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ABSTRACT 
Automated Driving (AD) systems have the potential to increase safety, comfort and energy efficiency. Recently, 

major automotive companies have started testing and validating AD systems (ADS) on public roads. Nevertheless, 

the commercial deployment and wide adoption of ADS have been moderate, partially due to system functional 

insufficiencies (FI) that undermine passenger safety and lead to hazardous situations on the road. 

In contrast to system faults that are analyzed by the automotive functional safety standard ISO 26262, FIs are defined 

in ISO 21448 Safety Of The Intended Functionality (SOTIF). FIs are insufficiencies in sensors, actuators and algorithm 

implementations, including neural networks and probabilistic calculations. Examples of FIs in ADS include inaccurate 

ego-vehicle localization on the road, incorrect prediction of a cyclist maneuver, unreliable detection of a pedestrian 

in rainy weather using cameras and image processing algorithms, etc. 

The main goal of our study is to formulate a generic architectural design pattern, which is compatible with existing 

methods and ADS, to improve FI mitigation and enable faster commercial deployment of ADS. First, we studied the 

2021 autonomous vehicles disengagement reports published by the California Department of Motor Vehicles (DMV). 

The data clearly show that disengagements are five times more often caused by FIs rather than by system faults. We 

then made a comprehensive list of insufficiencies and their characteristics by analyzing over 10 hours of publicly 

available road test videos. In particular, we identified insufficiency types in four major categories: world model, 

motion plan, traffic rule, and operational design domain. The insufficiency characterization helps making the SOTIF 

analyses of triggering conditions more systematic and comprehensive. 

To handle faults, modern ADS already integrate multiple AD channels, where each channel is composed of sensors 

and processors running AD software. Our characterization study triggered a hypothesis that these heterogeneous 

channels can also complement each other’s capabilities to mitigate insufficiencies in vehicle operation. To verify the 

hypothesis, we built an open-loop automated driving simulation environment based on the LG SVL simulator. Three 

realistic AD channels (Baidu Apollo, Autoware.Auto, and comma.ai openpilot) were tested in the same driving 

scenario. Our experiments suggest that even advanced AD channels have insufficiencies that can be mitigated by 

switching control to another (possibly less advanced) AD channel at the right moment. 

Based on our FI characterization, simulation experiments and literature survey, we define a novel generic 

architectural design pattern Daruma to dynamically select the channel that is least likely to have a FI at the moment. 

The key component of the pattern does cross-channel analysis, in which planned trajectories and world models from 

different AD channels are mutually evaluated. The output of the cross-channel analysis is combined with more 

traditional fault detections in a safety fusion component. The safety fusion then feeds an aggregated per-channel 

safety score to the high-level arbiter, which eventually selects the AD channel to control the vehicle. The formulated 

architectural pattern can help manufactures of autonomous vehicles in mitigating FIs. 

Limitations of our study suggest interesting future work, including algorithmic research on cross-channel analysis 

and safety fusion, as well as evaluation of the cross-channel analysis in simulations and road tests. 
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1. INTRODUCTION 
Potential advantages of Automated Driving (AD) systems include increased safety, comfort and energy efficiency [1]. 

Major automotive companies and academic institutions have already started testing and validating AD systems (ADS) 

on public roads [2, 3, 4, 5]. Nevertheless, the commercial deployment and wide adoption of ADS have been limited, 

partially due to the challenge of functional insufficiencies (FIs), which is the focus of this paper. 

Traditionally, safety-critical systems focused on detecting and mitigating faults, such as a memory cell bit flip or a 

software deadlock, which are the primary focus of the automotive standard ISO 26262 [6]. Modern ADS deploy 

redundant AD channels to cope with faults [7]. As illustrated in Figure 1, an AD channel consists  of the sensors (such 

as radar and camera), the ADS display for visualization and human interaction, and the processing modules including 

perception, localization, maps, prediction, and motion planning module, but excludes actuators for steering and 

acceleration. The greyed out items in Figure 1 are the human machine interface and the actuators, which are shared 

among the multiple AD channels of the ADS. 

 

Figure 1. The simplified AD channel architecture. 

In our work we do not focus on fault handling, because it has been widely studied and handled by effective safety 

mechanisms leveraging error-correction codes, watchdog monitors, redundancy, etc. In contrast, advanced 

environmental sensors, deep neural networks, and probabilistic or non-deterministic algorithms in modern ADS 

introduce insufficiencies in the implementation of the AD functionalities which have received significantly less 

attention. Such insufficiencies are called FIs in the ISO 21448 standard Safety Of The Intended Functionality (SOTIF) 

[8]. 

An example of a FI is illustrated in Figure 2 below, where the ADS is turning right on the T-shaped intersection and 

does not properly predict the intention of the pedestrian walking across the street. Consequently, the ADS does not 

slow down [9]. To avoid collision the human driver overrides the ADS operation and takes over control of the vehicle. 

This example show-cases the potential hazardous consequences of FIs, as well as the reduced ADS availability due 

to the disengagement. Note that the ADS and the ego vehicle in this example do not suffer from a fault in the 

traditional sense of functional safety as defined in the standard ISO 26262 [6]. 

sensors

Perception

Localization

Map and 
Navigation

Motion
Planning, 

Traffic Rules, 
ODD check

Vehicle 
Control

Prediction

ADS Display
(HMI)

images,
coordinates,
target lists,
point clouds,
wheel speed,
…

objects pose, speed, 
and classification,

drivable space,
ODD properties

objects 
trajectories

ego pose 
and speed

steering,
acceleration,

braking
HD map

ego 
trajectory

world model (objects description, drivable space, 
ego pose and speed, objects trajectories),
HD map and global route,
ego trajectory,
ODD status,
steering, acceleration, braking actuations

ego pose and 
speed

destination

passenger

destination

HD map

HD map

HD map,
global route

…



3 
 

 

Figure 2. Incorrect prediction of a pedestrian’s trajectory is an example of ADS functional insufficiencies. The camera-based 
perception module of the ADS correctly detects and tracks the pedestrian in step 1 and step 2. However, in step 2 it fails to 

predict the pedestrian’s intention to cross the street, and in step 3 the human driver disengages automated driving. 

