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ABSTRACT  

Traffic accident number in Japan has been reduced year by year by growing ADAS technologies, revising the 

traffic rules, improving traffic environment. However, to realize the Vision Zero world which is zero traffic 

accidents, zero fatal accidents and zero injured seems far away currently. According to the traffic accident 

statistics data in Japan, more than half of accidents are occurring both in and around intersection areas [1]. The 

accident number at the intersections without traffic light is bigger than that with traffic light and has been seen at 

residential areas. To reduce the accident number at the intersection without traffic light, road safety mirrors have 

been installed in the intersection frequently [2]. In our study, using the front camera, which is one of ADAS 

sensors, even if it is a scene where the front camera cannot detect the object directly, our purpose is to reduce 

the collision risk by detecting the approaching vehicle using its image in road safety mirrors.  

In this paper, our collision avoidance method which consists of the 3 steps "Road safety mirror detection", 

"Object detection in the road safety mirror" and "Risk prediction" has been proposed. Especially, in road safety 

mirror detection, one countermeasure for false positives (FP) has been introduced. Our proposed method has 
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been verified using front camera as a feasibility study, and the effectiveness of our proposed method has been 

demonstrated by experimental results on the public road. If the effectiveness of our proposed method is proven, 

since road safety mirrors will be utilized, which are a legacy infrastructure element, new investment at poor 

visibility intersection can be reduced which will be one of the merits of the proposed method. Also, the 

scalability of the system supporting not only Autonomous Driving (AD) systems of level 3 and higher, but also 

AD level 1 and 2 such as Advanced Driver-Assistance System (ADAS) will be an advantage. 

 

�.� SYSTEM OPERATIONAL CONCEPT FOR T-CROSSING WITH ROAD SAFETY MIRROR 

Road safety mirrors can be frequently seen at poor visibility intersections in Japan. In other words, road safety 

mirrors can be seen at intersections which seem to have a high collision risk. This paper is focusing on collision 

avoidance at road safety mirror equipped intersections which is one of Japan specific environments. And, we 

have been focusing on the analysis of reflected images of road objects in the road safety mirror. For collision 

avoidance by using the reflection in the road safety mirror, our proposed method has been expected to support 

the recognition of road objects out of the direct field-of-view from the front camera at poor visibility 

intersection. 

 

 

Figure 1. System purpose.  
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Figure 2. System scope from use-case and actor perspectives. 

 

1.1. System Purpose 

The purpose of this system is, for example, to support detection of approaching vehicles, to estimate the risk of 

collision, and to give the risk information to the driver through a driver warning system. Figure 1 shows the 

system context which shows a situation for the mitigation of predicted risk using the road safety mirror at a 

T-crossing. The front camera of the ego vehicle detects the road safety mirror and extracts the piece of the 

image containing the reflected approaching target vehicle on the road safety mirror. When the target vehicle is 

approaching, it is estimated that there is a high collision risk, which is the case shown by the red square in right 

side picture in Figure 1. 

 

1.2. System Context 

Figure 2 shows the system scope and interaction between scope of interest and external systems. Our study 

scope in this paper is the software algorithm including the road safety mirror detector, the object detector within 

detected road safety mirrors and the risk prediction at the T-crossing if the target object is a passenger vehicle. It 

means it does not include the interface to the vehicle speed meter, brake system, map information or to a 

warning system for sending a signal. The calculation of the estimated collision risk is based on image data from 

the front camera. The system is enabled based on a trigger by a defined threshold of the ego vehicle speed. 

When it detects a high collision risk target vehicle is approaching, the system sends a warning signal to inform 

the driver. Additionally, the system can have an interface to the brake system because it can be utilized to give 

brake assistance for the driver. For the system it is also desirable to have a map information interface because 

the map is expected reduce FP and false negative (FN) events. 
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Figure 3. Schematic flow of our system. 

 

�.� PROPOSED SYSTEM FUNCTION 

Figure 3 shows a schematic flow of our system. When the system detects a road safety mirror, it starts to search 

for a vehicle on the road safety mirror. At this time, if it detects a target vehicle reflected in the road safety 

mirror, it is transitioning to risk prediction. Risk prediction is an algorithm that determines whether the target 

vehicle in the road safety mirror is approaching and, if it is determines that it is approaching, issues a warning to 

the driver. For the road safety mirror detection, not only a detection approach using YOLOv3 [3] but also FP 

prevention by applying Deep Autoencoding Gaussian Mixture Model (DAGMM) [4] has been developed. For 

road object detection in the road safety mirror, Faster-RCNN (F-RCNN) [5] has been selected, and a risk 

prediction method which applies interpolation by a Kalman filter and object tracking [6] is applied in this paper. 

Additionally, although it has been not applied in this paper, an enhanced approach for risk prediction [7] has 

also already been published. 

 

 

Figure 4. Data set preparation for road safety mirror detection using YOLOv3. 

 

 
Figure 5. One frame shot of verification result of road safety mirror detection. 

 

2.1 Road Safety Mirror Detection 

For road safety mirror detection, YOLOv3, which is one of the well-known deep learning methods, in its latest 

version as of 2019 has been selected. For learning data, it has been using high resolution pixel image 

(approximately 12 M pixel) and the Region of Interest (ROI) information of the road safety mirror has been 
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included. The ROI means the area where we are searching a potential target object is a box around the detected 

road safety mirror like enclosed in the yellow square in Figure 4. The original image will be scaled to a defined 

reduced size and converted to L*a*b* [8] color space image as shown in the left side picture in Figure 4. Here, 

RGB means color based on red, green, blue colors. Capital L* of L*a*b* means luminosity and small a*, b* 

means complementary colors. The L*a*b* color space seems to be closer to human visual. In RGB, it is 

sometimes hard to distinguish colored areas depending on the brightness situation. On the other hand, in L*a*b* 

it might be possible to distinguish the color areas like in human vision. Thus, in this paper, the L*a*b* color 

space is the input for the deep learning method which has been applied. 

 

Table 1. 

Verification result of road safety mirror detection 

True positive (TP) False positive (FP) 

e.g., 

 

e.g., 

 

696 detections 35 detections 

 

2.1.1. Public-road-running-test Public road tests have been executed using a low-resolution camera 

(approximately 0.32 M pixel) which is different from the high-resolution camera used for data collection. As 

controller, a NVIDIA Jetson Xavier has been used. Nevertheless, the results seem to have very good precision of 

more than 95% as described in Table 1 and Equation (1). Figure 5 shows the one frame shot of verification 

results of road safety mirror detection. 

 

       Equation (1) 

 

Although it is not so many issues, we can see some FP in these results. In the next section, the countermeasure 

to reduce the FP issues is described. 

 

2.1.2. Countermeasure-to-false-positive The countermeasures to FP issues are described in this section. A FP 

is one of the issues which often limits performance in this perception field. In order to reduce the FP issues, an 

anomaly detection method has been used. Recently, the Deep Autoencoder Gaussian Mixture Model (DAGMM) 

has been published (2018). By using a Gaussian Mixture Model, we can find a cluster of features for each 

object. 

 

However, the mirror image is inconsistent. So, it was hard to define the distribution of the road safety mirrors 

features in comparison with traffic sign features. Thus, in order to overcome this issue, we have created the 

opposite idea to a conventional approach. Figure 6 is just an example to explain our approach. If the red points 

in Figure 6 are assumed to be clusters of traffic signs features, the black points close to these clusters might also 
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be a traffic sign. Our proposed method estimates that the points far away from these clusters might be road 

safety mirrors. After detecting potential road safety mirrors by the deep learning method YOLOv3, we calculate 

their distance to these red clusters. If the distance is over the defined threshold, the system regards the detected 

object is road safety mirror. If the distance is within the defined threshold, the system regards the detected object 

is not a road safety mirror. 

 

Figure 6. Our proposed approach for detecting the road safety mirror to reduce the false positive 

 

 

(a) W/o DAGMM                           (b) With DAGMM 

Figure 7. Effectiveness of our proposed approach applying DAGMM 

 

 

Figure 8. Road safety mirror detection by our proposed approach applying DAGMM 
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Figure 7 (a) shows the result for a part of a recording without DAGMM. As the result, FP count was 31 in this 

recording. On the other hand, the right picture in Figure 7 (b) shows the result for the part of the recoding with 

DAGMM as proposed by our approach. FP was zero counts based on the same recording. The effectiveness by 

our proposed method was proved by this recording. Furthermore, the road safety mirror detection by our 

proposed method applying DAGMM has been confirmed after approaching to the T-crossing as shown in Figure 

8. As summary in road safety mirror detection, it has been verified that the FP count can be effectively reduced, 

and road safety mirrors can be detected by using our proposed method. 

 

2.2. Road object Detection in Road Safety Mirror 

In order to detect road objects, the deep neural network Faster R-CNN has been used. For the feature extraction 

in Faster R-CNN, Resnet 50 is used here. It is a deep residual network to handle the problem of 

vanishing/exploding gradients[9][10][11]. The basic unit is shown in Figure 9, which has better performance in 

small objects detection [12]. 

In this paper, we use a pre-trained Faster R-CNN with Resnet 50 model [13] based on the Microsoft Coco 

dataset [14]. The following 7 classes are targeted for road objects, which are the most-seen objects on roads in 

Japan: 

 

 

Figure 9. Basic unit of Resnet 50 
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Figure10. Moving objects in road safety mirror 

 

Table 2. 

