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ABSTRACT 

Driver monitoring systems (DMS) can enhance Collision Avoidance Systems (CAS) in numerous ways, for 
instance by adjusting warnings or interventions when drivers are inattentive or in other ways disengaged or 
impaired. However, the driver interaction principles applied when using DMS to enhance CAS must be based 
on State-of-the-Art Human Factors research and have a clear focus on understanding driver needs and in what 
way assistance should be provided to be appreciated by the driver. Otherwise, one risks implementing 
interactions that either do not make sense or are perceived as disturbing, both of which degrade the CAS’s safety 
potential. 

Some of these interaction principles may not be fully intuitive unless your background is in behavioral 
psychology. For example, it may be surprising that DMS is best used to delay certain collision avoidance 
warnings rather than supply them earlier. It may also not be fully intuitive that DMS is best used for detection of 
generic degradations in the behavioral patterns that define normal driving rather than for diagnosis of specific 
impaired states. 

To use a CAS properly, you need to interact with it regularly to learn what its outputs mean. However, current 
accident and mileage statistics suggest that driving conflicts where a CAS could save you from an unrecoverable 
error that otherwise would have resulted in a high severity crash are rare; maybe as infrequent as once in a 
decade or lifetime depending on how one does the calculation. 

From a design perspective, CAS are therefore best approached as lifetime driving companions. You may only 
need them once, but they still need to be interacted with regularly to work as intended. Hence, the conversation 
between driver and CAS should adhere to the same principles as applied between humans. For example, if your 
colleague is busy, you only interrupt for good reason, and if you interrupt regularly, both of you must agree its 
relevant and the message must be clear (though not necessarily loud) so the other person quickly can decide 
whether to interrupt the current task. 

In this paper, first a general framework and corresponding design approach for CAS is formulated based on 
accident statistics, driving mileage and CAS interaction frequency analysis. Next, three specific development 
principles for DMS enhanced CAS are described to illustrate what the outcome is when the framework and 
design approach are applied in practice. These include how DMS enhancement can be used to avoid “cry wolf” 
effects in CAS interactions, how DMS enhancement can be used to get CAS timing right for both distracted and 
aware drivers and finally, how DMS offers a more efficient way than specific state diagnosis when tackling 
driver impairment. 

By explicitly describing these fundamental Human Factors development principles for DMS enhanced CAS to 
the traffic safety engineering community, one may avoid unnecessary development pitfalls that could counteract 
DMS enhanced CAS deployment. 
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DEFINING A GENERAL FRAMEWORK 

To define a general framework for the interaction principles for CAS, one has to consider three key facts. The 
first is that even though CAS come in many forms, they all have one thing in common which is that to use them 
properly, the driver has to know how they work. So, as long as a driver uses the same car, s/he needs to interact 
with the CAS regularly to first learn what the systems do, and then remember what their outputs mean.  

Second, for the CAS to achieve its intended safety benefit, drivers need to trust their inputs and actions (i.e., the 
warnings and interventions provided). If driver trust in, and understanding of, the CAS can be established in a 
good way, chances are good that drivers will cooperate with the CAS in the intended way and perceive the CAS 
actions as beneficial. However, if what the CAS does is perceived as unintelligible, pointless or perhaps even 
scary, it follows that drivers will neither use the CAS as intended by the designer, nor spend money on CAS 
features in their next car purchase. 

Third, when one studies how often people end up in traffic accidents and compare that to the distances travelled 
or hours driven without crashing, one can conclude that driving conflicts where an CAS would save you from 
unrecoverable error are rare. For example, in 2020 the US average was 1,33 deaths in 100 million vehicle miles 
travelled [1]. At the same time, the average mileage per car was about 13 500 miles per year [2]. This means 
that there are about 5500 years of successful driving per fatal crash.  

Of course, non-fatal crashes are far more common, but the key point here is that crashes, and particularly severe 
crashes, are very infrequent compared to all the driving we do; maybe as infrequent as once in a decade or 
lifetime depending on which crash type and outcome one is looking at. This means that the average driver 
exposure to critical situations where the safety margins are so small that severe injury or death is imminent if not 
handled correctly is very low.   