Some other insufficiency examples are: 

1. ADS perception fails to detect a pedestrian; 

2. ADS prediction fails to correctly predict the cyclist’s maneuver; 

3. ADS motion planning fails to yield a trajectory feasible for vehicle actuators; 

4. ADS drives the vehicle faster than the speed limit. 

Mitigating FIs at runtime with the help of design patterns is the primary focus of this paper. Other approaches, such 

as product lifecycle management and various other safety techniques recommended by SOTIF at design time are 

outside of the scope of this paper. A classic example of a FI mitigation technique is sensor fusion [10]. It integrates 

multi-modal sensors output into a single world model by combining complementary sensor data with varying 

weights dependent on the situation. For example, the camera sensor will be favored in a clear weather condition, 

while the radar sensor will be preferred in rainy conditions. Note that these sensors can also have different 

capabilities, for example, the camera can perceive the traffic light color, while the radar sensor can detect object 

speeds. 

Our work concentrates on two essential problems and contributes to their solutions: 

1. There is no comprehensive inventory and characterization of FIs in modern ADS. Providing such an 

inventory will be beneficial in assessing the prevalence of FIs and their potential impact on ADS safety. Our 

paper presents a new comprehensive characterization of FIs in ADS, which can be used in the analysis of 

triggering conditions recommended by the SOTIF. 

2. Despite integration of state-of-the-art functional safety mechanisms and redundant AD channels for fail-

operational behavior, modern ADS still occasionally suffer from FIs that compromises safety and availability. 

Consequently, how to reduce the negative impact of FIs in autonomous safety-critical systems [11, 12] is an 

important problem. We contribute to its solution by introducing Daruma: a generic architectural design 

pattern extending redundant ADS with cross-channel analysis and arbitration of redundant AD channels to 

mitigate FIs. 

It should be noted that the high-level goal of our study is to support technological evolution to safe AD and reduce 

road accidents. We do not intend to assess safety of the evaluated ADS, but rather to extract architectural 

recommendations to reduce the negative impact of FIs. 

The remainder of this paper is organized as follows. In the next section we survey literature on FIs and architectural 

design patterns to mitigate them. Section 3 discusses analysis of our road test studies, presents our characterization 

table of FIs, and makes a hypothesis about a new architectural design pattern to mitigate FIs. The open-loop 

simulation method and results in Section 4 are used in the subsequent section to define the design pattern for cross-

channel analysis. In Section 5, we conclude our findings and discuss future research directions in Section 6. 
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2. RELATED WORK 
In this section we first present a summary of related work on reports and statistical analyses of FIs, then introduce 

several existing FI mitigation methods. 

ANALYSIS OF FUNCTIONAL AND OUTPUT INSUFFICIENCIES 
As stated in [13], hazardous situations caused by FIs are typically not considered by the traditional safety analysis 

process focusing on ISO 26262 [6]. To identify and evaluate such hazards, SOTIF [8] focuses on identifying triggering 

conditions of the FIs and the acceptance criteria of the ADS response in the presence of the triggering conditions. 

Triggering conditions as defined in SOTIF, such as unusual road users, weather conditions, light glare, EMI 

interference, etc., are external factors that initiate the ADS FIs. Furthermore, internal ADS implementation 

insufficiencies can also cause FIs [8, 14, 15, 16]. Representation of the external scene and ego vehicle behavior are 

captured in the state of the ADS components. Erroneous component state, such as missed object or ghost object 

detection, incorrect predictions of trajectories, etc., is termed output insufficiencies (OI) in SOTIF. Our 

characterization study focuses on OIs to make a comprehensive characterization of FIs in ADS. The characterization 

can help employ appropriate mitigation mechanisms to address a wider range of triggering conditions. Note that ISO 

26262, SOTIF and UL 4600 [17] standards all focus on technology-neutral design-time processes, while our work 

concentrates on concrete FIs and a safety mechanism to mitigate FIs at runtime. Figure 3 below presents simplified 

relations among the terms and concepts defined in ISO 26262 and SOTIF. 

 

Figure 3. Simplified cause and effect hazard models in ISO 26262 (in blue above) and SOTIF (in yellow below). The grey 
Vehicle box separates what happens inside and outside of the vehicle. Examples are given in brackets. The bold Output 

insufficiency box identifies the focus of our classification. 

FIs in autonomous vehicles have been logged and studied both in real-life road tests and in academic research. For 

example, a number of real-life consequences of FIs are registered by the California Department of Motor Vehicles 

(DMV). DMV publishes AV collision reports and disengagement reports from a wide range of AV manufacturers every 

year [18, 19], in which system failures as well as FIs are reported. 

Some statistical analyses have been conducted based on the DMV reports: [20] provides a processed dataset of the 

DMV reports from 2014 to early 2020; [21] analyzes frequencies rather than causes of AV disengagements and 

accidents; [22] finds that most disengagements are related to machine-learning-based perception and decision-and-

control systems. When categorizing the causes of the disengagements and accidents, however, [22] does not clearly 

separate faults and FIs. While system faults are much better studied, FIs are less systematically addressed at design 

time and hence have to be handled at runtime. To focus ADS improvements on biggest issues first, the automotive 

industry needs classification and prioritization of the FIs contributing to dangerous situations. 

There is also research on FIs based on pre-recorded sensor datasets and environment conditions simulated by AD 

simulators. For example, [23] proposes a methodology on discovering novel triggering conditions for perception FIs 

with a case study of a LiDAR-based AD perception system; [24] proposes a workflow to identify triggering conditions 

defined in [8] for LiDAR and camera-based perception module and evaluates the proposal with simulation tools. 
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To our best knowledge, no detailed classification of FIs of ADS internals have been made in existing studies of FIs 

and most of the prior works focus on the triggering conditions of FIs. In this paper, we do not study and categorize 

the triggering conditions, but focus on FIs in the perspective of SOTIF, and distinguish them from systematic failures 

and errors, which have been well studied in the scope of ISO 26262. Our comprehensive characterization of FIs will 

be helpful in the design of mitigation mechanisms for ADS FIs as well as in triggering conditions analysis. 