Relationship between local direction and risk level 

 

 

(1) Pedestrian (person) 

(2) Bicycle 

(3) Car 

(4) Motorcycle 

(5) Bus 

(6) Train 

(7) Truck 

 

2.3. Risk Prediction 

For human drivers, the road safety mirror is a tool to confirm if there is any object like vehicle or pedestrian 

coming with a possible collision risk. The direction of a moving object in the road safety mirror is a critical 

factor to decide whether it has potential collision risk for the driver. As shown in Figure 10, while the black 

vehicle moves from top to bottom in vertical direction in the road safety mirror, it is coming closer to the road 

safety mirror, which has relatively high collision risk for the ego vehicle. On the contrary, while the white 
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vehicle moves from bottom to top in vertical direction in the road safety mirror, it is going away from the road 

safety mirror, and the risk to collide with the ego vehicle is relatively low. As a result, by detecting the moving 

direction of an object in the road safety mirror (called local direction), it can be estimated whether the object is 

coming near or heading away, which can be used for the classification as a high-risk object or a low-risk object, 

respectively. The local direction of an object has been calculated from the track of the object obtained in 

described in Reference [6]. The correspondence relationship between local direction and risk level of objects is 

described in Table 2. 

 

�.� EXPERIMENTAL RESULTS 

To verify the effectiveness of our proposed method, public road tests have been executed using a 

high-resolution camera (approximately 20 M pixel). Although the resolution might be reduced, this 

high-resolution camera has been selected to verify the feasibility of our proposed method which is object 

detection in the road safety mirror and the risk prediction in first combined tests on the public road.  

Figure 11 shows the experimental result of the road safety mirror detection. Figure 12 shows the 

experimental result of the object detection in the road safety mirror. Figure 13 shows the experimental 

result of risk prediction of the target vehicle approaching. It seems that the road safety mirror detection by 

our proposed method can detect the road safety mirror stably as shown in Figure 11. Also, it seems that the 

object detection in the road safety mirror by Faster R-CNN which we applied can detect road objects stably 

as shown in Figure 12. Furthermore, we can see that the risk prediction works as planned as shown in 

Figure 13. 

From the above experimental results for our combined proposed method, our proposed concept for 

detecting high collision risk of approaching vehicles at T-crossings equipped with a road safety mirror by 

using only the front camera image have been proven in public road test. 

 

 

Figure11. Experimental result of road safety mirror detection 
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Figure12. Experimental result of object detection in the road safety mirror 

 

�

Figure13. Experimental result of risk prediction to the target vehicle approaching 

 

�.� CONCLUSIONS  

In this paper, we propose a method to reduce the collision risk at crossings by detecting approaching vehicles 

using their reflection in road safety mirrors, using a 3-Step approach consisting of "Road safety mirror 

detection", "Object detection in the road safety mirror" and "Risk prediction". Our proposed method has been 

verified using real world camera data as a feasibility study, and the effectiveness of our proposed method has 

been demonstrated by experimental results at T-crossing on public roads. Considering these results, it will be 

expected that our proposed method improves safety while avoiding new investments at poor visibility 

intersections and can be adapted to any levels of AD/ADAS system. The next steps considered are to improve 

robustness in different weather and illuminance conditions, to add more classes of target objects and to bring 

maturity closer to production level.  
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ABSTRACT

The authors propose a visual-inertial algorithm to estimate the kinematic states of a motorcycle traveling at high
speeds along an extra-urban road. The approach comprises the following steps: First, a monocular camera takes
video of the road ahead. Key features from sequential video frames of the road surface are extracted using the
Harris corner detector. Matching features are identified using the Fast retina keypoint descriptor (FREAK). Next,
correct the perspective warping of the feature locations by applying inverse perspective mapping. The motion
of the transformed features is registered using the Singular Value Decomposition (SVD) variant of the Iterative
Closest Point (ICP) algorithm. Finally, this measurement is combined with readings from inertial navigation
system using a Kalman filter to produce a filtered estimate and correct integrator drift. The approach was
validated using data from simulations of three scenarios created in BikeSim. In the first, the motorcycle performs
a series of slaloms along a straight road at 50 km/h. In the second, the motorcycle navigates an S-shaped bend at
80 km/h. Lastly, the motorcycle performs a double-lane change across both lanes of a straight road at 110 km/h.

INTRODUCTION

The term Powered Two-Wheeled Vehicles (P2WV) encompasses the class of self-propelled road vehicles whose
two wheels are arranged in tandem. Riders of P2WVs continue to be overrepresented in severe road accidents
[1]. By contrast, automobile road safety has steadily improved over the past decade. Among many factors in
this trend has been the introduction of Advanced Driver Assistance Systems (ADAS) into modern cars [2]. In
this context, researchers at the IBISC laboratory are investigating the modeling and control of P2WVs with
the aspiration of developing technologies for Advanced Rider Assistance System (ARAS). Various rider aids are
already commercially available such as Forward Collision Warning (FCW) and Adaptive Cruise Control (ACC)
that are analogous to their automobile counterparts. We are particularly interested in developing an ARAS
analog of the Electronic Stability Control (ESC) now ubiquitous among recent car models. Consider a warning
system capable of detecting and alerting the rider to dangerous steering situations. In critical situations, such a
system could even intervene semi-autonomously to mitigate an accident.

Developing such a system is not as simple as implementing existing ESC on motorcycles: Their slim profiles
permit a larger envelope of lateral motion compared to a car. Furthermore, a novice rider often has trouble
judging the appropriate lateral position and heading relative to the road to safely navigate a bend. Hence, riders
can attain larger magnitudes of relative lateral velocity compared to cars. Consider also that a rider must not
only judge their trajectory but must also lean into a turn to balance out the overturning moment caused by the
road-tire interaction. Therefore, the key difference from cars is that the body lateral velocity, yaw rate and steer-
ing angle can no longer be assumed to act in the road plane. Alternative formulations for the front and rear wheel
slip angles, the angles formed between the direction in which a wheel is pointing and in which it is traveling, must
be used for an ESC equivalent for P2WVs to effectively characterize dangerous over and under-steering behaviors.

Visual-Inertial Odometry (VIO) has shown encouraging performance in measuring translational velocities in Un-
crewed Aerial Vehicles (UAVs) [3]. VIO estimates ego-motion in real-time using a camera alongside an Inertial
Measurement Unit (IMU). The readings from these sensors are fed to a motion estimation algorithm such as Op-
tical Flow (OF), the Direct Linear Transform (DLT) and Iterative Closest Point (ICP). Research has also been
conducted into implementing VIO for Uncrewed Ground Vehicles (UGVs). The planar constraints of UGVs sim-
plify the motion estimation problem to two dimensions compared to UAVs. VIO for UGVs has shown promise
during indoor navigation tasks performed across multiple works [4],[5]. Outside of laboratory conditions, the
works of Song et al. show a real-world demonstration of VIO for a small UGV capturing video of the ground
beneath itself. We note that to date, these implementations were conducted only at low speeds (≤ 50 km/h).

We take inspiration from VIO for UAVs alongside the work conducted thus far for UGVs and investigate its
potential in the real-time estimation of velocity for P2WVs. We seek to know if the VIO algorithms which
perform well at high velocities on UAVs perform comparably on a motorcycle. Previous works from IBISC have
investigated the use of Inverse Perspective Mapping (IPM) to further simplify the motion estimation problem for
road vehicles [6]. Thus, we summarize our estimation algorithm: We extract matching features from successive
images taken by a camera mounted on the front of a motorcycle. Next, we use IPM to remove the perspective
warping from the feature sets and obtain two point sets. We apply ICP to estimate the rigid transform between
these two sets. From here, we express this motion estimate in the body frame of the motorcycle and use it as
the drift-correcting component of a Kalman filter-based Inertial Navigation System (INS). Finally, we re-express
this filtered estimate in the road plane and apply the appropriate kinematic expressions for P2WVs to calculate
the wheel slip angles.
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Motivation
Referring to the seminal works on motorcycle dynamics by Cossalter et al. [7], we define two cornering radii:
The ideal radius R0 of the path taken by the motorcycle assuming there is no lateral wheel slip and the actual
path radius R. The ratio of these is termed the steering ratio ξ and defines whether a motorcycle is over, neutral
or under-steering as shown in (1). Cossalter et al. derives and validates the approximations for these radii in
kinematic terms shown in (2) and (3) where αf and αr are the front and rear slip angles respectively [8].

ξ =
R0

R

⎧⎪⎨
⎪⎩

ξ < 1 under-steering
ξ = 1 neutral steering
ξ > 1 over-steering

(1)

R0 =
lwb

tanΔ
(2)

R =
lwb

tan (Δ− αr) cos (αr) + sin (αf )
=

V

ψ̇
(3)

The definitions for all symbols used in this work are listed in Table 1. V is the velocity magnitude defined as
the norm of the longitudinal and lateral body velocity components (4). Care should be taken to distinguish the
handlebar steering angle δ from its projection onto the road plane Δ termed the kinematic steering angle which
can be well-approximated using (5).

V =
√

v2x + v2y (4)

Δ = arctan

(
cos (ε)

cos (ϕ)
tan (δ)

)
(5)

Relationships first derived by Robin Sharp express the front and rear slip angles in terms of the kinematic
variables defined thus far. Note that in (6) and (7) as well as in (4) the longitudinal and lateral components vx
and vy are expressed in the road plane and correspond to the velocity of the projection of the motorcycle Center
of Mass (CoM) onto this plane.

