety 
was added to injury criteria and then these factors 
with margin were set as the constraint conditions. 
 
There were two different inflators for this vehicle 
program at its starting point.   One of them was 
chosen per the airbag supplier’s recommendation.   
The gas molar output of the inflator is one of the 
characteristics used to decide desired airbag 
volume.   If the airbag volume is too large for 
specific molar output, the airbag may not deploy 
well at its target time and may also cause bag slap 
on the ATD, which is characteristic of undesirable 
airbag kinematics.   The molar output of the 
inflator used in this work is around 2.8 mole.   
Therefore, 115ℓ was assumed as the upper limit of 
airbag volume.   Script programs were developed 
to calculate airbag volume.   Solid elements are 
generated by using shell elements from the 
reference airbag mesh data.   The volume is 
measured using solid elements, but this measured 
volume is not the same as predicted volume 
because the airbag cushion is stretched and its 
actual volume is larger than measured volume.   
Static airbag deployments were performed and 
volume was compared between CAE and 
physically measured volume, also the specific 
scaling factor was derived.   Predicted airbag 
volume is achieved by multiplying the scaling 
factor with measured volume.   Predicted airbag 
volume is compared to the upper limit of airbag 
volume in the optimization process as a constraint 
condition. 

 
Optimization algorithms 
Occupant analysis have non-linearity.   Gradient 
base methods don’t work well for global 
optimization and non-linearity problems [11].   
The concept of airbag shape optimization is similar 
to topology optimization and nonlinear program 
techniques such as genetic algorithms can work 
well for shape optimization.   Therefore, 
exploratory (heuristic search) methods such as 
NSGA-II, AMGA, NCGA and MOPS were 
considered with multi objective functions in this 
study. 
 
NSGA-II (Non-Dominated Sorting Genetic 
Algorithm) K. Deb proposed NSGA-II to improve 
NSGA.   A non-dominance sorting method was 
used in ranking population, and a crowding 
distance parameter was added to the fitness value 
for better diversity.   Elitism was incorporated to 
share the optimal parameter value.   It doesn’t need 
user-defined parameter for maintaining diversity.   
This is much more efficient than NSGA [1].   Real 
parameter for mutation operator (polynomial) was 
used [3]. 

AMGA (Archive-based Micro Genetic 
Algorithm) S. Tiwari proposed a novel new 
genetic algorithm.  This algorithm use Pareto 
ranking from NSGA-II for individual selection.  
AMGA have two fitness assignment mechanism, 
one is primary fitness by ranking and the other is 
based on the diversity of the solutions in the entire 
population, instead of crowding distance operator 
from NSGA-II.   AMGA update the elite 
population such as archive and designed for a 
small population size by through archive of good 
solutions obtained.   “It is recommended to use a 
large size for the archive.   Because the actual time 
needed by the optimizer algorithm is negligible 
comparing to the time needed by the analysis 
routines for computationally expensive 
optimization problems” [9].  

NCGA (Neighborhood Cultivation Genetic 
Algorithm) S. Watanabe proposed this new 
Genetic Algorithm in 2002.   Individuals of parent 
are sorted according to focused objective and the 
objective is changed for generations.   This 
algorithm incorporates a neighborhood cultivation 
crossover mechanism. When crossover operations 
are performed, individuals are chosen which are 
close to each other rather than randomly chosen.   
Therefore, precise exploitation is expected.   It also 
uses an archive and updates for each generation.   
Binary parameters were used for crossover and 
mutation operator [10]. 
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PSO (Particle swarm) J. Kennedy introduced 
Particle Swarm Optimization in 1995 [4].   It 
simulates social behavior of animal groups, such as 
flocks of birds.   Animals tend to follow neighbors 
who are closer to food.   The best position (pbest - 
particle best) encountered by a particle and its 
neighbors (gbest - global best) is used for next 
position of particle.   Each particle is given an 
initial velocity and it accelerates by distance to 
find a solution.   PSO generates population for 
each generation like genetic algorithms, but there 
is no evolution operator such as crossover and 
mutation.   A stochastic variable called craziness 
was introduced to avoid settling on unanimous and 
unchanging direction.   Y. Shi proposed a modified 
PSO in 1998, a parameter of inertia weight was 
incorporated into original PSO [8].   MOPS (Multi-
Objective Particle Swarm) was used in this study.   
“Any point in the Pareto set is a candidate as 
leader and the leader for particle is randomly 
selected from Pareto set based on the crowding 
distance” [3]. 
 