MITIGATION OF FUNCTIONAL INSUFFICIENCIES 
In this subsection we discuss the existing FI mitigation strategies. One mitigation strategy is to reduce ADS FIs by 

avoiding the external triggering conditions using restricted Operational Design Domains (ODD) [25, 26]. Alternatively, 

we can limit the frequency of FIs occurrence by improving the performance of ADS at the component and system 

levels. 

At the component level, FIs can be mitigated by improving the performance of a specific ADS module or using an 

alternative method. For example, ADS perception can be improved by more accurate sensors; an FI in a lane 

detection algorithm can be mitigated by exploiting high-definition maps and enhanced localization algorithms [8]; 

ghost objects can be decreased by using a different detection mechanism; missed objects can be reduced by combing 

the radar and the vision system. Similar approaches can also be applied to motion planning and actuation algorithms 

[27]. [10] details the pros and cons of different sensors and sensor fusion algorithms. [16] analyzes FIs of two 

commonly used sensor fusion methods and provides several suggestions on how to improve the multi-sensor fusion 

algorithms. A similarity-based incremental learning algorithm is proposed in [28] to improve the learning model for 

pedestrian prediction over time. [15] presents an extensive survey of existing human motion prediction algorithms 

and suggests that a combination of multiple prediction algorithms could be the approach to a more robust prediction 

in unknown situation. Besides applications in the AD prediction module, neural networks are also widely used in the 

perception module to detect and identify objects. [29] shows that the ensemble performance of multiple bitwise 

neural networks can surpass the performance of a single high-precision neural network in terms of classification 

accuracy. The Responsibility-Sensitive Safety (RSS) [30] and the Safety Force Field (SFF) [31] algorithms check if the 

planned trajectory is compliant with the ADS safety constrains and predefined traffic rules, so as to prevent the AV 

from being the cause of a road accident from the legal perspective. These algorithms are able to mitigate some 

hazardous situations caused by FIs in the ADS motion planner without actively detecting or identifying the FIs, 

because only actuation control commands that are within the safety envelope of the ADS are passed on by the RSS 

or the SFF modules to the AD actuators. Similarly, [8] mentions applying restrictions on AD functions as a way to 

prevent or mitigate SOTIF-related risk. However, as [13] points out, such approach may compromise the usability of 

the ADS. 

At the system-level, FI can be addressed by monitoring, redundancy, diversity (heterogeneity), functional restrictions 

or other measures [8]. The popular monitor/actuator design pattern from [27] enables shutting down the main 

driving channel in a fail-silent way, if it violates safety criteria according to the monitor. [32] proposes a set of 

application-specific verification methods to ensure the correct arbitration in a fault-tolerant redundant AD 

architecture with two heterogeneous AD channels. However, [32] emphasizes that the diversity in AD channels will 

result in inconsistent output due to the problem of replica indeterminism [12]. As a result, the traditional voting 

approach such as majority voting or triple modular redundancy (TMR) among the redundant channels is not suitable. 

To cope with the replica indeterminism, more sophisticated comparison techniques, weighing mechanisms, etc. 

need to be deployed in the heterogeneous ADS. [33] proposes a Level 3 ADS to mitigate exiting ODD [25, 26], which 

is a safety-critical FI, by transferring the control to the fallback human driver. [13] proposes an AD architecture where 

the safety channel and the nominal channel monitor the health status of the other. The safety channel in [13] has 

its own set of sensors and a simplified world model. Although primarily aiming at mitigating faults and failures in the 

ADS, [13] mentions that the safety channel might be able to help address certain FIs due to its heterogenous 

implementation. However, both proposals from [33] and [13] can cause dangerous situations due to possibly 

insufficient time budget for the human driver to take over [34]. [11] proposed a commander/monitor dual-channel 

AD architecture to reduce false positives in free space detection. In their proposal the free space used for motion 
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planning is the intersection of free space identified by the commander channel and the monitor channel. In other 

words, the common free space detected by both AD channels. 

Companies in the automotive industry proposed several architectures to address the ADS FIs on the system level as 

well. Mobileye’s True Redundancy [35] ADS uses two independent channels to reduce FIs in AD perception. One 

channel of the True Redundancy ADS uses only cameras for perception, the other uses only radars and LiDARs. The 

sensors in different channels do not interact with each other and each channel builds an independent world model. 

Instead of focusing only on improving the perception module performance, a Safety Shell algorithm is proposed in  

[36] to calculate the risk of AD channels based on the cross-channel analysis of the world models and trajectories. 

An arbitration logic is then applied based on the channel last safe intervention time derived from the risk calculation 

[36]. Instead of a specific algorithm or implementation proposal, our work proposes a generic design pattern to 

address FIs in ADS based on our FI characterization and experimental results on our open-loop simulation setup with 

realistic AD frameworks. 

From the above overview, we conclude the following. The existing works tend to mix faults and FIs when discussing 

the improvement proposals. An accurate and extensive classification of FIs is currently missing in the literature. In 

addition, there are no clear winning design patterns for ADS to handle FIs at the system-level yet. Therefore, we 

would like to propose a clear characterization and categorization of FIs and a system-level approach to address FIs. 

3. CHARACTERIZATION OF OUTPUT INSUFFICIENCIES 
This section first motivates for characterization of OIs, then describes the method of video-based analysis of existing 

ADS in real traffic scenarios to characterize FIs. Finally, the Results subsection presents a table with OI characteristics. 

MOTIVATION TO FOCUS CHARACTERIZATION ON OUTPUT INSUFFICINCIES 
SOTIF divides FIs (functional insufficiencies) into performance and specification insufficiencies, which can be diverse 

in nature and origin and, consequently, hard to classify in a comprehensive way. On the other hand, FIs result in OIs 

(output insufficiencies), as shown in Figure 3. OIs can be easily attributed to the few major internal ADS functions, 

such as perception or path planning. Moreover, analyzing ADS FI root causes (e.g. triggering conditions or design 

property) requires detailed information about all internal hardware and software components, which practically 

complicates the classification of FIs if the ADS is studied as a black box. Therefore, we focused our characterization 

on OIs, which should cover most of the FIs. 

CHARACTERIZATION METHODOLOGY 
The methodology of our characterization study is to inspect the DMV reports and public road test videos to 

enumerate, classify and characterize FIs and to assess their prevalence and severity in automated driving. 