Putting these three key facts together, it becomes clear that we cannot rely on exposure to a particular set of 
truly critical situations with potential high crash severity for drivers to understand and learn how a particular 
CAS works. This insight provides the foundation for the general framework proposed in this paper. This 
framework states that each CAS must be capable of providing a frequent enough driver interaction also outside 
of truly critical situations to provide a sustained, acceptable and trustworthy learning experience. The reason for 
this is that it’s that experience which in turn secures an adequate driver response on those rare occasions when a 
truly critical situation occurs, and the CAS can provide a real safety benefit. This general framework forms the 
basis for the rest of the paper.  

 

INCREASING MARGINAL TRUST - A FRAMEWORK COMPATIBLE APPROACH TOWARD CAS 
DESIGN  

As shown in the general framework discussion above, to maintain an interaction frequency that is sufficiently 
high to create and maintain learning in the driver, most CAS interactions need to happen in situations that are 
not truly critical, since the latter are too infrequent to provide a robust exposure rate for learning.  

Still, for the interaction with the CAS to make sense and provide that learning experience, there must be a clear 
connection between the CAS output and the type of critical situation which the CAS is meant to provide 
protection from or create awareness of. If that connection is unclear, it will be very hard for the driver to 
understand what the purpose of the CAS is.  

From this follows an interesting design constraint for CAS interactions. Since most CAS are intended to act on, 
or make drivers aware of, critically small safety margins, the learning experience needs to happen in situations 
where the safety margins either are shrinking in an obvious manner toward a point where they would be 
considered too small (things would have gone bad if this state had been allowed to continue), or where they are 
sufficiently small1 to create an intuitive learning experience once the driver becomes aware of them.  

                                                           
1 Note though that they cannot be too small, since if they were, the CAS would not provide the relevant safety 
benefit in the situations where it is actually needed.  
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Moreover, since the designer of the CAS interaction will not be riding along to explain what s/he meant when 
shaping the system, the driver is the sole interpreter of both meaning and relevance. The connection between an 
CAS’s outputs and the truly critical situations it intends to prevent or mitigate therefore has to be obvious to all 
drivers without additional explanatory material being present or read/watched in advance (note that it has been 
shown that at least 50% of customers learn about CAS through trial and error [3,4,5].)   

Now, as many studies in pedagogy will testify, people are different and have different ways of understanding 
things. However, since most vehicle manufacturers make hundreds of thousands or millions of vehicles, the 
possibilities for tuning the shape of the CAS connection to suit individual preferences or explanatory models are 
limited. Also, even though more computational power and intelligent algorithms are expected to make their way 
into future cars, deploying CAS where each system gets tuned to each (current) driver is likely a too large and 
complex undertaking to warrant the effort required.  

Thus, to secure an intuitive and relevant CAS interpretation in all drivers, one instead has to find approaches 
that speak to all drivers, regardless of who they are and where they drive. A successful CAS interaction 
pedagogy thus needs to be anchored in basic human factors design principles, i.e. principles that one has good 
reason to believe applies to all drivers in general rather than just a few, to meet with the capabilities of the 
technology.  

Fortunately, this is an area where extensive research has been done over the years and lots of good advice and 
guidelines exist, both in the scientific community and in the more popular science literature, such as the highly 
entertaining books “The design of everyday things” [6] and “Things that make us Smart” [7]. Still, the advice on 
offer here covers many different applications and contexts. It is therefore worthwhile to define an approach that 
is specifically suited to the automotive domain in general and CAS interaction designs in particular.  

Here, we propose that the concept of Marginal Trust, i.e. the study of how trust is built or lost based on the 
acquisition of new information or input [8] provides the approach we need to design CAS interactions. As 
described above, the success of a CAS in preventing or mitigating a crash depends on the meaning of its outputs 
being intuitive (what does it want with me?) and perceived as relevant for driving (does that make sense?).  

Since every interaction a driver has with a CAS provides information on what the CAS intends to achieve, 
following the model in [8] one can say that these two questions are revisited in each such interaction, which in 
turn influences marginal trust in the CAS (i.e. it either increases, decreases or remains unchanged). Aiming to 
design CAS such that each interaction has a positive influence on marginal trust, or not a detrimental one if trust 
already is high, can therefore be stated as main design goal if the full safety potential of an CAS is to be realized.  

Now, various types of trust have been identified in the literature [9,10]. Often, one makes a distinction between 
cognition- and affect-based trust [11]. Cognition-based trust is based on a rational evaluation of competence, 
responsibility, and dependability [10] and rests on logical and rational calculation of likely behavior and 
outcomes of future collaboration. Affect-based trust on the other hand happens when emotional bonds are 
created, and this bond can work as a replacement or surrogate for cognition-based trust, enabling people to take 
a “leap of faith” that trust will be honored [12].  