αf = arctan

(
vy + lf ψ̇ − ltrδ̇

vx

)
− δ cos (ε) (6)

αr = arctan

(
vy − lrψ̇

vx

)
(7)

Thus one concludes that accurate measurements of velocity, yaw rate and steering angle are essential when
attempting to estimate the slip angles. Steering angle and rate can be obtained using a position encoder in the
steering bearing while the yaw rate can be accurately measured by even low-cost MEMS gyroscopes. However,
velocity is a more challenging state to reconstruct: One can suppose that longitudinal velocity can be measured
by the vehicle’s engine odometer under the assumption that there is no longitudinal slip between the tires and
the road. Lateral velocity is more challenging still: Many approaches assume the availability of this state through
Global Navigation Satelite System (GNSS). In reality, the latency and precision of most consumer GNSS modules
are, on their own, inadequate for real-time estimation and control applications according to tests carried out by
the Connected Motorcycle Consortium (CMC) at the Technische Hochschule Ingolstadt in Germany [9].

Table 1.
List of states and their definitions (absent of point and frame definitions)

symbol state units symbol parameter units

a translational acceleration m/s2 lf arm between Gr and Cf m

ω angular velocity rad/s lr arm between Gr and Cr m

v translational velocity m/s lrk rake m

φ roll rad ltr normal trail Rf sin (ε)− lrk m

θ pitch rad Rf front wheel radius m

ψ yaw rad Rr rear wheel radius m

ϕ lean rad ε caster angle rad

δ steer rad μ camera tilt rad

Δ kinematic steer rad lwb wheelbase lf + lr m

αf front slip rad

αr rear slip rad

Pryde



State observer approaches hypothesize that it is possible to reconstruct lateral velocity from measurements of
other states and a sufficiently faithful dynamical model. The most widely used of these is the Sharp 1971 linearized
model [10]. However, observers based on the Sharp model and variations of it have delivered mixed results to
date across multiple works [11],[12],[13]. Ahead of this work, we re-confirmed the results of [12] in Figure (1)
by implementing their Linear Parameter-Varying (LPV) variant of the Sharp model and comparing against
results from BikeSim. We note that while the yaw and lean dynamics estimates are satisfactory, the estimate
for the lateral velocity deviates significantly from the ground truth. Furthermore, model-based observers rely
on accurate a priori knowledge of P2WV dynamic parameters, such as mass and moment of inertia, which vary
widely depending on the rider [14]. Hence, a key technical motivation for this work is to obtain a more accurate
and robust result for lateral velocity compared to available model-based observer approaches.
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Figure 1. Lateral motion results for an LPV model of a motorcycle. Note the significant deviation
from ground truth lateral velocity in the top right plot.

Notation
We summarize the notation used in this work as follows:

� The frame originating from the point P is denoted RP .

� x and x are column vectors while A and A are matrices.

� The position vector pb
a ∈ R

3 is the Euclidean position of the point a expressed in Rb.

� The distance vector rb
a,b begins at point a, ends at point b and is expressed in Rb.

� The time derivative of pb
a is ṗb

a.

� the velocity vector vb
a is the velocity of the point a expressed in Rb.

� AT is the transpose of A while A−1 is it’s inverse.

� We favor the skew-symmetric operator [x]× over the cross product ×.

� The identity and null matrices are denoted by I and 0 respectively.

� The det operator returns the determinant of a matrix.

SYSTEM DESCRIPTION

Consider a motorcycle traveling at high speed along an extra-urban road. We propose to attach a monocular
camera in front of the steering head fixed to the motorcycle rear body as shown in Figure 2. When the lean ϕ of
the motorcycle is zero, the camera is located at a height h0 above the road and at a distance lf from Gr shown in
Figure 3. Concerning environmental conditions, assume the road surface is smooth and well-illuminated in good
weather so that no raindrops and little jitter are present in the camera images.

Additionally, we consider that this motorcycle is fitted with an IMU located at the Center of Mass (CoM) of
the rear body Gr. The IMU measures the angular velocity ωGr acceleration aGr in the rear body frame RGr .
Assume that the IMU module is programmed with an Attitude Heading and Reference System (AHRS) sensor
fusion algorithm which outputs the roll φ, pitch θ and yaw ψ angles of Gr. Note that we make a distinction be-
tween the roll and lean: The roll is a rotation about the x-axis of a frame that has previously been rotated about
the local z and y-axes by the yaw and pitch respectively. In contrast, the lean is a rotation about the x-axis of RV .

Lastly, assume that the steer angle of the steering head is measured with an encoder that also provides its time
derivative the steer rate. Steer measured in the front body frame RGf is denoted by δ. The projection of this
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steer onto the road surface is denoted by Δ and is expressed in RV . The point V is the projection of Gr onto
the road surface and its frame RV is orthogonal to the road while translating with the motorcycle.

Figure 2. Illustration of the proposed motorcycle-IMU-camera setup

We adopt the following terminology when referring to the motorcycle geometry: The angle through which the
front body is rotated with respect to the road normal is the caster angle ε. The horizontal distance in RGf from
the front wheel center to the motorcycle steering axis is the rake lrk. The camera is rotated by a static pitch μ
in RGr so that the road ahead dominates its Field of View (FoV).

Figure 3. Geometric parameters of the P2WV

FEATURE DETECTION & MATCHING

We define features as regions within at least two images of the same scene which could be recognized by a
computer vision algorithm. Points, corners or patterns strongly contrasting with their environment make good
feature candidates. Road scenes have been challenging for feature detection due to their relative homogeneity.
However, digital camera resolutions and embedded processing power have improved at a geometric rate since the
early development of computer vision in the 1980s. Hence, we hypothesize that it is now possible to capture
enough detail of surface flaws present on roads to robustly extract features. Theoretically, the feature detection
ought to work even better on roads with deteriorated lane markings and where the road surface has become
potted over time.

Figure 4. Superimposed image pair taken at timesteps k − 1 and k. Overlayed are the locations of
the detected features at the respective time steps and the optical flow vectors between them.

The Harris corner detector [15] is one of the earliest developed robust feature detection algorithms. Consider a
small n×n window of pixels W in a grayscale image I. A given W is considered a corner if displacing the window
in any direction always results in a large change in the intensity gradient. Passing this window over the entire
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image produces a map of corner features. Referring to Algorithm 1, the implementation is as follows: For every
pixel I (x, y), compute the image gradients in the x and y directions Ix and Iy of the window W surrounding
it. Here, we calculate the gradients by convolving with the Sobel kernels Gx and Gy. Construct the structure
tensor M from these and compute the cornerness score R for each pixel. A higher score indicates the presence
of a corner. Finishing steps for the algorithm typically include thresholding R for higher scores followed by
non-maximum suppression. There are many more modern feature detectors such as the Scale-Invariant Features
Transform (SIFT) and the Features from Accelerated Segment Test (FAST). While we may choose to implement
one of these in our approach at a later date, a comparison of feature detectors is not the focus of this work.

Algorithm 1 The Harris corner detector

function HarrisCorners(I,n)

Gx ← [
1 2 1

]T ∗ [1 0 −1
]

Gy ← [
1 0 −1

]T ∗ [1 2 1
]

w ← 1
2
[−n..n]

κ ∈ [0.04, 0.06]
for all x ∈ I do

for all y ∈ I do
W ← I (x+ w, y + w)
Ix ← Gx ∗W
Iy ← Gy ∗W
M ← ∑

(x,y)∈W

[
I2x IxIy
IxIy I2y

]
R(x, y) ← detM − κ (trM)2

end for
end for
return R

end function

The next task is to identify matching features between sequential video frames of the road. We convert each feature
pixel window into a binary descriptor which describes differences in intensity values in the window. Descriptors
have the advantage of simplifying the matching process into thresholding the Hamming distance between two
binary strings. Popular descriptor schemes include Binary Robust Independent Elementary Features (BRIEF)
and Binary Robust Invariant Scalable Keypoints (BRISK). For this work, we chose the widely-used Fast Retina
Keypoint (FREAK) [16].

INVERSE PERSPECTIVE MAPPING

The positions of the features detected in Section are expressed in a persepctive projection of the world frame Rw

at this stage. Furthermore, these positions are given in pixels rather than meters. IPM constructs a synthetic
Bird’s Eye View (BEV) from an image taken in perspective. Consider a rectangular Region of Interest (RoI) in
the real world we wish to view from above defined by corner points p0 and pf in meters as shown in Figure 2.
We convert these corner points into homogeneous coordinates p̃0 and p̃f through division by the camera height.

p̃i =
[
1

h
pT
i 1

]T
(8)

We infer the existence of a virtual camera looking down from above at the RoI of resolution mVC × nVC. The
pixel intensity values in the images taken by the real camera and those taken by the virtual camera are related
by a Homography matrix H [17].

H = K

(
RVC − 1

h
tnT

)
K−1

VC (9)

Where RVC is the rotation matrix defining the orientation of the virtual camera VC with respect to the real one.
t is the displacement of the virtual camera with respect to the real camera and n is the unit normal to the road
surface. K and KVC are the intrinsic parameter matrices of the real and virtual cameras respectively. We can
approximate the inverse of the virtual camera intrinsic matrix by expressing the desired size of each of the pixels
in the BEV in world coordinates [6].