First, we performed statistical analysis of over 2500 disengagement registered in the 2021 DMV disengagement 

report [19] to learn about reasons of disengagements in real-life cases. We classified the disengagement causes and 

the frequencies of their occurrence. The statistical analysis helped us gain knowledge of the most frequent 

contributing reasons of disengagement. The details of our DMV report study are presented in the Characterization 

results subsection below. 

While the DMV reports provide a large amount of data, the text reports are often ambiguous because different 

companies provide different levels of details in the description of facts causing disengagement [19]. Fortunately, 

recent advances in prototyped ADS also resulted in many public video recordings of autonomous vehicles driving on 

public roads with real diverse traffic. Therefore we studied such video recordings as well to obtain a more intuitive 

understanding of the disengagement causes and consequences. Remarkably, the videos often include display 

screens with environment perception and motion plan of the ego vehicle, see an example in Figure 4. Several 

recordings even deploy drones [2] to accompany the in-cabin videos with a birds-eye-view perspective on the road 

and traffic. 
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By comparing the real-life video of the vehicle surroundings with the ADS state on the display, an attentive human 

observer can spot differences between the physical environment around the vehicle and the world model the ADS 

perceives, which are OIs of the ADS. For example, the figure below shows the real-life view with a traffic light pole 

that is meanwhile absent on the ADS display. To compensate for the ADS insufficiencies the driver in the video 

recordings sometimes takes over control of the vehicle in order to ensure safe driving. By extrapolating such 

situations as if no disengagement took place, the human observer of the videos can judge the severity of the ADS 

output insufficiency in the traffic scenario. Note, that such insufficiencies are not caused by system faults, as faults 

are often properly detected by the ADS safety monitors resulting in a warning to the driver or other fault handling 

mechanisms. 

 

Figure 4. Road test video screenshot with a ground truth view above and an ADS display below identifying an insufficiency. 

CHARACTERIZATION RESULTS 
The distribution of causes of the disengagement from the 2021 DMV disengagement report [19] is depicted in Figure 

5 below. Note that the “out of scope” category means the disengagements were correctly and automatically 

triggered by the ADS without leading to any hazardous situation; “fault” category includes all the reports that clearly 

claimed that a software or hardware or other systematic faults had occurred. Figure 5 shows that over 90% of the 

DMV report data is analyzable for our purpose and obviously disengagements caused by insufficiencies occurred five 

times more than those caused by system faults. 

  

Figure 5. Causes of disengagement in 2021 DMV disengagement report. 
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Videos of different road test scenarios we studied are publicly available, such as [2], [3], [5], [9]. An overview of the 

reviewed videos is summarized in Table 1. In those videos, the ADS did not warn the driver about internal systematic 

faults nor showed any sign of internal systematic faults when the insufficiencies were observed. Notably, as shown 

in Table 1, 87% of the insufficiencies we registered could have resulted in a collision or a hazardous situation on the 

road, should the driver had not intervened with AD disengagement, or other road users had behaved differently. 

Table 1. Summary of studied videos of road tests. 

Number of watched videos 32 

Watched hours 10 hours 17 minutes 

Total driving scenarios with OIs 71 (100%) 

Safety-critical scenarios with OIs 62 (87%) 

Number of ADS brands 9 

 

Based on our DMV report analysis and the video observations, we concluded that ADS exhibits OIs against one of 

the three criterion: ground truth, human intuition and traffic rules. For example, a missed object by the perception 

system is an ADS deficiency against the ground truth; the inability to reduce the speed on urban roads is a OI against 

the traffic rule; the too conservative motion plan of an ADS is against the driving style based on human intuition.  

We also distinguish 16 OI types and divided them into four categories: world model, traffic rule, motion plan, and 

ODD as listed in Table 2 with their characteristics. The categories identify the ADS subsystem responsible for the OI. 

The OI names describe the ADS insufficiency. For example, insufficiency #1 identifies the system’s inability to find 

the location of the ego-vehicle. The reference column specifies what the insufficiency is relative to. The typical timing 

nature of the insufficiency is captured in the timing column. OIs can exist either for a long time spanning several 

seconds or sporadic. For example, insufficiency #2 can exist throughout the ADS operation time, while insufficiencies 

#8 and #11 usually only exist for a short time and refer to the predicted motion in future time. Finally, the sensors 

column gives examples of sensor modules involved in triggering the insufficiency. Note that several OIs do not 

involve sensors at all, such as insufficiencies #10 or #13. 

Table 2. Output insufficiencies classification and characterization. 

ID category name criterion ADS module sensors timing 

1 world model wrong ego-vehicle localization ground truth localization GNSS, IMU, lidar, 
camera 

sporadic, long 

2 world model wrong map ground truth map HD map files long 

3 world model missed object ground truth perception lidar, radar, camera, 
ultrasonic sensor, 
microphone 

sporadic, long 

4 world model ghost object ground truth perception lidar, radar, camera, 
ultrasonic sensor, 
microphone 

sporadic, long 

5 world model wrong object position, orientation, or 
dimension 

ground truth perception lidar, radar, camera, 
ultrasonic sensor, 
microphone 

sporadic, long 

6 world model wrong object classification ground truth perception lidar, radar, camera, 
ultrasonic sensor, 
microphone 

sporadic, long 

7 world model wrong drivable space identification ground truth perception lidar, radar, camera, 
ultrasonic sensor 

sporadic, long 

8 world model wrong object trajectory ground truth prediction - future, 
sporadic 

9 traffic rule wrong traffic sign, light, lane marking 
or operator recognition 

traffic rule perception camera, V2X sporadic, long 

10 traffic rule violation of traffic regulation (e.g. 
right of way) 

traffic rule motion 
planning 

- sporadic, long 



9 
 

11 motion plan counter-intuitive motion plan human 
intuition 

motion 
planning 

- future, 
sporadic 

12 motion plan indeterminate motion plan human 
intuition 

motion 
planning 

- sporadic 

13 motion plan unsafe planned trajectory human 
intuition 

motion 
planning 

- sporadic, long 

14 ODD wrong weather classification ground truth ODD checker rain and light sensor, 
visibility range sensor 

long 

15 ODD wrong road classification ground truth ODD checker road surface sensors, 
GNSS 

long 

16 ODD wrong traffic classification ground truth ODD checker camera, radar, clock, 
GNSS, V2X 

long 

 

Each OI from Table 2 can lead to hazardous situations. Besides obviously dangerous OIs such as #3 “missed object”, 

seemingly innocent OIs, such as ODD- or motion planning-related ones, can trigger a sequence of events leading to 

a hazard. For example, due to a wrong weather classification categorized by insufficiency #14, the camera usage can 

be allowed in adverse light conditions that can lead to an accident. A counter-intuitive motion plan #11 may confuse 

other traffic road users and cause a collision due to misunderstanding in motion negotiations. 