Affective trust is based on beliefs that the one you place your trust in cares about your welfare, will act 
positively towards it and take care to avoid harming it. However, while clearly a strong influencing factor in the 
build of marginal trust, affective trust is rather hard to exploit through system interaction design. In the 
automotive domain, one might rather say that this type of trust instead should be built through brand 
communication and how one describes the stance of the company towards its customers in various contexts.  

Cognition-based trust however fits the bill for CAS design. If viewing an CAS as a lifetime driving companion 
which you may only really need once but still need to interact with regularly, then the conversation between 
driver and CAS should strengthen the driver’s view of the CAS as a competent, responsible, and dependable 
agent. This is very similar to conversations between humans. For example, if your colleague is busy (or in this 
case, if the driver is busy driving) you should only interrupt for good reason, and if you interrupt regularly, both 
must agree that its relevant, the message must be clear, etc.  
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Approaching CAS interactions as a design space where one needs to leverage cognition-based trust mechanisms 
to positively influence marginal trust thus seems to be a both viable and promising way forward. This brings us 
to the next question: how can DMS facilitate the design of CAS?   

 

SPECIFIC DEVELOPMENT PRINCIPLES WHEN USING DMS TO ENHANCE CAS 

So, how can one make use of DMS inputs to when one needs to leverage cognition-based trust mechanisms to 
positively influence marginal trust in CAS interactions? In the following, three specific principles will be 
described that illustrate how DMS can be used to support the designers in this endeavor. These principles are not 
meant to be exhaustive nor definitive; rather they serve to illustrate which knowledge must be acquired and 
which decisions need to be made when specifically using a DMS system to enhance CAS interactions. 

 

Using DMS to avoid “Cry wolf” effects in CAS interactions 

When applying collision warnings to alert the driver to external threats, the CAS doesn’t have to be right every 
time in the sense that to the driver, a perceivable external threat always must exist to match the warning and 
hence make it appear relevant. However, the CAS cannot be wrong most of the time either, because then it will 
be perceived as a system which, in the words of Aesop [13], cries wolf all the time. Or in the context of the 
framework and approach described above, each false warning decreases marginal trust, so you can’t have too 
many of those or all trust will be lost.  

Some basic rules for how often you need to be right can actually be established. From a purely theoretically 
standpoint, one can make the argument that the system needs to be right more than half the time, otherwise the 
ADAS outputs literally appear stochastic in the eyes of the driver (being right every other time implies also 
being wrong every other time). Simply put, it has to perform better than chance.  

Still, the CAS does not have to be right all the time. In an interesting study on behavioral adaptation to Lane 
Departure Warnings (LDW), Le Noy and Rudin-Brown [14] showed that drivers reported almost as high levels 
of trust in a flawed LDW system that was programmed to miss one in three true positives and also intermittently 
added false positives, as in a fully accurate LDW. 

What the exact ratio of true to false positives should be to build sufficient driver trust in a CAS remains to be 
empirically determined. However, it is clear that a key aspect of CAS design is to secure a positive balance 
toward true positives, that means that the warning is warranted both from a situational and a driver perception 
perspective and avoid false positives where the warning appears to be given for no real reason. 

Here, adding a DMS to the equation opens up for significant improvements of a CAS true to false positive ratio 
in two ways; one regarding the opportunities to be right and the other regarding the possibility to get the timing 
right.  

To understand the being right part, we must first look at today’s systems. These are often designed around a 
main conflict scenario with a number of exceptions added. For example, you might design your forward 
collision warning system (FCW) to warn when Time-to-Collision (TTC) is less than 1.7 s, based on the 
assumption that drivers would not voluntarily place themselves in a situation with such a small safety margin. 
However, once that general rule is in place, the developers immediately start adding exceptions for situations 
where the safety margins can become smaller, but where they believe the driver is in control and does not need a 
warning. An example of the latter would be overtaking. Here, TTC values can get very low while the driver is 
still in full control.  

Still, even if the list of exceptions and their associated detection criteria is well thought out and tested in 
development and through customer feedback, it is very difficult to get it right all the time. Developers therefore 
generally take a conservative approach and avoid letting warnings through when they are unsure about whether 
the driver really needs the warning, an approach that potentially leads to under- or disuse of the CAS. 

