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ABSTRACT 
One of the challenges of lane departure warning (LDW) systems is to differentiate between normal lane 
keeping behavior and lane change events in which drivers simply do not use the lane change indicator.  Lane 
keeping behavior differs between drivers and often between driving scenarios, therefore a static threshold of 
predicting steering maneuver is not an ideal solution. The objective of the current study is to develop an 
adaptive method of predicting driver lane change maneuver using vehicle kinematic data. 

The paper presents an adaptive steering maneuver detection algorithm, which can detect the earliest 
indication of driver’s intent to change lanes.  The overall approach was to observe the driver’s “normal” lane 
keeping behavior for a period of time, and seek driver lane keeping behavior which falls outside of what is 
“normal” for each specific event.  We modeled normal driving behavior in this study using a bivariate normal 
distribution to continuously monitor the vehicle distance to lane boundary (DTLB) and lateral velocity 
measured in most production LDW systems.   

The results of our algorithm were validated against visual inspections of 949 randomly selected lane change 
events from the 100-Car Naturalistic Driving Study (NDS), in which we compared the time of driver steering 
initiation estimated by the algorithm against visual inspection. The comparison between algorithm results 
and visual inspection shows that all steering initiation in lane change events in the sample occurred within 5 
seconds of lane crossing.  In addition, a sensitivity analysis on the bivariate normal distribution boundary 
shows that the contour line representing 95% probability produced the lowest average percentage error (2%) 
with an average delay of 0.7 seconds between the algorithm predicted driver steering initiation time and 
video inspection. The resultant algorithm was deployed in a large subset of 100-Car and was able to identify 
the steering initiation time in a total of 53,615 lane change events. The resultant algorithm shows utility in 
assisting future active safety system in monitoring driver lane keeping behavior, as well as providing active 
safety system designers further understanding of driver action in lane change maneuvers to improve designs 
of LDW systems.
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 INTRODUCTION 

In the United States, road departure crashes 
contribute to more than half of highway fatalities 
[1]. One emerging active safety technology which 
may mitigate these road departure crashes is the 
lane departure warning system (LDW).  LDW 
operates by tracking the vehicle’s position with 
respect to the roadway marking and warns the 
driver, by either audible, visual, or tactile 
feedback, of road departure events.  Previous 
studies has shown that LDW systems have the 
potential to reduce fatalities in drift out of lane 
road departures in the United States by as much 
as 28% to 32% [2].  However, driver acceptance 
remains paramount to the success of LDW 
systems.  Surveys of new vehicle owners 
consistently report that current LDW systems 
provide more false alarms then other crash 
avoidance technologies, such as forward collision 
avoidance.  The result is that some owners disable 
the LDW system [3]–[5]. 

One of the challenges of overcoming the false 
alarms of LDW systems is to differentiate between 
normal lane keeping behavior and lane change 
events in which drivers simply do not use the lane 
change indicator.  One potential solution to 
differentiate between the two maneuvers is to 
utilize vehicle lateral motion and lateral distance 
to lane line threshold to predict steering 
maneuver.   This is not straight forward however, 
as lane keeping behavior may differ between 
drivers and often between driving scenarios. 
Therefore a static threshold of predicting steering 
maneuver is not an ideal solution. The objective of 
the current study is to develop an adaptive 
method of predicting driver lane change 
maneuver using vehicle kinematic data. 

Overview of the 100-Car Naturalistic Driving 
Study 
One valuable approach to characterize driver 
behavior is to use the data from Naturalistic 
Driving Studies (NDS).  NDS involve instrumenting 
vehicles and continuously recording all normal 
driving behavior for a period of months to years, 
therby captures drivers’ behavior in a “natural 
driving environment”. 

The current study utilizes data collected from the 
100-Car NDS to characterize driver lane change 
behavior.  The 100-Car study was a landmark 
large-scale NDS conducted by the Virginia Tech 

Transportation Institute (VTTI) from 2001 to 2004 
[6].   