Figure 6 illustrates the distribution of OIs per OI category as defined in Table 2 from both the 2021 DMV 

disengagement report and the road tests we studied. The distribution patterns are similar in both DMV report and 

the real-life video study. The plot also suggests that OIs related to the world model category and the motion plan 

category are the most prevalent. 

In summary, in our studies we observed only a limited number of system faults and, yet, modern ADS often suffered 

from many OIs that could lead to severe hazards. Therefore, to enable focused ADS improvements, knowledge of 

the most frequent contributing OIs to dangerous situations are needed. 

 

Figure 6. Distribution of functional insufficiencies in the 2021 DMV disengagement report and the road tests we studied. 
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channels do not reuse hardware, software, algorithms or, possibly, sensors. AD systems individually developed by 
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varied from each other. We therefore make the following hypothesis:  
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There exist times when some AD channels in a heterogenous multi-channel ADS encounter functional insufficiencies, 

while the other AD channels do not. 

A motivation scenario is shown in Table 3 below to illustrate this hypothesis. In this example we assume that all AD 

channels in the ADS can have FIs at certain times during the driving. For instance, at time steps 3, 5, and 7 one or 

two channels have FIs but there is still at least one available channel that does not encounter FI. Therefore, if the 

limited channel is in control of the vehicle at that time, it can switch to a channel not affected by FIs, instead of 

issuing disengagement or performing an emergency brake. The ADS can then stay in the AD mode and continue 

driving. In this way the ADS safety and availability are enhanced. If this hypothesis is true, there are opportunities to 

switch between complementary channels at runtime to mitigate FIs on top of existing implemented methods inside 

each AD channel, such as sensor fusion. Furthermore, at time step 4, although FIs are triggered in all channels, there 

still exist possibilities for the ADS to switch to the channel that does not have safety-critical FIs based on the 

evaluation of the current states of all the AD channels or the ADS can perform an evasive maneuver. Such AD channel 

evaluation can be done, for example, via the risk and arbitration calculation proposed in [36]. 

Table 3. A motivation scenario showing functional insufficiencies in different AD channels of the ADS at different time steps. 

Time step 1 2 3 4 5 6 7 

Channel1 OK OK OK FI FI OK OK 

Channel2 OK OK OK FI OK OK FI 

Channel3 OK OK FI FI OK OK FI 

 

OPEN-LOOP SIMULATION METHODOLOGY TO VERIFY THE HYPOTHESIS 
Ideally, we would like to validate our hypothesis by experimenting with multiple heterogenous AD channels 

operating simultaneously in the same test vehicle. However, we do not have access to such a test vehicle. The 

available DMV reports and the road test videos do not allow us to evaluating different ADS in the exactly same driving 

scenario either. First, the multiple AD channels in the test vehicle are not transparent in both the DMV reports and 

the videos; second, in some videos even when driving multiple times the same vehicle along the same route, the 

test vehicle was exposed to different environments (such as different lighting and traffic). Therefore, we set up an 

LG SVL simulation environment for autonomous vehicles [37] with three realistic AD channels: Baidu Apollo 5.0 [38, 

39], Autoware.Auto AVP [40], and Comma.AI openpilot [41]. In the simulation environment we can compare the AD 

channels against the “ground truth” of the simulator, see Figure 7 with screenshots of the simulator and AD channel 

GUIs. The screenshots of the GUIs are taken at the same simulation moment, when a cyclist is about to cross the ego 

vehicle’s trajectory.  
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Figure 7. Screenshots of the LG SVL simulator (upper left), Apollo 5.0 Dreamview GUI (upper right), Autoware.auto Rviz GUI 
(lower left), openpilot GUI (lower right) at the same simulation moment. 

The AD channels we chose for our simulation study, despite having different capabilities, have been used to drive 
real-life vehicles autonomously. Ideally, we would like to have three AD channels running in parallel in the same 
simulation run. However, due to high engineering complexity and high hardware requirements we resorted to 
running them sequentially. To ensure that the environment is exactly the same for every undertaken experiment, 
we employed an open-loop simulation where the AD channel’s control over the vehicle was disabled and the ego-
vehicle was driven by the same script asserting a fixed throttle (apply_control() with sticky=True in the LG SVL simulator). 
Furthermore, the traffic was controlled through a fixed random number generator seed, assuring that each scenario 
would show exactly the same traffic objects and motions. Finally, we used the same vehicle model in the LG SVL 
simulator but equipped it with various sensors required for the different AD channels. Figure 8 illustrates our 
experimental open-loop simulation setup. 

 

Figure 8. Open-loop simulation setup with sensors feeding AD channels and a Python script controlling the ego-vehicle and 
the traffic. 

AD channels
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openpilot
GUI

LG SVL simulator:
ego-vehicle,
traffic, road,

weather, light

Autoware.Auto
AD channel

Baidu Apollo
AD channel

Autoware.Auto
RViz GUI

Apollo
Dreamview GUI

simulator GUI

sensor
data

Python script to control the
ego-vehicle, traffic, environment

vehicle control



12 
 

Below is an overview of our simulation platform and scenarios with Table 4 contrasting the AD channels we used: 

- Alienware Aurora workstation, Intel Core i7-8700 and Nvidia GeForce GTX 1070, 64GiB SDRAM 

- Ubuntu 18.04, desktop 

- LG SVL simulator version 2021.3, the Borregas Avenue crossroad map 

- Driving scenarios: 

o the ego vehicle drives straight with a fixed acceleration from a fixed starting position to a fixed end 

position using a Python script 

o 10 seeds for random crossing traffic and 1 scenario with one vehicle in front of the ego vehicle 

performing a left turn 

o all traffic lights are configured to be always green 

o good lighting and clear weather (no rain, fog, wetness, nor cloudiness), 12:00am 

Table 4. Overview of the three AD channels used in the experiments. 