K−1
VC =

⎡
⎢⎢⎣
x̃f − x̃0

mVC
0 −x̃f

0
ỹf − ỹ0
nVC

−ỹf

0 0 1

⎤
⎥⎥⎦ (10)
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Figure 5. Geometry of the IPM process. First, we define a plane for the BEV (highlighted in blue
above) in world frame units. Next, we project this plane onto the camera image plane (highlighted
in red). Thus, it becomes our region of interest in the real world (highlighted in black)

Now, we define the orientation of the real camera with respect to V C. Note that in Figure 2 that the real camera
z-axis is colinear with the axis of the focal point. First, we re-orient the camera axes so that it is the x-axis
instead which projects forwards using Rc.

Rc = Ry (π/2)
T Rx (π/2) (11)

Next, we undo the rotation by the tilt so that the camera position is expressed in the motorcycle body frame
RGr . Finally, VC yaws with the motorcycle so we need to undo only the roll followed by the pitch to arrive in
RV , the reference frame in which the position of the virtual camera is defined.

RVC = Rc (RθRφRμ)
T (12)

We form the intrinsic matrix K of the real camera using its focal length f and the pixel size mx × my. The
translations tx and ty compensate for the difference in coordinate origins between an image, where the origin is
the top left corner, and the BEV, where the origin is at the bottom center.

K =

⎡
⎣fmx 0 mxtx

0 fmy myty
0 0 1

⎤
⎦ (13)

Finally, we construct the homography matrix HVC. Note that there is no translation: Figure 5 shows that in
reality IPM is a warping of the RoI in perspective as if the real camera were orthogonal to the world plane facing
down, thus the translation is implicitly incorporated into the design of the KVC.

HVC = KRVCK
−1
VC (14)

Recall the use of homogeneous coordinates in (8): A point pim in the original image (in pixels) is expressed in
the BEV as pbev using the inhomogeneous form of the projective transform where hi,j is an element of H located
at row i and column j.

xbev =
h11xim + h12yim + h13

h31xim + h32yim + h33
(15)

ybev =
h21xim + h22yim + h23

h31xim + h32yim + h33
(16)

Having removed the perspective warp from the feature set, we can convert each feature point pV
i from pixels into

meters by multiplying each feature by the inverse of the virtual camera intrinsic matrix to obtain our point sets
on the road surface expressed in RV .

pV = K−1
VC

[
xbev ybev 1

]T
(17)

An example of a perspective-corrected point set superimposed onto a synthetic BEV created using IPM and
bilinear interpolation is shown in Figure 6. Note that this entire process is reversible by simply multiplying the
perspective-corrected points by the inverse of H.
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POINT SET REGISTRATION

Figure 6. Features transformed into the planar coordinates. Note this time that the motions
indicated in yellow are the calculated translational velocities from the ICP and not the optical flow.

Image registration is the process of determining the affine transformation between two images of the same scene.
Thanks to the IPM, the registration problem here is restricted to two dimensions. We assume that the camera
and IPM induce no distortion in the BEV, hence there exists a rigid transformation that optimally aligns the
perspective-corrected point sets Pk and Pk−1. Let this transformation be composed of a rotation Rϑ ∈ R

2×2

about the virtual camera focal axis by ϑ and a translation d ∈ R
2 [18].[

Pk−1

I

]
=

[
Rϑ d
0 0

] [
Pk

I

]
(18)

However, it is never the case that the features in image k − 1 are a perfect rigidly transformed copy of those in
image k, but a close approximation can be found using algorithms such as Iterative Closest Point. There exist
several variations of ICP including such as point to point, point to plane and generalized ICP. Each of these
minimizes a slightly different metric and vary in terms of robustness against the presence of outliers. In all cases
though, ICP seeks to minimize the overlap error E between point sets in the least-squares sense [19].

min

n∑
k=1

1

n
‖E‖2 =

n∑
k=1

1

n
‖Pk−1 −RϑPk − d‖2 (19)

While iterative least-squares algorithms are more robust to outliers, this work is intended as a proof of concept
rather than a final implementation. Thus, we select the well-known Singular Value Decomposition (SVD) variant
of ICP summarized in Algorithm 2: First, center both point sets on zero by subtracting their means. Next,
form the structure tensor A from these centered sets and take its SVD. Verify that the product of U and V T is
orthogonal and multiply the end column by -1 if necessary. Finally, recover the translation using the difference
between Pk−1 and the rotation-corrected Pk.

Algorithm 2 The Iterative Closest Point algorithm

function ICP(Pk−1,Pk)

A ← [
Pk−1 − P̄k−1

] [
Pk − P̄k

]T
U ,Σ,V T ← svdA
if detR = −1 then

R ←
([

1 0
0 −1

]
RT

)T

end if
R ← UV T

ϑ ← arctan

(
îTr3

k̂Tr3

)

d ← P̄k−1 −RP̄k

return ϑ, d
end function

It is worth mentioning that the rotation between successive images k − 1 and k can also be recovered from the
IMU yaw rate measurement τψ̇ where τ is the system sample time [20].
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MOTORCYCLE KINEMATICS

Figure 7. illustration of the relationship between the rear body center of mass and the rear wheel
contact point

We assume that the translational velocity estimate from Section is measured in RV . Let us approximate the
motorycle wheels as thin disks: Referring to Figure 7 and applying the rotations in the correct order, we obtain
Rθφ, the rotation matrix transforming from Gr to Cr. From Screw theory, we know that the twist of a point i
on a rigid body comprised of a translational velocity vb

i and an angular velocity ωb can be expressed in the world
frame Rw using the velocity adjoint mapping. Note that there also exists an inverse mapping to convert from the
world frame back into the body frame.[

vw
i

ωw

]
=

[
Rw

b [pi]× Rw
b

0 Rw
b

] [
vb
i

ωb

]
(20)

[
vb
i

ωb

]
=

[
Rb

w −Rb
w [pi]×

0 Rb
w

] [
vw
i

ωw

]
(21)

Recall from the system description that the IMU measures ωGr at Gr in RGr . With this in mind, we apply the
Adjoint maps to express the ICP velocity estimate from the Section in RGr .[

vGr
Gr

ωGr

]
=

[
RT

θφ −RT
θφ

[
rCr
Gr,Cr

]
×

0 RT
θφ

] [
vCr
Gr

ωCr

]
(22)

=

[
RT

θφ I
0 I

] [
vCr
Gr

ωGr

]
(23)

Next, we must derive the velocity of V to express the measured velocity at the front and rear contact points.
This time applying the forwards Adjoint mapping, we obtain the following:[

vV
V

ωV

]
=

[
Rθφ

[
rGr
Gr,V

]
× Rθφ

0 Rθφ

] [
vGr
Gr

ωGr

]
(24)

Finally, we obtain the front and rear slip angles from the x and y components of vV
V and the application of

Equations (6) and (7). As discussed in the introduction, the leaning motion of the motorcycle means that the
yaw rate is not equal to the angular velocity about the z-axis of RGr . However, it can be recovered through the
orientation with respect to the road plane and the application of the proper Rate Jacobian.⎡

⎣φ̇θ̇
ψ̇

⎤
⎦ =

⎡
⎣1 0 − sin (θ)
0 cos (φ) sin (φ) cos (θ)
0 − sin (φ) cos (φ) cos (θ)

⎤
⎦

−1

ωGr (25)

Note that due to the thin disk approximation, we expect to over-estimate the velocity somewhat compared to
the ground truth as in reality rCr,Gr will not remain constant due to tire compression during transient phases.

SENSOR FUSION

The estimator described thus far is summarized in Figure 8: The IMU consisting of a MEMS accelerometer and
gyroscope feeds its readings to a standard INS, which outputs roll, pitch and the derivative of body velocity v̇Gr

Gr
.

The camera feeds images to Algorithm 1 which outputs features to the IPM. From here, the ICP computes the
motion between point sets and provides a planar velocity and yaw rate estimate. The planar velocity is converted
into body velocity using the gyroscope measurement and the Adjoint mapping (22). Finally, the integrated INS
velocity estimate is corrected for integrator drift using the vision estimate within the Kalman Filter. The velocity
is fed back into the INS and the algorithm repeats for all time steps k.
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Figure 8. The proposed visual-inertial estimation algorithm: Measurements from the IMU sensors
are highlighted in red. Readings from the proposed vision component are highlighted in green. State
estimates are highlighted in blue.

We model noise present in the vision measurement as Average White Gaussian Noise (AWGN). We use a discrete

Linear Time-Invariant (LTI) Kalman filter to produce an estimate of the motorcycle velocity vGr
Gr

. Our prediction

model is a simple integration on the input v̇Gr
Gr

provided by the INS.

x =
[
vGr
x vGr

y

]T
(26)

u =
[
v̇Gr
x v̇Gr

y

]T
(27)

F =

[
1 0
0 1

]
(28)

B =

[
τ 0
0 τ

]
(29)

Where x and u denote the state and input vectors. Concordantly, F and B are the state and input transition
matrices. Let P and Q be the error and process noise covariance matrices. The prediction equations are
summarized below where the superscript − denotes an a priori state or covariance estimate.

x̂−
k = F x̂−

k−1 +Buk (30)

P−
k = FP−

k−1F
T +Q (31)

Referring to Figure 8 we apply (22) to the translational velocity measured by our vision algorithm to obtain our
Kalman filter measurement. We summarize our measurement model below where z is the measurement vector
and H is the measurement model.

z =
[
vICP
x vICP

y

]T
(32)

H =

[
1 0
0 1

]
(33)

We complete the update step of Kalman filtering by computing the Kalman gain K and the a posteriori estimate
and covariance matrix. Note that R is the measurement covariance matrix.