Drivers were recruited from the Washington D.C. 
metropolitan area. Few restrictions were used to 
select subjects, e.g. excluding those with traffic 
violations. Younger drivers, i.e. under 25 years, 
and self-reported high mileage drivers were 
sought and oversampled, however. 

Vehicles were instrumented with cameras and 
inertial measurement devices and equipped with a 
PC-based computer to collect and store the data. 
The data collection box housed a yaw rate sensor, 
dual axis accelerometers, and a GPS navigation 
unit. In addition, radar sensors were mounted on 
the front and rear of the vehicle that were able to 
track other vehicles. The data collection box was 
usually installed on the roof of the trunk of the 
vehicle in order to be unobtrusive. .  In addition to 
the on-board instrumentation, vehicle data, such 
as vehicle speed and brake pedal switch, were 
collected from the vehicle CAN bus.  All data were 
sampled at a rate of 10 samples per second. Some 
of the sensors had lower sample rates. These data 
were still sampled at 10 samples per second but 
would have multiple samples with equal 
magnitude. 

There were five (5) cameras that offered 
continuous views in and around the vehicle, as 
shown in Figure 1.  The upper left frame shows a 
view of the driver’s face and upper body, blurred 
to protect the identity of the driver. The lower left 
pane is an over-the-shoulder view of the driver, 
the upper right pane is a forward view out the 
front of the vehicle, and the lower right pane is 
split between a view out the passenger side of the 
vehicles and out the rear of the vehicle. 

 

Figure 1. Combined Video Views from the 100-Car 
Naturalistic Study 
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METHODS AND CALCULATION 

Driver Selection 
 
A total of 108 primary drivers and 299 secondary 
drivers were included in the 100-Car study period 
in which all driving in an instrumented vehicle was 
recorded.  Primary drivers were the primary 
owners or leasers of the instrumented vehicles.  
Secondary drivers occasionally drove the vehicles.  
Primary drivers accounted for 89% of all miles 
driven during the study period. The entire 100-Car 
database contains approximately 1.2 million miles 
of driving.  A total of 1,119,202 miles of which 
were driven by primary drivers in 139,367 trips.   

Prior to the analysis, the status of all time-series 
data was inspected.  Instrumentation data, such 
as the front facing radar, vehicle speed, brake 
switch status, yaw rate signals, and lane tracking 
signals, were checked for missing or invalid data. 
Studies in the following analysis only included 
vehicles which had valid data in at least 60% of all 
trips and 60% of all distance traveled.   

Lane Change Prediction Algorithm 
 
Our solution to developing an adaptive driver drift 
out of lane detection algorithm is based on the idea 
that if we observe the driver’s “normal” lane keeping 
behavior for a period of time, then we may be able 
to detect when driver lane keeping behavior falls 
outside of what is “normal” for each specific event.  
We defined normal driving behavior in this study 
using a technique adapted from Fujishiro and 
Takahashi [7].  Figure 2 shows an example from the 
Fujishiro and Takahashi study, in which driver lane 
keeping behavior was characterized as a function of 
distance to lane boundary (DTLB) and later velocity.  
In the Fujishiro and Takahashi study, a bivariate 
normal distribution was constructed using the DTLB 
and lateral velocity time series data. Normal driving 
behavior was defined as any data within the contour 
line representing 99% probability, as shown by the 
magenta circle. 

 

Figure 2. Lateral Velocity and Distance to Lane 
Boundary (DTLB) Distribution from Fujishiro and 
Takahashi [7] (Reproduced with permission from 
authors) 

Bivariate Normal Distribution 

The bivariate normal distribution is an extension of 
the univariate normal distribution.  Similar to 
univariate normal distribution, the bivariate 
extension computes the probability distribution as a 
function of two variables, and has probability of 
density function of the following form:  
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 (Equation 2) 

The parameters xσ yσ  and xμ yμ represents the 
standard deviation and mean of the variable x and y, 
respectively. The parameter ρ is the population 
correlation coefficient, which measures the 
dependence of two variables and is computed based 
on the covariance of the variables x and y and their 
respective standard deviation, as shown in (Equation 
3.  
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The probability of each x and y combination is 
calculated by taking a surface integral of (Equation 3, 
as shown in (Equation 4. Lastly, the desired contour 
boundary is determined by finding x and y values of 
the same probability.  
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Steering Maneuver Detection Algorithm 

The driver drift out of line detection algorithm 
follows the three steps shown in Figure 3.  The 
algorithm first detects instances when the vehicle 
departs the lane line, as shown in Figure 3 (a).  