Channel name Version/tag Sensors Key algorithms & features ODD 

Baidu Apollo 5.0 lidar, camera, 
radar, GNSS, 
IMU 

Deep neural networks, various computer 
vision algorithms, Kalman filter, configurable 
high-level sensor fusion, HD map 

Urban 

Autoware.Auto AVP demo lidar, GNSS, IMU Euclidian cluster, NDT matching, HD map Parking 

openpilot 0.8.10 camera, (radar 
not used) 

Deep neural network, MPC, Kalman filter Highway 

 

It is worth mention that the publicly documented LG SVL simulator setup did not use the advanced camera-radar-

lidar fusion in Apollo 5.0 and relied purely on the lidar for object detection. In our experiments, we also manually 

created derivative Apollo channels by creating new configurations to fuse lidar and camera sensor data in Apollo 

5.0. But we didn’t observe any performance improvements in the Apollo visualization GUI. Also the openpilot was 

not utilizing the radar sensor in our simulations. 

Besides the limited features implemented in the chosen AD channels, the hardware computational and memory 

resources can also be a triggering condition that causes FIs. In particular, we observed in our experiments that if the 

GPU power was not sufficient to run the simulator and process the AD channels, a video frame could be dropped 

resulting in one or more missed objects. Therefore, for demanding use cases we ran the simulator and visualization 

on a machine separate from the AD channel machine to keep the GPU processor utilization lower than 60% and 

video memory usage of less than 4GiB. Such hardware considerations must also be included in the analysis of FIs 

next to external triggering conditions as described in [8]. For example, at a busy intersection with many road users, 

the computational and memory limits of the hardware can lead to degraded performance of the ADS and, 

subsequently, to hazards. 

EXPERIMENTAL RESULTS 
Our open-loop simulations revealed 42 OIs, see Table 5. The result shows that first, some OIs from Table 2 are absent 

in our simulations due to the limited number of simulated driving scenarios; second, the AD channels have different 

capabilities which severely influence their OIs distribution per category in Table 5. For example, in our experiments 

Apollo is the only channel with visualized predictions of road users, and the Autoware.Auto and openpilot channels 

do not analyze traffic lights, because they are outside of their ODDs. Note that we therefore do not perform the 

imbalanced comparison between the channels. For example, for openpilot we only counted the objects on the ego 

vehicle’s trajectory and excluded detection of objects outside of the camera field of view. Nevertheless, we can 

conclude that even the most capable channel, which is Apollo in our experiments, has limitations. Finally, Table 5 

clearly suggests that different AD systems have different types of OIs at different frequencies, e.g. Apollo had only 2 

missed objects, while Autoware.Auto and openpilot had twice as much.  
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Table 5. Output insufficiencies of the AD channels identified in the open-loop simulations. 

Functional insufficiency Apollo Autoware.Auto openpilot Total 

wrong ego-vehicle localization - 2 - 2 

missed object 2 4 17 23 

ghost object - 1 3 4 

wrong object position, orientation, or dimension 2 1 - 3 

wrong object classification 1 1 - 2 

wrong drivable space identification - - 4 4 

wrong object trajectory 4 - - 4 

 

The goal of our simulations was to validate the hypothesis that there exist times where not all heterogeneous 

channels have OIs that lead to a hazardous situation. In general, we observed that the most capable Apollo channel 

performed very well in all of our simulations and could have been the best channel to drive the vehicle for most of 

the time. Nevertheless, we spotted several cases when even the best channel encountered insufficiencies, while the 

others did not: 

1. In one random traffic simulation a cyclist was quickly crossing the trajectory of the ego-vehicle, see the 

illustrations of the AD channels in Figure 7. Apollo detected the bicycle only after it crossed the ego-vehicles 

route, while Autoware.Auto was able to trace the cyclist earlier, as soon as it reached the crossroad. 

Consequently, Apollo had a false negative detection in the perception system, which we term “#3 missed 

object” in our classification from Table 2. Note that false negatives may lead to severe accidents. 

2. In a scenario with a single vehicle in front, the Apollo channel overestimates the front vehicle dimensions 

(insufficiency #5 in Table 2), which can result in sudden braking or evasive maneuvers that are unexpected 

to the rest of the road users. Such false positives may be less severe than false negatives, but may sacrifice 

automated driving availability and comfort. In contrast, the Autoware.Auto perception system correctly 

estimated the size of the front vehicle. 

3. In another random traffic simulation Apollo predicted that an approaching truck from the opposite direction 

would cross the ego vehicle’s way (insufficiency #8 in Table 2). Such false positive predictions can cause the 

ego-vehicle to perform unnecessary emergency braking. 

Conclusions from our open-loop simulations are illustrated in Figure 9 in a qualitative way using a Venn diagram 

based on [36] and the SOTIF classification of driving scenarios into four areas in SOTIF Section 4 [8]. The three 

channels in Figure 9 have different capabilities, such as traffic light recognition or road user motion prediction, which 

are identified with colored rectangles. Circles represent FIs of each channel as a hole in its capability. Despite having 

larger capabilities, FIs still exist in advanced AD channels. And the (sometimes smaller) FIs of the advanced channels 

could be covered by capabilities of the other less advanced channels. In other words, capabilities of some (less 

advanced) AD channels can be complementary to the other (more advanced) channels. Therefore, in Figure 9 the 

shared insufficiencies, which are identified by the white hole, represent the same FIs that exist and will be triggered 

by the same triggering conditions in all the channels. These shared FIs are not covered by the capabilities of any 

channel in the same ADS. However, the shared FIs are smaller than any of the total FIs of each individual channel 

(represented by the big circle in each channel). Noteworthy, the common capabilities of the combined multi-channel 

system can be potentially bigger than that of the most advanced channel alone. The white hole in AD capabilities 

closely relates to the unknown hazardous scenarios in the SOTIF classification. 
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Figure 9. Conceptual illustration of overlapping functional insufficiencies and capabilities of multiple AD channels. 
Capabilities of the channels can be made complementary to enable runtime selection of the channel without insufficiency. 