By adding a DMS to the vehicle, one can replace that exception list with real time analysis of where the driver’s 
attention actually is directed when a conflict arises. In a first step, the system can determine whether the driver is 
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looking in the direction of the threat at all. In a second step (though a bit more challenging on the detection side), 
the system can determine whether someone with his or her visual attention in the right place also is ready to act.  

Adding these enhancements to the situation analysis can provide a huge step forward in terms of equipping CAS 
designers with the confidence they need to let their system warn the driver. They no longer need to make that 
decision based on assumptions and predictions about whether the driver is attentive or not. Instead, they can use 
the driver’s actual, real time, direction of attention to help arbitrate whether CAS inputs are needed or not.  

This opens up for a much more forward, less conservative, approach in terms of getting the CAS dialogue right 
with the driver. The achieved safety benefit of these systems could thus get a significant boost, since being able 
to increase the true to false positive ratio would build driver trust and confidence in the CAS actions. 

 

Using DMS to get the timing right for both distracted and aware drivers  

Even if a DMS can detect where the driver’s attention is directed in a given moment and hence whether a CAS 
input might be warranted or not, the designer still has to decide on the input timing. Conceptually speaking, a 
key element in drivers’ judgement of situational relevance will depend on what the safety margins are when the 
CAS activates. For example, consider a situation where you are approaching a lead vehicle and the DMS has 
determined that your visual attention is directed through the side window. Also, let’s say the car is set to warn 
drivers of a potential lead vehicle collision extremely early, e.g., when TTC is 5 seconds. At 50 kph, this 
translates to being about 65 meters away from a stationary lead vehicle, which means most drivers would say 
there is no immediate danger present. Chances are therefore quite high that you as a driver would consider this a 
false warning when you get it. On the other hand, if the warning is set to come extremely late, e.g., when TTC is 
0.5 s, there will not be enough time to react. Today’s CAS systems have been developed to strike a balance 
between these end points. For example, the European New Car Assessment Programme (EuroNCAP9 requires 
that forward collision warnings be given at TTC > 1.2 s [15].  

As described above, a basic assumption when deciding on a warning timing threshold is that the driver would 
not be in this position voluntarily, which means that there also is an underlying assumption that driver must be 
distracted or unaware for some other reason. An inherent challenge for this approach is the side effect it has on 
drivers who have their visual attention in the right place when the warning is given. Looking at what happens a 
bit more in detail, the time required for visually distracted drivers to move their gaze from e.g. a secondary task 
to the road scene ahead is typically around 500-700 ms [16]. If we start from a warning timing threshold of say 
1.7 s TTC, the critical event will thus have developed to a point where TTC is 1.0-1.2 s before a visually 
distracted driver is able to assess the forward road scene.  

Visually attentive drivers on the other hand do not need additional time to get their eyes back on the road. They 
will therefore assess the scene at the same time as the warning is given, i.e. when TTC = 1.7 s. The same 
warning timing thus presents a considerably less critical situation to the visually attentive driver, who therefore 
less likely to consider the safety margins small and the CAS input relevant. The same warning timing can thus 
lead to a true positive perception by the visually distracted driver but a false positive perception by the visually 
attentive driver.  

One simple resolution to this problem would be to suppress all CAS inputs for visually attentive drivers. 
However, that would disregard the possibility that the driver, although visually attentive, for some reason does 
not realize the need to act and hence still needs the CAS warning. The latter is sometimes referred to as 
cognitively distracted drivers, who would be labelled as ‘failed to look properly’ or ‘looked but failed to see’ 
cases in British crash causation analysis [17]. 

Here, the DMS provides a very interesting alternative, since it can be used to delay warnings for the visually 
attentive drivers. Since they don’t need those 500-700 ms to get their eyes back on the road, a delay of the 
warning by 500-700 ms will move the perception of the situation to the same TTC value as that for the visually 
distracted drivers (1.0-1.2 s in this example). This means that the visually attentive driver will have as much 
time to respond as the visually distracted driver. At the same time, the CAS is bringing attention to a driving 
situation that is more critical, in the sense that safety margins are perceivably smaller when the warning is issued. 
So, adding a delay gives visually inattentive and ‘looked but failed to see’ drivers equal time to react, but also 
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increases the chance that a driver who is both looking in the right place and aware of the need to act still will 
judge the CAS input as relevant and meaningful, and hence as a true positive. 