The next step of the algorithm takes available time 
series data before vehicle lane crossing, and models 
normal driver lane keeping behavior as a function of 
DTLB and lateral velocity, as shown in Figure 3 (b).  
Up to 60 seconds of time series data before vehicle 
lane crossing to 5 seconds was used to model driver 
behavior before each excursion.  Following the 
approach of Fujishiro and Takahashi, we defined 
normal driving behavior by creating a bivariate 
normal distribution of the DTLB and lateral velocity 
data prior to vehicle lane crossing and an associated 
95% probability contour line.  If less than 60 seconds 
of quality lane tracking data was available prior to 
the departure, then the algorithm utilized any 
available data to model normal driving behavior. If 
the lane crossing occurred less than 5 seconds from 
the start of the trip, that particular event was 
omitted from the analysis, as not enough data was 
available to model driver lane keeping behavior.   

The last step of the algorithm, shown in Figure 3 (c), 
takes the available time series data from 5 seconds 
before vehicle lane crossing to time of vehicle lane 
crossing to determine the earliest time point at 
which the lane keeping behavior was outside of the 
95% boundary established in step (b).  The process 
shown in Figure 3 was repeated for each lane change 
event to create a unique “normal” lane keeping 
threshold for each event. 

 

Figure 3. Steering Maneuver Detection Algorithm 
Procedure 

Algorithm Validation 

In order to validate the results reported by our 
algorithm, we compared the algorithm results to 
manual inspection of video footage of selected lane 
change events in the 100-Car NDS.  A total of 949 
randomly selected lane change events from 892 trips 
were extracted as the validation sample.  For each 
lane change event, a research assistant in our group 
reviewed the over-the-shoulder camera view to 
determine the time stamp when the driver begins to 
initiate steering maneuver.  In certain low lighting 
lane change events, such as nighttime or shadows 
created by nearby objects, time of steering initiation 
could not be determined by manual inspection, and 
therefore was not included in the validation sample. 

 

Figure 4. Algorithm Validation with Manual Video 
Review 
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RESULTS 
 
Algorithm Validation 

Figure 5 shows the comparison of lead time between 
algorithm result and visual comparison.  In this 
comparison, lead time is defined as the time 
between the start of steering maneuver and the first 
vehicle lane crossing, as shown in Figure 6 

The cumulative distribution of lead time compares 
the result from visual inspection validation sample 
and the algorithm results from the same events.   
The analysis of the sample validation was based on 
quantifying normal lane keeping behavior using a 
95% threshold. As shown in Figure 5, the medium 
lead time based on validation data was 
approximately 1.8 seconds, while the median lead 
time based on our algorithm was approximately 0.9 
seconds.  Both the validation results and the 
algorithm results shows that all lead times in the 
sample were less than 5 seconds. 

One hypothesis for the lead time difference between 
the algorithm and the visual validation is the delay 
between steering wheel input and vehicle response.  
Most production vehicles do not respond 
instantaneously response to the steering input, 
largely due to weight transfer the suspension and 
the tires [8], [9].  While our visual inspection denotes 
the time of steering initiation as the first moment of 
steering wheel movement, the vehicle do not 
respond immediately and therefore the algorithm 
cannot precisely pinpoint the time of steering wheel 
initiation as reported in the visual inspection. 