At runtime, the driving situation changes constantly, which can be represented by an imaginary push pin moving on 

Figure 9 and the pinpoint specifies the currently required capabilities for safe continuous driving. If the pin ends up 

on a colored block, there is at least one AD channel that has sufficient capability to drive safely under such situation. 

Note, that the ADS always has to select a channel that has a color dot under the pin. For example, if the pin ends up 

on the upper right corner of channel C3, as shown in Figure 9, then the ADS should either choose channel C1 or C3, 

but not channel C2. However, if the pin lands inside the white hole or even in the area outside of the black border 

line (for example, when the ADS is outside of ODD), no channel has the required capability and the ADS will suffer 

from the shared insufficiency existing in all the channels. In such cases the ADS has to perform an emergency brake 

or disengage from the AD mode to hand over control to the human. Just like any AD channel will have certain FIs, 

the shared FIs are also inevitable. But by using multiple heterogeneous AD channels, we believe it is possible to 

minimize the shared FIs within the ODD. From the SOTIF perspective, the design time goal is to construct an AD 

system, which has a minimum white hole of capabilities inside its ODD and which can switch between channels at 

runtime to choose the most capable channel for the current driving scenario. 

In order to mitigate FIs, the multi-channel ADS has to continuously monitor heterogeneous AD channels at runtime 

and switch to a more capable AD channel when a FI occurs in the current AD channel. Based on this observation in 

the next section we propose an architectural design pattern used to select the least limited channel at runtime. We 

named our design pattern Daruma. 

DARUMA: ARCHITECTURAL DESIGN PATTERN FOR CROSS-CHANNEL ANALYSIS AND 

ARBITRATION 
Figure 10 below presents our Daruma architectural design pattern for multi-channel ADS. The Daruma design pattern 

leverages cross-channel analysis to dynamically select a channel that has sufficient capabilities to safely and 

comfortably continue driving the vehicle in the current situation. The traditional ADS components are shown in grey 

boxes in Figure 9; the new or modified components are identified as the colored boxes and italics text. The 

heterogeneous AD channels (channel1 to channelN) include AD functions and (possibly shared) sensors depicted in 

Figure 1. The output of the Daruma architecture is low-level actuation setpoints that are sent to the vehicle 

actuators. The monitoring techniques from prior works are part of either the AD channels or the components shown 

as “fault monitors, ODD checker, …” in Figure 10. Traditionally, the arbitration decision of the multi-channel ADS is based 

on the output of intra-channel safety mechanisms, platform fault monitors and other metrics such as comfort, 

efficiency and availability. In general, the high-level arbiter is similar to the Mode Manager from [42] and controls 

the selection of the driving channel. However, the high-level arbiter in the Daruma architecture also receives output 

from the cross-channel analysis, which can trigger selection of a different (safer) channel even in the absence of 

faults. 

C1 C2

C3

Legend:

C1, C2, C3: AD channels

rectangles: AD capabilities

circular holes: channels insufficiencies (lack of capability)

white hole: shared insufficiencies (lack of capability)

black line: boundary of the common ODD

red push pin: capability required at a given moment
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Figure 10. Architectural design pattern with cross-channel analysis and AD channel arbitration to mitigate functional 
insufficiencies in ADS. 

To perform cross-channel analysis, Daruma architecture taps additional information from the AD channels, including 

the world models, object motion predictions, ego vehicle motion plans and traffic rule assessments. This high-level 

channel state information is often shown on ADS displays in the autonomous vehicles to inform the passenger about 

vehicle’s internal state and planned actions. 

Cross-channel analysis can involve several state and design properties of the multi-channel system: 

1. Similarities of channels’ high-level states. If multiple channels identify an object to be present in the same 

location with a similar motion plan, there is a higher chance of finding this object in reality, provided that 

the channels are sufficiently heterogeneous and reliable. Each color in Figure 11 represents output from 

one channel. Obviously, the three channels output different object locations, shapes and trajectories. Major 

differences among these channels are: 

a) the green channel doesn’t see the vehicle behind the ego, 

b) the child crossing the street is only observed by the red and blue channels, 

c) the red channel plans to stop, the green and the blue channels plan to continue driving straight. 

2. Cross-channel risk of collision, driving off-road, or losing control over the vehicle. The new cross-channel 

analysis component performs cross-checking of ego vehicle motion plans against the world model and 

object predictions generated in each channel. Therefore, for 3 channels we can compute risk as a function 

of future time for 3 ego motion plans times 3 world models with a total of 9 risk functions, see Figure 11. 

Even violating the traffic rules can be expressed as a safety risk. For example, one channel outputs an ego 

stop trajectory, while the other requests an acceleration of the ego vehicle. From the availability 

perspective, the second channel will be preferred. However, if the first channel complements the ego 

vehicle stopping trajectory with a red traffic light annotation, the second channel can get a low safety score 

in the end. 

3. Design-time or runtime channel preferences. The preference can be expressed in weights to promote the 

most advanced channel for the current ODD or in terms of advance switch times as described in [36]. 

Straightforward majority voting using similarities of channels may not yield the safe arbitration. For example, 

according to difference b) the green and blue channels agree, while only the red channel is correct about the 

pedestrian in front. Therefore, inter-channel similarity alone as a metric is not sufficient to judge the situation and 

select the optimal trajectory. On the other hand, similarity can be captured by matching risk profiles from cross-

channel analysis or using credit-based temporal matching, where the confidence in having a match increases if the 

match occurs several times in a row.  
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Figure 11. Cross-channel analysis by using juxtaposition of high-level states of three AD channels. The driving scenario on the 
top is processed by the red, green and blue channels to compute high-level channel states. Then, by applying the Daruma 

design pattern, the ego vehicle trajectories from each channel are cross-analyzed for hazards in all world models forming a 
3x3 matrix of possible driving scenarios.  
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Algorithmic choices for cross-channel analysis include: 

1. Geometric overlay of the high-level channel current and predicted states, which is partially used in [32], 

focuses on detection of collisions and off-road driving based on geometric intersections of 2D or 3D shapes. 