 

Using DMS to detect deviations from the normal driving 

In addition to enhancing the precision of CAS warnings and interventions, DMS systems are also expected to 
have an application in the understanding of when drivers are fit to drive or not. The latter can result from many 
well-known risk states such as the driver being intoxicated or extremely sleepy [18,19]. While previous efforts 
largely focused on preventive work such as alcohol interlocks or “don’t drink and drive” campaigns, many new 
initiatives are being brought forward to promote detection and mitigation of impaired states while driving in 
both the legislation [20] and the consumer rating [21] arena. 

A main, and at first sight reasonable, track in this endeavor to combat impaired driving is to try to turn new and 
existing vehicle sensors (including DMS systems) into diagnostic tools that can be used to precisely determine 
impaired states, such as intoxication above a certain level or a sudden drop in blood sugar to name a few. 
However, under closer scrutiny, this approach has several severe challenges. There are challenges coupled to the 
drivers’ privacy if the car would read and store medical diagnosis information. Also, there are severe technical 
gaps to be closed, since precise medical diagnosis that has to rely on non-invasive sensors and be performed in a 
moving vehicle is very hard. Additionally, if these two challenges are overcome, the result would be a system 
that most likely has to go through medical certification procedures for the information to be considered valid to 
act on. As medical certification procedures are, for a good reasons, both rigorous and slow, going down that 
route would make both development and updating of these features cumbersome and costly.   

Now, this problem can be simplified greatly if one reverses the perspective. Instead of aiming to precisely 
diagnose specific driver impairment states such as a particular alcohol intoxication level, one can instead aim to 
detect generic degradations in the behavioral patterns that define normal driving and make the vehicle’s CAS act 
on those. Put differently; knowing that the driver has left normal driving behind is actually enough to give a 
CAS the freedom it needs to act on an impaired driver state. It does not have to be more precise than that.  

The reason why this approach works in practice is because driving is a highly practiced and overlearned skill in 
most drivers. To travel those average 13500 miles a year [2], one has to spend several hundreds of hours driving, 
which also means that we train our speed, distance and lane keeping skills for hundreds of hours per year. 
Furthermore, the possibilities for variability (i.e. the possibility to drive in a very different style compared to 
how others drive) are limited if you’re to keep the car on the road and disrupt the traffic flow or pattern. And the 
latter you don’t want to do, since other drivers will give you feedback (basically tell you off) for doing so.  

This means that the “normal driving box”, i.e. the control parameter space within which you normally constrain 
yourself while driving, is 1) small and 2) very similar between drivers. Hence, if we detect significant deviations 
from that box, we can deduce that you’re no longer driving like people normally do, which means there is now 
reason to think that you are impaired for some reason.  

So, if the goal is to detect significant deviations from normal driving, having a DMS onboard offers the 
completely new opportunity to look at gaze patterns, in addition to vehicle control patterns. And as previous 
research has shown [22], gaze patterns can be a very good predictor of whether a driver has mentally checked 
out from driving, even though s/he is still in the driver’s seat and mostly looking at the road ahead.  

Aiming to detect traffic relevant driver impairments by looking for significant deviations from normal driving 
offers a path toward combatting impaired driving that does not require medical grade detection procedures, 
which are also likely is more robust in the face of the natural variability that always is associated with large 
populations. Also, by leveraging DMS to study gaze patterns in additions to vehicle control patterns, one has 
new opportunity to give the CAS systems ‘license to intervene’ in situations where warnings and/or 
interventions might otherwise have been suppressed, for instance where pedal or steering wheel use studied by 
themselves might indicate an alert and aware driver.  

 

 



 

Ljung Aust  7 
 

CONCLUSIONS 

To use an CAS properly, you need to interact with it regularly to learn what its outputs mean. However, current 
accident and mileage statistics suggest that driving conflicts where an CAS would save you from unrecoverable 
error are rare; maybe as infrequent as once in a decade or lifetime depending on crash type. 

CAS are therefore best approached as lifetime driving companions. You may only need them once, but they still 
need to be interacted with regularly to work as intended. Hence, the conversation between driver and CAS 
should adhere to the same principles as applied between humans.  

Based on this general approach, a few specific development principles for DMS enhanced CAS can be derived 
to maximize the benefit one can get by adding DMS assessments of driver state and attention to the CAS threat 
assessment platform. By explicitly describing these fundamental Human Factors development principles for 
DMS enhanced CAS to the traffic safety community, the designer may avoid unnecessary development pitfalls 
that could counteract the deployment of these systems.    
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