 

Figure 5. Cumulative Distribution of Lead Time 

 

Figure 6. Definition of Lead Time 

Sensitivity Analysis The validation sample was also 
used in a sensitivity analysis to set the probability 
threshold used in the bivariate normal distribution.  
In our method, we assumed that a bivariate normal 
distribution which captures 95% of the normal lane-
keeping behavior to be the boundary between 
normal lane-keeping and lane change initiation.   
Figure 7 shows the average percentage error of lead 
time for each confidence interval.  Average 
percentage error is computed as the average of the 
percentage error, calculated as shown in Equation 5, 
of all events in the validation sample.  As shown in 
Figure 7, a probability threshold of 95% produced 
the lowest average percentage error of 2%.  No 
additional benefit is obtained by increasing the 
probability threshold to 99%. 

validation

validationorithmma

Leadtime

LeadtimeLeadtime
ErrorPercentage

|| lg −
=

  (Equation 5) 

Sample Algorithm Results Figure 8 shows the 
steering maneuver detection algorithm performance 
on a sample trip.  The horizontal axis shows the 
vehicle lateral velocity and the vertical axis shows 
the distance past edge, or DTLB.  The red circle 
represents the data points used in modeling normal 
lane keeping behavior, the blue ellipse represents 
the boundary which captures 95% of the normal 
lane-keeping behavior, and the blue cross represents 
the data 5 seconds prior to lane crossing used to 
determine the start of steering maneuver.  The 
yellow arrow in Figure 8 shows the time progression 
of driver initiating the lane change maneuver. 
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Figure 7. Sensitivity Analysis of Confidence Interval 

 

Figure 8. Sample Validation Result 

Figure 9 and Figure 10 shows the DTLB and lateral 
distance for the sample event shown in Figure 8. The 
orange line in the figure shows the time when the 
algorithm determined that the data were outside of 
the normal lane-keeping boundary, while the yellow 
line in the figure shows when the visual inspection 
indicated that the driver begin to initiate the 
steering maneuver. As shown in the figures, the 
difference in the time of steering maneuver 
initiation between the algorithm and the visual 
inspection was approximately 0.2 seconds.  

 

Figure 9. Sample Event Distance Past Edge 

 

Figure 10. Sample Event Lateral Velocity 
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Algorithm Application: Detect Steering Initiation 
in Lane Change Events 

One of the uses of the algorithm is to detect 
steering initiation in lane change event in which 
the driver does not use the turn signal.  Previous 
studies have utilized 100-Car NDS to characterize 
driver lane change maneuver, in an effort to 
improve the triggering threshold of active safety 
systems [10].  Using the steering maneuver 
detection algorithm, we were able to compute 
steering initiation time for 53,615 lane change 
events from the 100-Car NDS. 

Figure 11 shows the cumulative distribution of the 
lead time between steering start and lane edge 
crossing.  The median lead time in the population 
of lane change was approximately 1 second. 

  

Figure 11. Cumulative Distribution of Lead Time 

In addition to characterizing the lead time 
between steering maneuver initiation and lane 
crossing, we also compared the difference in 
driver behavior during steering initiation and lane 
change crossing in lane change events during car 
following events.  Driver lane change behavior 
was quantified using Time to Collision (TTC) with 
respect to the lead vehicle.  For each lane change 
event, TTC was computed at the time of steering 
initiation as well as the time of vehicle lane 
crossing, as shown in Equation 6: 

r

rrr

A

DAVV
TTC

**22 −−−
=  (Equation 6) 

where Vr is the relative speed, obtained from the 
reported radar range rate, between the two 
vehicles. Ar is calculated as the time different of 
Vr, and is the relative acceleration between the 

vehicles.  Lastly, D is the distance between the 
two vehicles, which was obtained from the 
reported radar range rate.   

We utilized the General Extreme Value 
Distribution (GEV) to characterize the probability 
of driver lane change for a continuous range of 
TTCs. The GEV distribution was previously 
determined to be the best fit distribution to 
describe driver lane change behavior, based on 
minimizing the Akaike information criterion (AIC), 
and Bayesian information criterion (BIC) [11].  
Figure 12 show the GEV distribution of TTC at the 
start of steering maneuver.  The distributions 
were computed separately for each 10 mph 
vehicle speed.  For each vehicle speed bin, the 
GEV distribution provides continuous probability 
of steering initiation with respect to TTC. 