Kk = P−
k HT

(
HP−

k HT +R
)−1

(34)

x̂k = x̂−
k +Kk

(
zk −Hx̂−

k

)
(35)

Pk = (I −KkH)P−
k (36)

RESULTS

To validate our approach, we designed three scenarios in BikeSim mechanical simulation software. BikeSim allows
developers to test their ARAS desgins on realistic multi-body simulations of motorcycles. We tested our vision
algorithm on three different driving scenarios. The first scenario sees the motorcycle perform a series of slaloms
along a straight road at 50 km/h. This scenario was selected in order to test our estimator at high values of
steering angle. The second scenario sees the motorcycle negotiate an S-shaped bend at 80 km/h. We chose this
scenario to test our estimator’s ability to cope with curved roads as well as straights. The third is the Double
Lane-Change (DLC) often featured in literature where the motorcycle changes from one lane to another and back
again on a straight road. We perform the DLC at 110 km/h. Here, the scenario was chosen in order to test the
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Figure 9. Trajectory and lean profiles of the three scenarios

algorithm’s ability to cope with elevated speeds typically experienced by riders on European extra-urban roads.
The paths and lean profiles of each scenario are illustrated in Firgure 9.
We implemented our estimator in MATLAB/Simulink in co-simulation with BikeSim at a sampling rate of
60Hz. The outputs from the camera were 720 × 1280 RGB images. We defined our RoI with corner points
(x0, y0) = (3m,−10m) and (xf , yf ) = (23m, 10m) in RV . The BEV resolution was 720 × 720 and we added
noise to the accelerometer reading aaccel

Gr
with a Signal to Noise Ratio SNR = 30 to test our estimator’s robustness

to integrator drift. The process and measurement covariance matrices were set to Q = 1 and R = 1× 105.
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Figure 10. Steering angle inputs for each scenario

The following subsections present the results of the estimates obtained presented against ground truth references
generated in BikeSim. In Figures 11, 12 and 13, the acronyms ICP, DR, and KF denote Iterative Closest Point,
Dead-Reckon (of the INS velocity rate estimate) and Kalman Filter respectively.

Longitudinal Velocity
We observe from Figure 11 that the ICP estimate rests around the reference value, if not slightly underesti-
mating. This is an encouraging result as other estimation algorithms such as Optical Flow fail to register large
displacements between images which is not the case here. However, in the Slalom scenario, the variance is much
higher compared to the S-bend and DLC.
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Figure 11. Longitudinal velocity results

Lateral Velocity
Recall from the motivation that a key technical goal for our estimator is the reconstruction of the lateral velocity.
The results displayed in Figure 12 are encouraging: We note that in the Slalom scenario, the vision system
struggles to keep pace with the rapid succession of transients. However, this is compensated for by the INS
measurement where integrator drift is less of an issue due to the rapidly-varying input. We observe that the both
the INS and vision measurements track the reference very well in the S-Bend scenario.
Finally, we note that in the DLC the ICP estimate deviates slightly from the reference especially during transients
corresponding to sudden changes in lean (see Figure 9). In all cases, we note that the integrated INS alone
slowly drifts from the reference as the errors from the noise added to the accelerometer reading accumulate. As
hypothesized, our vision algorithm measurement successfully compensates for this drift and drags the filtered
estimate back toward the ground truth.

Yaw Rate
So far, there has been significant noise present in all the ICP estimates obtained. It is clear from Figure 13
that this noise is especially present in the yaw rate estimate obtained from the estimated rotation matrix in
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Figure 12. Lateral velocity results

Algorithm 2. While the mean of this noise appears to track the reference well, we note in the S-bend and DLC
scenarios that there is slight overshoot at the peaks of motion.
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Figure 13. Yaw rate results

Front Slip
Having obtained our velocity estimates, we re-express them in RV using (24) and pass the results to (6) and (7).
It should be noted that these expressions for front and rear slip are themselves linearized approximations of the
ground truth therefore there is an upper bound on achievable performance. Recall that a front slip larger than
the rear slip indicates under-steering: We observe from Figure 14 good tracking in the Slalom scenario where
front slip is highest. Note also from the steering inputs in Figure 10. that the majority of the angle between
direction and velocity in RCf is due to the steering angle. We note an underestimation in the S-bend and DLC.
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Figure 14. Front slip results

Rear Slip
The results for the rear slip angle are displayed in Figure 15. The S-bend and DLC estimates track much better
than their front slip counterparts though we note that the magnitude of the references here are more significant.
We observe that the estimate lags in the Slalom scenario.

DISCUSSION

The initial evaluation of our results is encouraging. Referring to Figures 12 we note that our results compare
favorably with the Kalman-based approach of Teerhuis and Jansen [21] despite there being no a priori model in
our estimator. Regarding performance against observer-based designs, note that the estimate during the peak
regions of the DLC outperforms the estimation by the UI-HOSM [11] while performing the same maneuver. This
comparison is of particular importance since the results in [11] were also obtained using BikeSim. Recall that
in [22], the absolute error magnitude in their observer lateral velocity estimation during a DLC using a nomi-
nal LPV model was just over 0.12m/s. We note an error in our DLC result of under 0.05m/s, outperforming
that paper’s LPV observer. Of particular importance is that while the control inputs of the scenarios in [22]
are generated using BikeSim, they are validated against a theoretical model. Thus, we can conclude that our
estimator outperforms theirs even in the best case. In [13], a highly sophisticated multi-model observer based on
Tagaki-Sugeno and Linear Matrix Inequalities (LMI) techniques is presented and demonstrates the most promis-
ing results for observer-based lateral velocity estimates to date. While their observer does reach the correct final
value in steady-state periods, it fails to reconstruct the waveforms of transients compared to our approach.

In the Motivation, we mentioned that longitudinal velocity can be recovered from the vehicle engine odometer
under the assumption that no longitudinal slip is present between the road and the tires. This is nevertheless
a harsh assumption to make, especially in road conditions where such slip is likely to be present such as wet

Pryde



0 2 4 6 8 10

time (s)

-1

0

1

an
gl

e 
(°

)

Slalom: rear slip at 50 km/h

ref est

0 2 4 6 8 10 12

time (s)

-0.5

0

0.5

an
gl

e 
(°

)

S-bend: rear slip at 80 km/h

ref est

0 5 10 15

time (s)

-0.5

0

0.5

an
gl

e 
(°

)

DLC: rear slip at 110 km/h

ref est

Figure 15. Rear slip results

weather. For this work, we chose to work with constant longitudinal velocities since the primary motivation is
to reconstruct lateral motion and the front and rear slip angles. Future works on our algorithm should test its
ability to estimate a varying longitudinal velocity.

Earlier works published by our research team attempted to measure lateral velocity using only information from
BEV images of the center lane markers [23]. We identified two major issues with this approach which in part
motivated this new design: The sudden appearance and removal of transitioning lane markers entering the BEV
induced a large-amplitude low-frequency oscillation in the vision system measurement. We have overcome this
by using road surface detailing as tracked features as well as lane markers as explained in Section . The second
major issue was computational complexity: Producing a full grayscale BEV using image interpolation is ex-
tremely intensive for any application. We proposed to reduce complexity through image binarization. However,
this introduced a new source of noise into our measurement. Here, we transform only the features detected in
the camera images into the inverse perspective, greatly reducing computational complexity whilst simultaneously
decreasing noise.

Nonetheless, there is strong noise present in all of our ICP measurements originating outside of the sources dis-
cussed. A known issue with point registration is how one deals with outliers. A common technique is to detect
them using RAndom Sample Consensus (RANSAC) [24]: Future works on this approach should investigate the
influence of outliers on our results. We are also limited by the BikeSim software itself as the simulated IMU read-
ings from the physics engine and the simulated image stream from the visualizer are asynchronous. This leads
to imperfect IPM, especially at high roll angles and we hypothesize that this is the cause of the deviations from
the ground truth observed in Figures 12 and 13. It may be possible to reduce measurement noise by increasing
the sample rate of the video stream and the resolution of the camera.

As mentioned in the front slip results, there is an upper limit to the possible accuracy of the slip estimates using
(6) and (7). Nevertheless, our estimates do approximate the transient behavior well if under-estimating their
magnitude. It would be worthwhile in future works to implement our estimator in its current form as an ARAS
to detect critical steering scenarios and test it against simulations of motorcycle crashes in BikeSim.