Parameters for each type of algorithm are used 
according to suggested values by application [3].   
The same population size was maintained for all 
the algorithms.   For NSGA-II, the size of the 
population = 12, crossover probability = 0.9, 
crossover distribution index = 10, mutation 
distribution index = 20.   For AMGA, the 
maximum allowed size for archive = 96, crossover 
probability = 0.9, mutation probability = 0.5, 
crossover distribution index = 10, mutation 
distribution index = 20.   For NCGA, gene size = 
60, crossover rate = 1.0, mutation rate = 0.01.   For 
MOPS, inertia = 0.9, increment for global & 
particle = 0.9, maximum velocity = 0.1 
 

RESULTS 
 
Figure 11 show the comparison between baseline 
airbag and optimized airbag shape (reference 
geometry mesh data).    
All of the optimization algorithms successfully 
found solutions.   Neck and chest injuries were 
lowered, head injury was increased slightly, but 
the probability of head injury was still less than 
2.3% in Table-1.   Joint probability of injury 
(Pjoint) was lowered and NCAP performance was 
improved.   Figure 12 show the bar chart 
comparison.    
 
The baseline airbag indicates that the probability 
of neck injury is 10.6%, whereas the probability of 
head injury is only 0.2% in Figure 12 and Table 1.   

This means that the major injury mechanism is 
neck injury.   Therefore better performance can be 
achieved by lowering neck injury and/or trading 
off with head injury from optimized airbag. 
 

 
Figure 11. Comparison of airbag geometry (blue: 
base, red: NSGA-II, green: AMGA, purple: 
NCGA, cyan: MOPS) 
 

 
Figure 12. Bar chart comparison for NCAP 
 
Table 1. Comparison of results 
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Optimized airbags have two concave shapes (upper 
and lower) on the front panel of the airbag for the 
head and chest contact area.   It seems that the 
upper concave shape decreases neck injuries with 
slightly increased head injury, and the lower 
concave shape decreases chest deformation injury.   
Figure 13 show that the volume of optimized 
airbags was less than 110 liters, these airbag 
satisfied the constraint of volume (less than 115 
liters).   The volume of the new airbag is not much 
different from baseline airbag. 
All of the optimized airbags show similar 
performance.   NSGA-II and MOPS found slightly 
better airbag for USNCAP.   Figure 14 shows a 
comparison of static deployment between the 
baseline and optimized airbags. 
Figure A-2 and A-3 in appendix show a bar chart 
comparison of injuries for NCAP and 40kph 
unbelted 5th loading conditions.   Confirmation 
CAE runs were performed to ensure airbag design 
works for other loading conditions which were not 
included in optimization process.   These CAE 
results show that all injury measures meet the 
targets. 
 

 
Figure 13. Comparison of airbag volume from 
static CAE analysis 
 

 
Figure 14. Comparison of static deployed airbag 
(left: baseline, right: optimized airbag by MOPS)  

 
There were several performance indicators 
identified to evaluate the optimization algorithm.  
“Generally, multi-objective problem has three 
primary goals.  The first, fast convergence to the 
Pareto frontier solution.   The second, close 
proximity to the Pareto frontier solution.   The 
third, diversity and even dispersion of the obtained 
non-dominated solutions along the Pareto optimal 
front” [2]. 
The objective functions do not fight each other in 
this optimization work.   Small number of 
populations and generation were used, because 
analysis time is too heavy.   Therefore, the Pareto 
frontier graph is not completely clear, and absolute 
Pareto frontier is not known.   One of purpose of 
this study is comparing airbag design by using 
different optimization algorithm, not evaluation of 
the algorithm itself.   So, optimization algorithms 
are compared in practical ways in order to 
determine which optimization methods may fit 
well for airbag shape optimization.   The scatter 
plot and the history plot between objective 
functions are considered as an indication of 
proximity and convergence to solution for each 
optimization algorithm in this study. 
 
The scatter and history plot for the objective 
functions are shown in Figure A-4 through A-7 in 
appendices.   The red dots indicate infeasible runs, 
black dots indicate feasible runs, and a green dot 
indicates the best solution.   Blue dots, which are 
shown only in AMGA, is for the Pareto frontier, 
but the Pareto optimal front is not determined 
clearly, as was mentioned before.   Smaller 
windows for scatter plots were defined, and the 
number of feasible runs are counted in order to 
determine of proximity in Table 2. 
 