 

Figure 12. GEV Distribution of TTC at Start of 
Steering Maneuver 

The GEV distributions shown in Figure 12 can also 
be characterized by their mode, or the TTC values 
corresponding to the maximum probability in each 
distribution.   Figure 13 shows the modes of GEV 
distributions of TTC values at the start of steering 
and start of lane crossing.  The comparison of GEV 
distributions modes between the start of lane 
crossing and start of steering shows that the 
modes of the TTC distributions are higher at the 
start of steering for all speed ranges, and the 
modes generally increase with vehicle speed. 
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Figure 13. Comparison of Modes of GEV 
Distributions for TTC in Lane Change 

CONCLUSIONS 
 
The overall objective of the current study was to 
develop an automated algorithm to detect the 
start of steering initiation in lane change events. 

The overall approach in the methodology was to 
model the normal lane keeping behavior using the 
distance to lane boundary and lateral velocity of 
the vehicle prior to the lane change event.  The 
start of steering maneuver was defined as the first 
time when driver lane keeping behavior reaches 
outside 95% of normal lane keeping behavior. 

The results of the algorithm were validated 
against manual video inspection of 949 randomly 
selected lane change events.  During the manual 
inspection, the researcher review of the over-the-
shoulder camera view to determine when the 
driver initiated the steering maneuver during the 
lane change.  In certain low light lane change 
events, such as night time driving or shadows 
casted over the driver, time of steering maneuver 
could not be determined. 

The comparison of lead time, or the time between 
the start of the steering maneuver and the vehicle 
crossing the lane edge, showed that the median 
lead time for the algorithm was approximately 0.9 
seconds shorter than the lead time reported by 
visual inspection.  We hypothesize that the 
difference in lead time is largely due to the play in 
the steering wheel and the fact that vehicles do 
not immediately respond to steering wheel input.  
Lead time was less than 5 seconds for all lane 
change events in the validation sample, suggesting 
that detecting steering wheel input within 5 

seconds prior to lane crossing was a reasonable 
assumption in our algorithm. 

The algorithm validation sample was also utilized 
in a sensitivity analysis of the confidence interval.  
Confidence intervals between 50% and 95% was 
selected to represent normal lane keeping 
behavior, and the performance of the algorithm 
was compared against the results from the 
manual inspection.  According to the average 
percentage error of lead time between the 
algorithm output and the manual inspection, a 
95% confidence level best described the normal 
lane keeping behavior in our algorithm, and was 
therefore selected in the final methodology. 

We were able to compute steering initiation time 
in 53,615 lane change events.  The distribution of 
lead time, or the time between steering initiation 
and first lane crossing, was approximately 1 
second.  In approximately 5% of the events, the 
lead time identified by the algorithm was 0, 
suggesting that in a small percentage of events, 
driver are very close to the target lane when they 
initiate the lane change maneuver.  For all lane 
change events, the result of the algorithm shows 
that drivers begin steering maneuver for a lane 
change within 5 seconds of the vehicle crossing 
the lane.  This shows that, in certain cases, we can 
potentially detect drivers’ intent to change lanes 
as far as 5 seconds in advance. 

Lastly, a probability distribution was fit to the 
population of TTC values using the general 
extreme value distribution.  The modes, or peaks 
of the probability distributions, shows that TTC 
generally increase with vehicle speed.  The 
comparison of modes of probability distribution 
shows drivers have higher TTC at the start of 
steering maneuver than the first lane cross.  This 
suggests that drivers generally decrease the 
following distance between vehicles as the 
overtake maneuver progresses. 

One of the major limitations of the current 
algorithm is the dependency on lane line 
availability.  In most rural or suburban driving 
environments, lane lines are poorly marked or not 
available, therefore in these scenarios, our 
algorithm did not have sufficient information to 
model normal driver lane keeping behavior. 
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In summary, the current study developed a 
valuable methodology to estimate the start of 
steering maneuver in lane change events in the 
100-Car NDS.  Steering input was not directly 
recorded in the 100-Car NDS, and the current 
method provides an important tool in improving 
driver lane change characterization, and the 
resultant characterization of lane change events 
at the start of steering improves the previous 
study using first lane cross as the start of steering 
maneuver. 
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