CONCLUSIONS

In this article, we propose a method of estimating the velocity and wheel lateral slip angles of a motorcycle
traveling at high speed along a single-carriageway road. We extract feautures from images captured by a camera
fixed to the front of the motorcycle and use Harris corner detection to extract features. We remove the perspective
projection from the point sets using IPM and recover ego-motion using Iterative Closest. Finally, we obtain a
velocity estimate using sensor fusion with an Inertial Navigation System and a Kalman filter. We validated
our approach against three different BikeSim simulation scenarios and compared the obtained results with other
approaches. We conclude that our approach compares very well to the state of the art and surpasses it in a few
cases. We recommend that future works should investigate the effects of outliers, sensor resolution and frame
rate on the accuracy of our vision measurements. We will refine our algorithm in simulations under non-ideal
conditions such as rain, poor marker visibility, and a rough road surface. Furthermore, we will perform tests
under more diverse scenarios such as periods of longitudinal acceleration and simulated crashes. Eventually, we
hope to validate our approach using real-world data from an experimental P2WV rig situated at IBISC.
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ABSTRACT 
 
Traditional type approval regulations typically define a small set of very precisely defined test cases that act as an 
implicit requirements definition. Especially for active safety regulations, this leads to two major problems: Firstly, 
the implicit requirements are given only for a small number of operating points, and secondly, the prescribed test 
cases will typically happen only on an ideal test track. 
The newest type approval regulations, such as especially the new regulation on automated emergency braking systems 
for heavy vehicles, define requirements in a broader way over the whole operating range, in a certain range of 
parameters (such as: for centerline offsets between -20 and +20 cm) and leave provisions for technical services and/or 
market surveillance authorities to test in different, more realistic conditions. They also require the systems to not 
change strategy for cases out of the specifications (e.g.: for higher centerline offsets). 
As a consequence, this shifts the specification responsibility away from the regulator, towards the vehicle 
manufacturer. In this way, there is more freedom of design while still maintaining an appropriate level of safety. Also, 
the verification task is shifted towards the technical service, who now has the responsibility to certify that the vehicle 
or system matches the given overall requirements by specific test cases. The market surveillance authority, however, 
has the freedom to check each and every aspect of the system against the requirements. Market surveillance therefore 
acts as a supervisor for the technical services. 
In the proposed paper, this new approach is presented in detail with the examples of Regulation 131-02 (automated 
emergency braking for heavy vehicles) and Regulation 151 (blind spot information systems). The new approach is 
described in detail with examples from the regulation, as well as the necessary equipment to perform the test runs in 
the case of Regulation 151: driving robots, robot-controlled bicycle dummy etc. Finally, proposals will be given on 
how to judge whether a system complies with the requirement to not change strategy; a topic that will become relevant 
in the coming years. 
The combination between broad requirements, not changing system strategy when out of the main operating range, 
vague defined test cases and market surveillance as a supervisor for technical services has the potential to make the 
type approval system fit for the future, and especially for all intelligent or flexible or programmable safety systems, 
on the one hand. 
On the other hand, technical services will have to adapt to the new responsibility and manufacturers to the new 
flexibility, since the regulation now does not exactly specify (overspecify?) a safety system, but more specifies the 
expected risk balance. It will certainly take some time and discussions until the new approach will fully unfold its 
potential. 
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INTRODUCTION 

Flexible, programmable or intelligent (FPI) systems 
are a challenge for the traditional type approval 
regime: It is hard to define few worst case test cases 
with which the expected performance of those systems 
over the whole operating range can be verified, since 
there is not necessarily a strictly monotone 
dependency between test parameters and test outcome, 
like it in general is for classical mechanical systems, 
see example in Figure 1. 

 
Figure 1: Example for the tendency between test 
parameter (vrel,test) and test result (deformation) 
 
FPI systems in the type approval regime include 
advanced driver assistance systems, automated driving 
systems, but also emission-limiting systems, noise 
pollution prevention and others. This challenge was 
brought to the attention of the public in 2015 in the 
course of the emissions scandal where vehicles were 
designed to function during type approval procedures, 
but not in real driving conditions – in some cases a 
good example of test optimization, in other cases a 
breach of the rules. 
A new approach for type approval helps to make the 
type approval system more robust against test 
optimization and make it effective also for FPI 
systems, which we will see in the future in more and 
more type approval disciplines. 

NEW REGULATION APPROACH VS. 
TRADITIONAL REGULATIONS 

The new approach, as opposed to the traditional type 
approval regulation consists of four elements that help 
to overcome the weakness that comes with only a 
limited set of tests. A comparison for key elements of 
the new approach with traditional regulations is shown 
in Figure 1. 
 
 

Table 1: Comparison of new approach and 
traditional regulations 

Category New approach Traditional 
regulations 

Requirements 
definition 

Explicit,  
over the whole 
operating 
range, 
with 
interpolation 
tables, 
functions etc. 

Implicit by 
expected test 
results,  
for 
representative 
test cases only 

Performance 
off-cycle 

Requirement 
to not change 
control 
strategy 

- 

Test case 
definition 

Vague, 
As a guidance: 
other 
conditions can 
be tested as 
well, 
Expected test 
results given 
per reference 
to 
requirements 

Precise, 
Test of other 
conditions not 
foreseen, 
Expected test 
results given 
with test 
definition 

Number of test 
cases 

Typically high 
number of test 
cases, 
procedure how 
to deal with 
failed tests 

Typically low 
number of test 
cases 

Surveillance 
system 

Market 
surveillance, 
Conformity of 
Production 

Conformity of 
Production 

The differences with regard to these items will be 
explained in this section. 

Explicit vs. Implicit Requirements 

Requirements are implicit if the requirements are not 
specified in general terms but result from the pass 
criteria of a limited test program. For this the precise 
description of the tests and the respective pass criteria 
is necessary. 
With implicit specification, the system or vehicle to be 
tested can be regarded as a "black box" whose internal 
decision-making procedures are unknown. 
Verification by means of tests is therefore possible in 
principle even without manufacturer knowledge. 
Moreover, the method is easy to practice (tests are 
clearly predefined and do not have to be adapted to the 
specific product, the expected outcomes are clearly 
described as pass criteria). Typically, environment 
conditions for the test, such as weather, test surface, 
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vehicle configuration are exactly specified. The 
disadvantage of this method – important for robust 
driver assistance systems regulations – is that 
performance requirements for conditions other than 
the test conditions are not specified.  

Thus, one approach that is becoming increasingly 
prevalent in more recent driver assistance regulation 
documents is the concrete, numerical or mathematical 
definition of verifiable requirements. These 
requirements - unless further restricted - apply 
comprehensively (for example: for all driving speeds, 
for all weather conditions, for all vehicle 
configurations and so on).  

In many cases, the function fulfilment (example: 
emergency brake assist function) is neither physically 
nor technically possible in every situation. 
Comprehensible restrictions are then specified (in the 
example: definition of speed reduction for dry road 
surfaces). 

“Do Not Change Strategy” – Off-Cycle 
Performance Requirements 

Additionally, robust systems should try to do their best 
to avoid accidents, even outside of the range for which 
requirements are defined. Therefore, a typical 
requirement is that the corresponding function must 
not exhibit any unjustified switching of the control 
strategy even outside the restrictions. 

Vaguely Defined Test Cases for Explicit 
Requirements 

As stated above, traditional type approval regulations 
specify the tests very precisely. This ensures that the 
tests done by different technical services are 
comparable. However, this method does allow 
optimization for the test. A more important challenge 
is that for flexible, programmable and intelligent 
systems, the fact that tests in worst-case conditions are 
passed does not necessarily mean that test in other, 
non-worst-case conditions the tests are passed as well. 
For explicit requirements, it is not of great importance 
to exactly specify test conditions since the 
performance requirements are defined independent 
from test cases. Under some circumstances, it can be 
an advantage to only define tests very vaguely, 
allowing technical services and market surveillance 
authorities to explore the performance of the system 
over the whole operating range.  

However, the effort required to test the requirements 
can increase considerably when applying this method, 
and the test cases will not necessarily be the same in 
number and parameters for each type approval test 
series. Moreover, in some cases, the tests that remain 
in the regulations are so vaguely defined that technical 

services, type approval and market surveillance 
authorities must have a deep understanding of possible 
system limits (for example, in the application of UN 
Regulation No. 157 on automated lane-keeping 
systems). 

Test definition will also allow testing of off-cycle 
performance (“do not change strategy”); in this case, 
identifying the expected performance is not trivial. A 
method for this is proposed below. 

Market Surveillance Process 

Previously, under the European Framework Directive 
2007/46/EC, once a type approval had been granted by 
one member state of the EU, it could only be 
questioned and reviewed by another member state 
with high hurdles, the only quality control process 
over the lifetime of a product was the so-called 
“Conformity of Production”, where the conformance 
of the produced products with the type-approved 
products is checked. The new Framework Regulation 
(EC) No. 2018/858 introduces the system of so-called 
market surveillance. It now allows any vehicle type-
approved granted on the basis of the Framework 
Regulation to be inspected by the market surveillance 
authorities of the member states or the Joint Research 
Center of the European Commission with regard to 
compliance with the requirements. It is not yet fully 
clear how exactly market surveillance will be 
implemented. However, it has the potential to 
fundamentally change the type approval system. 
 
Without market surveillance, generically formulated 
test cases (example: "braking from any speed", as 
opposed to precisely specified test conditions "braking 
from X km/h with tolerance Y") could be a 
disadvantage, because it is then up to only one 
technical service and one type approval authority to 
verify compliance with the requirements, and this one 
technical service could possibly select parameter 
combinations that are particularly easy to meet without 
further specifications. 
With market surveillance, generically formulated test 
cases are advantageous because not only the initial 
technical service and the approval-issuing authority 
check compliance with the requirements, but 
potentially many other member states can also do so 
on the basis of possibly completely different test cases. 
The vehicle manufacturer is therefore forced to design 
the system robustly. Optimization for the "one" test is 
no longer possible without the risk of sanctions. 
This requires a rethink in the formulation of vehicle 
technology regulations towards the specification of 
generally valid requirements (especially in the case of 
driver assistance systems), which are not limited - as 
in the past - to a few requirements specified by 
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concrete test cases. The generally valid requirements 
can be verified by more and generically defined test 
cases. Because artificial target objects often used in 
tests can by their very nature never fully represent 
reality and can lead to malfunctions, this then also 
includes the creation of opportunities for retesting (in 
case of fails) on a limited scale with clear definition of 
criteria for test repetition. 