NCGA and NSGA-II seems to show better 
proximity than AMGA and MOPS based on the 
scatter plot and Table 2.   It is difficult to 
determine the convergence from the history plot.   
MOPS and AMGA found the best solution around 
50th run, whereas NSGA-II and NCGA found it 
around 90th run in Table 2. 
  
For AMGA, and attempt was made to increase the 
archive size was from 12 to 96 to find a better 
solution, but significant improvement was not 
noticed.   The off-spring population is half of its 
parent population and indicates the actual number 
of CAE runs for each generation is half of the 
other algorithm.   It would be interesting to check 
the results by increasing the parent population for 
future studies.    
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NCGA shows precise exploitation as was expected 
[10].   The possible number for mutation rate is 0 ~ 
1.0, but 0.01 was used in this study.   Additional 
study is needed to check for better convergence by 
increasing this mutation rate. 
 
MOPS found the solution at the 52th run, but it 
does not show superior proximity.   MOPS also 
does not have a mutation operator like the Genetic 
algorithms.  Instead, MOPS provides velocity and 
inertia parameters.   This algorithm provides the 
user with simple parameters, and can be used for 
both single and multi-objective optimization.  
MOPS seems to work well for occupant analysis, 
but further studies are required. 
 
 
Table 2. Comparison of number of feasible runs 

 
 
 
CONCLUSIONS 
 
In this paper, a design method for passenger side 
frontal airbag and parametric airbag shape 
optimization were presented.   A-Surfaces of CAD 
models for a specific vehicle were used for airbag 
design, because a full CAE model was not 
available at the early stage of vehicle development.   
When a full vehicle CAE model was available, 
occupant sled models were built (surrogate 
models) and validation work was performed to 
verify sled models with tests.   Parametric airbag 
shape optimization was developed with multi-
loading conditions by using a commercial tool [3].   
NSGA-II, AMGA, NCGA and MOPS algorithms 
were used and compared in this study.   All of the 
optimization algorithms used successfully found a 
solution without violating constraint conditions.   
Each algorithm was compared and the following 
observations were made: 
 

• NSGA-II works well for occupant 
simulation. 
 

• AMGA works well, even though the 
population of off-spring is half of its 
parent population. 
 

• NCGA show precise exploitation.   Each 
objective function is treated seperately.   It 

can be used for both single and multi-
objective problem.   However, it only 
provides binary parameters for evolution 
operators, whereas other GAs provide real 
parameters 
 

• MOPS provides simple parameters, which 
make it easy for the user, and flexibility 
for single and multi-objective problem.   It 
worked well to find a soultion for 
occupant simulation. 

 
MOPS is efficient to find a solution in airbag 
shape optimization.   The advantage of MOPS is 
that there are few parameters that need to be 
adjusted and it is easy to implement.   It use the 
crowding distance for diversity and works well for 
both single and multi-objective optimization.   
Further study are needed to test the ability of 
MOPS. 
 
The Work flow of optimization is summarized in 
Figure 15.   Actual hardware for the airbag 
generated can be manufactured based on optimized 
airbag geometry.   Additionally, 2D geometry lines 
are extracted from optimized airbag geometry for 
demonstration purposes.   CAD drawings for 
sewing and cut-sections can be generated by using 
these 2D geometry lines.   Figure 16 shows 
extracted 2D geometry lines for CAD drawings. 
 
This study presents an airbag design method and 
airbag shape optimization using CAE techniques.    
These methods will work well for other regulations 
and/or consumer metrics used in the global 
automotive industry through changing loading 
conditions, constraint conditions and objective 
functions.  
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Figure 15. Work flow of airbag shape 
optimization 
 

 
Figure 16. Extracted 2D geometry lines for 
airbag CAD drawings (sewing lines) 
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Figure A-1. Work flow of optimization 
 
 
 

 
Figure A-2. Bar chart comparison for NCAP 
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Figure A-3. Bar chart comparison for 40kphFF unbelted 5th  
 
 

Figure A-4. Scatter & history plot for NSGA-II 
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Figure A-5. Scatter & history plot for AMGA 
 
 

 
 

Figure A-6. Scatter & history plot for NCGA 
 
 

 
 

Figure A-7. Scatter & history plot for MOPS 