Remarkably, it avoids AD disengagements when the AD channels differ in a safe way, which improves ADS 

availability. For example, if the one channel suggests to avoid obstacle on the left and the other – on the 

right, then the geometric overlay will show that both channels are safe although they disagree. 

2. Risk-based calculation, where the motion plans from one channel are analyzed against world models and 

object motion predictions from other channels. This cross-channel analysis computes the probability of 

collision in future, e.g. using the last safe intervention time [36] to identify a last time moment to switch to 

another AD channel or to perform an evasive maneuver on time. Note that this approach greatly improves 

availability of ADS by giving channels the time to correct themselves and filter out intermittent issues. 

3. Another interesting method for the cross-channel analysis is machine learning. For example, [43] proposes 

neural network RiskNet to identify collision risks in camera images using optical flow. By analogy, one can 

define a neural network model operating on the high-level cross-channel state information or its 

derivatives. 

In the Daruma design pattern the inter-channel and cross-channel analysis results (e.g. similarity matches, risk 

functions, preference weights) are fed into the safety fusion module. The safety fusion module computes an 

aggregated safety score per AD channel based on the cross-channel analysis results and the traditional metrics. 

Subsequently, the aggregated safety score allows the high-level arbiter to select a safe channel while taking into 

account comfort, efficiency, and other metrics. Various techniques can be applied to the safety fusion, such as 

hierarchical decision tree or a numerical weights calculation. Note that in a simple implementation of the safety 

fusion, the aggregated safety scores can be binary – either zero or one to clearly indicate preference of the safety 

subsystem. 

The effectiveness of the proposed Daruma design pattern strongly depends on the quality of the AD channels. If a 

channel is poor in many situations, it can decrease the overall system performance. Therefore, it is important to 

develop and select diverse channels with complementary capabilities and overall high performance at design time. 

In other words, the designer has to reduce the white hole in Figure 9 by properly dimensioning and positioning the 

channel capabilities. 

The proposed Daruma architectural design pattern enables advanced cross-channel analysis techniques without 

compromising AD availability. Instead of engaging in a traditional safe stop or disengagement upon detection of 

disagreement among channels, Daruma architecture enables switching to a safer channel to continue safe driving 

with minimum discomfort. Another important virtue of the proposed design pattern is scalability. Due to its modular 

design the number of channels in Daruma can be increased to boost safety without compromising AD availability. 

Compared to the monitor/actuator approach described in [27], the scalability of Daruma is an important advantage 

to create additional commercial value. Moreover, the Daruma architectural design pattern is compatible with state-

of-the-art safety measures and architectures: 

1. classical intra-channel safety mechanisms, such as sensor fusion and RSS [30], can be used as is; 

2. if the architecture does not have a multi-channel arbiter or the arbiter’s interface is designed differently 

from ours such as the one proposed in [7], the aggregated safety scores from our cross-channel analysis 

can still contribute to the Safety Performance Indicators [44] or serve as an independent cross-channel 

safety monitor output. 

5. CONCLUSIONS 
Redundant multi-channel AD architectures are used in the automotive industry to boost fault tolerance. Our work 

analyzes the extension of these redundant architectures to also mitigate FIs in the heterogenous AD channels. 
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To learn about the causes and consequences of FIs, we studied over 2500 DMV disengagement records from the 

year 2021 and over 10 hours of road test videos of vehicles from 9 different car companies. We observe that FIs of 

automated driving systems can be just as hazardous as faults, if not more dangerous. Furthermore, FIs are much 

more frequently the reason of ADS disengagement than system faults based on our observation and data analysis. 

Our analysis reveals that FIs are problematic and frequently occur not only in the world model generation involving 

perception and sensor fusion, but also in other AD algorithms with uncertainty, such as motion planning, localization, 

and vehicle control. To systematically perform SOTIF analysis of triggering conditions and enable development of FI 

mitigation techniques, we present a novel classification and characterization of OIs based on the available road test 

data. 

Furthermore, we survey state-of-the-art techniques to mitigate FIs and formulate a hypothesis that in an ADS with 

multiple heterogenous channels, there exist times when some AD channels encounter FIs while the others do not. 

Our open-loop simulations with three realistic AD channels (Apollo 5.0, Autoware.Auto, and openpilot) support our 

hypothesis demonstrating that in the same driving scenario different AD channels can be complementary to each 

other in terms of capabilities to drive safely. Thus, by evaluating the safety of each channel via cross-channel analysis 

and switching to a sufficiently safe channel at runtime, the ADS safety and availability can be increased. Finally, we 

propose and discuss a generic architectural design pattern, called Daruma, integrating cross-channel analysis, safety 

fusion and arbiter functions. The Daruma architectural design pattern reuses state-of-the-art redundant AD 

architectures typically deployed for fault tolerance to mitigate FIs, while preserving the benefits of the intra-channel 

FI mitigation techniques in prior works. The Daruma design pattern also allows scaling up safety without sacrificing 

AD availability, while providing rich opportunities to mitigate many categories of FIs. 

6. LIMITATIONS AND FUTURE WORK 
In this paper we laid the groundwork for a novel conceptual framework for mitigation of the impact of FIs. However, 

we recognize that our analytical and experimental research had several limitations: 

1. Some public road test videos were published by independent users, other videos were published by the 

company developing the ADS. The latter may have selected more favorable scenarios for the ADS in 

question, which can skew the FI statistics in our work. 

2. The AD channels used in our open-loop simulation experiments have limited features, which may have 

affected the occurrences of FIs. 

3. The triggering condition and the origin of the FIs are hard to pinpoint in our study due to limited available 

information visible in the public road test and on the ADS displays. 

Future research directions include study of FIs related to traffic rules, evaluation of the cross-channel analysis 

architecture pattern in simulations and road tests, and algorithmic research of the cross-channel analysis and safety 

fusion. Also, we can update our OI characterization by studying newly released road tests reports, such as the initial 

data on safety performance of advanced vehicle technologies released by the U.S. National Highway Traffic Safety 

Administration (NHTSA) [45], and experimenting with more advanced AD channels when they become available. 
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