IMPLEMENATION IN REGULATIONS (UN) 
NO. 131-02 & 152, AUTOMATIC 
EMERGENCY BRAKING SYSTEMS 

An automatic emergency braking system regulation 
was amongst the first advanced driver assistance 
system regulation in the UN ECE framework. After a 
major overhaul, which resulted in the second series of 
amendments to Regulation (UN) No. 131 and pending 
modifications to Regulation (UN) No. 152, AEBS 
regulations are now amongst the most modern 
regulations. They showcase how the “new approach” 
as defined in the last section can be implemented. This 
will be discussed in the following section; text with 
grey background in this section is taken from 
Regulation 131-02 (document GRVA-12-50rev1). 

Requirements Section 

The “new approach” starts with a formulation of 
verifiable requirements for the system. Verifiable 
requirements do not contain items like “long”, 
“small”, “short” etc., but contain concrete values. 
Regulation (UN) No. 131-02 [1] has the performance 
requirement for the automatic braking function in 
paragraph 5.2.1.4 (and some others for other AEB 
functions).  
Performance Statement 
The paragraph starts with the statement that the 
required performance is stated for a set of conditions: 
 

5.2.1.4. Speed reduction by braking demand  
In absence of driver’s input which would lead to 
interruption according to paragraph 5.3.2., the 
AEBS shall be able to achieve a relative impact 
speed that is less or equal to the maximum relative 
impact speed as shown in the following table, 
provided:  

 
A list of conditions follows that defines the boundary 
conditions for when the performance targets are 
required to be achieved. They are derived from the 
scope of the regulation (here: an assistance system that 
aids the driver, but is not able to avoid each and every 
accident automatically). 
Environmental Conditions 
The conditions in the case of R131-02 are grouped into 
a list of four exhaustive items, starting with the 

condition that the environmental conditions allow for 
maximum brake decelerations – which means that 
adoption of the control strategy to other conditions 
such as low friction is not required (which is different 
to regulations for automated driving systems such as 
R157 [2]). Note that this item, like almost all items, 
contains an exhaustive list as well. 
  

(a) Vehicle external influences allow for the 
required deceleration, i.e.:  
(i) The road is flat, horizontal and dry affording 
good adhesion; 
(ii) The weather conditions do not affect the 
dynamic performance of the vehicle (e.g. no 
storm, not below 0°C); 

 
Note that this looks like ideal conditions on the test 
track in the first place, but it requires the full 
performance also close to metal guardrails, sign posts, 
with lane markings and the like – since all these items 
are not excluded. This is a major step towards 
robustness of the regulation. 
Vehicle Conditions 
The next group defines that the vehicle itself shall be 
able to achieve the required deceleration, giving 
examples, not an exhaustive list. The reasoning behind 
this is that the vehicle’s possible deceleration can be 
impaired by improper maintenance and other facts not 
under the control of the vehicle manufacturer. An item 
to keep in mind for later discussions is the trailer under 
bullet (iv), which is typical for the operation of heavy 
vehicles. 
 

(b) The vehicle state itself allows for the required 
deceleration, e.g.:  
(i) The tyres are in an appropriate state and 
properly inflated; 
(ii) The brakes are properly operational (brake 
temperature, pads condition etc.); 
(iii) There is no severe uneven load distribution; 
(iv) No trailer is coupled to the motor vehicle and 
the mass of the motor vehicle is between maximum 
mass and mass in running order conditions; 

 
Perception Conditions 
While the upper two condition groups look at whether 
full deceleration is possible, AEBS systems also 
require the targets to be detectable. Some environment 
conditions, mainly water in the air, decrease the 
possible RADAR sensor performance, and bad visual 
conditions are a problem for camera sensors. This lead 
to the definition of the following conditions, again an 
exhaustive list: 
 

(c) There are no external influences affecting the 
physical sensing capabilities, i.e.:  
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(i) The ambient illumination conditions are at 
least 1000 Lux and there is no extreme blinding of 
the sensors (e.g. direct blinding sunlight, highly 
RADAR-reflective environment);  
(ii) The target vehicle is not extreme with regard 
to the Radar Cross Section (RCS) or the 
shape/silhouette (e.g. below fifth percentile of 
RCS of all M1 vehicles) 
(iii) There are no significant weather conditions 
affecting the sensing capabilities of the vehicle 
(e.g. no heavy rain, dense fog, snow, dirt); 
(iv) There are no overhead obstructions close to 
the vehicle; 

 
Situation Conditions 
The condition set (again an exhaustive list) that limits 
the performance of the AEBS probably the most looks 
at the situation itself. Regardless of the sensor 
capabilities and the deceleration capabilities, the 
internal logic of the system needs to be able to make 
appropriate decisions. Most of the items in this list are 
there to prevent false-positive braking interventions 
due to a misunderstanding of the system. 
It is expected that increasing experience with systems 
and the progress of the state of technology might allow 
to reduce there conditions in the future. 
 

(d) The situation is unambiguous, i.e.:  
(i) The preceding vehicle belongs to Category 
M, N, O3 or O4, is unobstructed, clearly 
separated from other objects in the driving lane 
and constantly travelling or stationary; 
(ii) The vehicle longitudinal centre planes are 
displaced by not more than 0.2 m; 
(iii) The direction of travel is straight with no 
curve, and the vehicle is not turning at an 
intersection and following its lane. 

 
Off-Cycle Performance Statement 
The performance requirements paragraph ends with a 
very important statement, requesting that there shall be 
no deactivation or switch in the control strategy when 
the conditions in the condition list are not all met 
(=one or more of the conditions are not fulfilled). 
 

When conditions deviate from those listed above, 
the system shall not deactivate or unreasonably 
switch the control strategy. This shall be 
demonstrated in accordance with paragraph 6 
and Annex 3 of this Regulation. 

 
This statement is a key point to achieve robust AEBS 
performance, yet it is still unclear how this criterion 
will be verified during type approval or market 
surveillance processes, especially for the “change of 

strategy”, while deactivation can be easily verified. A 
proposal for some conditions will me made below. 
Numeric Performance Requirements 
Finally, the paragraph closes with a lookup table and 
interpolation guidance, giving the maximum allowed 
impact speed as function of the initial relative speed, 
an excerpt is shown in Table 2. This table defines the 
required performance for all operating points within 
the condition set as explained above. 
 
Table 2: Maximum relative Impact Speed (km/h) 
(regardless whether target stationary or moving)* 

Relative Speed 

(km/h) 
M3>8t, N2>8t, N3 

10 0 
20 0 
30 0 
35 0 
40 0 
50 0 
60 0 
70 0 
80 28 
90 42 

100 54***  
 

Tests 

The test section according to the new approach does 
no longer define the required performance, as it was 
the case with implicit requirement definition. On the 
other hand, the parameter range for expected 
performance is much larger than for traditional 
regulations, which makes it virtually impossible to test 
the system against all parameter combinations. 
The test section therefore has two purposes: Its main 
purpose is to define a minimum set of system tests to 
ensure a basic safety level in standardized conditions, 
quite similar to traditional regulations. 
Its other purpose is to open up a path for testing 
different conditions like speeds, surroundings, etc., to 
verify the full parameter range as specified in the 
performance requirements, and allow for testing of 
changing the control strategy. 
 The core of the test section is paragraph 6.5, which 
starts with the traditional test description: 
 

6.5.  Warning and Activation Test with a Moving 
Vehicle Target  
 The subject vehicle and the moving target 
shall travel in a straight line, in the same 
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direction, for at least two seconds prior to the 
functional part of the test. with a subject vehicle 
to target centreline offset of not more than 0.2m.  
Tests shall be conducted with a vehicle travelling 
at the following relative speeds to the target, with 
a tolerance of +/- 2 km/h for all tests, and a target 
travelling at 20 km/h, with a tolerance of +0/-2 
km/h for both the target and the subject vehicles, 
but at speeds not beyond the range specified in 
paragraph 5.2.1.3.: 
(a) 20 km/h (e.g. target travelling at 20 km/h, 
vehicle travelling at 40 km/h, relative speed is 20 
km/h); 
(b) Maximum required impact avoidance speed 
as shown in paragraph 5.2.1.4 (e.g. maximum 
required impact avoidance speed for a N3 vehicle 
is 70 km/h, target is travelling at 20 k/h, vehicle 
speed is 90 km/h), and 
(c) Either: 

(i) Maximum required impact 
avoidance speed, as shown in paragraph 
5.2.1.4., + 8 km/h (e.g. for a target travelling 
at 20 km/h and a M3 vehicle > 8 tons, the test 
shall be conducted at 20 + 70 + 8 = 98 km/h), 
or  
(ii) Maximum design speed (e.g: for a 
target travelling at 20 km/h, speed limiter 
speed of approximately 89 km/h for an N3), 

whichever is lower. 
 
The following paragraph allows to test other 
conditions. This allows the technical service to 
perform additional verifications when in doubt, and on 
the other hand to allow market surveillance authorities 
to verify every aspect of the performance requirements 
when re-testing a vehicle. 
 

If this is deemed justified, the technical service 
may test in any test condition within the 
conditions specified in paragraph 5.2.1.4. and 
with any other speeds listed in the tables in 
paragraph 5.2.1.4. and within the prescribed 
speed range as defined in paragraph 5.2.1.3. 
Outside of the conditions of Paragraph 5.2.1.4., 
the Technical Service may verify that the control 
strategy is not unreasonably changed or AEBS 
switched off. The report of this verification shall 
be appended to the test report. 

 
This implementation of the test definitions serves the 
purpose to have technical services test at least a 
minimum set of tests, and on the other hand allow 
technical service and market surveillance to assess the 
full performance requirements – thus forcing vehicle 
manufacturers to develop robust systems working 
under all conditions, especially in real traffic. 

VERIFYING OFF-CYCLE PERFORMANCE 
FOR AEBS REGULATIONS 

While performance requirements over a range of 
various parameters are clearly defined, and also the 
deactivation as absence of performance can be 
identified quite easily, the remaining challenge is how 
to verify whether a specific system does not 
unreasonably switch the control strategy when out of 
these conditions. 

Possible Deceleration Lower Than Reference 
Case 

The aim of this section is to propose criteria for this 
case, based on the safety models applied during the 
definition of the recent AEBS regulations. 
The required speed reduction has been derived from a 
simple model with the following parameters: 

 the maximum possible deceleration for a 
given surface, given by the friction 
coefficient μ, 

 the time required to reach the maximum 
deceleration, tbuildup, 

 the TTC value for the start of brake 
intervention, TTCBrake. 

With these parameters, the possible avoidance speed 
would be approximately 

, 
or for situations where the friction is not the issue, but 
the deceleration is limited to dlim: 

. 
For instance, two items from the performance section 
of Regulation 131-02 look at whether the required 
deceleration is possible: 
 

(a) Vehicle external influences allow for the 
required deceleration, i.e.:  
(b) The vehicle state itself allows for the required 
deceleration, e.g.:  

 
An unreasonable switch of the control strategy could 
in this case be a different, later brake intervention 
TTCBrake. The maximum avoidance speed in reference 
conditions and the expected avoidance speed in lower 
deceleration conditions should relate to each other 
according to 

, 

if the control strategy (=brake intervention timing) is 
the same. 

Sensor Influences 

In conditions under the third item, the target is detected 
later or not at all, this requires individual experiments 
to understand whether a control strategy is 
unreasonably switched or not: 
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(c) There are no external influences affecting the 
physical sensing capabilities, i.e.:  

 

Ambiguous Situation 

The last remaining item, limiting the required 
performance to unambiguous situations, is probably 
the most complex to deal with switching the control 
strategy: 
 

(d) The situation is unambiguous, i.e.:  
 
For its first sub-item, the decelerating target is 
missing; however, this is simple due to the fact that a 
numerical speed reduction as function if the relative 
speed is meaningless when the relative speed changes 
over time. 
One method to identify whether the control strategy is 
changed could be to compare the TTC for the 
beginning of the brake intervention with the so-called 
‘enhanced TTC’, a variable taking the changing 
velocities into account [3]: 
 

(i) The preceding vehicle belongs to Category 
M, N, O3 or O4, is unobstructed, clearly 
separated from other objects in the driving lane 
and constantly travelling or stationary; 

 
The lateral displacement, or – more important – the 
overlap between two vehicles determines the last time 
to steer: the less overlap exists, the more likely is a 
successful avoidance maneuver quite late before the 
collision. Identifying whether a control strategy has 
changed could be done by comparing the TTC for the 
last time to steer around in reference conditions (+/- 0. 
2 m as stated below) to the TTC for the last time to 
steer in the situation under question. 
The reference lateral acceleration could be calculated 
with the assumption 

, 
the generic equation for displacement (known from the 
overlap in the reference case) as function of lateral 
acceleration ay (to be calculated and rechecked for the 
non-reference situation) and time t. 
 

(ii) The vehicle longitudinal centre planes are 
displaced by not more than 0.2 m; 

 
For the final sub-item, it is hard to identify a general 
mathematical method for change of strategy. A 
proposal could be to identify the horizontal aperture of 
the sensor system (RADAR and camera) and checking 
whether the target was within the aperture at all times.  

(iii) The direction of travel is straight with no 
curve, and the vehicle is not turning at an 
intersection and following its lane. 

 
To sum up, there are several methods for identifying 
whether the control strategy has changed. Whether or 
not this switch or deactivation is unreasonable will 
probably require a justification from the vehicle 
manufacturer.  

IMPLEMENTATION IN REGULATION 151, 
BLIND SPOT INFORMATION SYSTEMS 

Requirements 

Regulation 151 in its original form follows partly the 
traditional regulation, since it has several pre-defined 
test cases with implicit specification of the 
requirements. To still have benefits from the “new 
approach”, there are several measures in place. The 
core text of Regulation 151 does give vague 
requirements and allows the testing of other conditions 
than those specified in the (implicit) test case table [4]: 
  

5.3.1.4. The BSIS shall give an information 
signal at last point of information, for a bicycle 
moving with a speed between 5 km/h and 20 km/h, 
at a lateral separation between bicycle and 
vehicle of between 0.9 and 4.25 metres, which 
could result in a collision between bicycle and 
vehicle with an impact position 0 to 6 m with 
respect to the vehicle front right corner, if typical 
steering motion would be applied by the vehicle 
driver. 
 The information signal shall not be visible 
before the first point of information. It shall be 
given between the first point of information and 
the last point of information. The first point of 
information may be calculated for any impact 
position by increasing with the difference between 
6 m and impact position. 
 It shall also give an information signal if a 
bicycle is detected at a lateral separation of 
between 0.25 up to 0.9 m longitudinally at least 
located at the most forward front wheel while 
driving straight. 

 
However, the specifications how this can be achieved 
are given in the test section, which is not in line with 
the “new” approach, since this is a further 
specification of the requirements shown above: 
 

6.5. Blind Spot Information Dynamic Test 
6.5.1.  Using cones and the 
bicycle dummy, form a corridor according to 
Figure 1 in Appendix 1 to this Regulation and the 
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additional dimensions as specified in Table 1 of 
Appendix 1 to this Regulation. 
[…] 
6.5.10. The test is passed when the Blind 
Spot Information signal has been activated in all 
test cases as shown in Table 1 of Appendix 1 to 
this Regulation before the vehicle has crossed line 
C (see paragraph 6.5.7. above) and the Blind Spot 
Information signal has not been activated in any 
test run when the vehicle passes the traffic sign 
(see paragraph 6.5.8. above). 
 For vehicle speeds up to 5 km/h, it is deemed 
satisfactory if the information signal is activated 
1.4 seconds before the bicycle has reached the 
theoretical collision point as specified in 
Appendix 1, Figure 1. For vehicle speeds between 
5 and 10 km/h, the value dc shall be 5 m. 
For vehicle speeds above 25 km/h, where the 
stopping distance is higher than 15 m, dc as 
specified in Appendix 1, Figure 1 shall be as 
specified in Appendix 1, Table 2. 

 
However, the vague definition of requirements allows 
an alternative specification for test cases that is more 
in line with the “new approach”. The so-called 
“alternative testing annex” has been adopted by 
WP.29 and will enter into force in May 2023. 

 It follows the following principles: 
 Generic methods for heavy vehicles turning 

are given by so-called envelopes through 
which typical drivers shall navigate the 
vehicle. 

 The trajectory of the vehicle is recorded and 
then exactly replayed by robot control. 

 In the replay, a robot-controlled bicycle 
dummy is added so that a collision will occur. 

 Finally, the information signal timing is 
checked for sufficient stopping time (i.e. was 
it possible with a deceleration of 5 m/s² and a 
reaction time of 1.4 seconds after the blind 
stop information signal was given to avoid 
the accident?). 

This new approach here forces manufacturers to 
specify their system for traffic safety and makes a fine-
tuning towards few test cases impossible.  

TEST EQUIPMENT 

The new approach requires equipment beyond what is 
currently used in type-approval testing: 

 a precise position measurement system for 
the vehicle in order to identify whether the 
vehicle was within the operating range, 

 driving robots to make the ego vehicle as well 
as the target systems follow precisely 
programmed trajectories, 

 several exactly controllable target systems 
that allow to approach the borders of the 
operating range as close as possible. 

Position measurement systems 

State of the art in position measurement nowadays are 
sensor fusion systems with differential GNSS and 
inertial measurement units. These devices achieve an 
accuracy up to +/- 1 cm, with typical values below +/- 
10 cm. An example for such a system, fitted to a test 
vehicle, is shown in Figure 2 below. 

 
Figure 2: DGPS and inertial measurement system 

Driving Robot Systems 

Based on precise position measurement, driving robots 
control any given vehicle by modulating their driving 
controls (steering wheel, accelerator and brake 
pedals). The achieved accuracy varies with dynamics, 
vehicle and how well the robot systems are tuned 
towards the concrete vehicle and lie in the order of 
magnitude of 10-50 cm even in complex turning 
situations. See Figure 3 below for an example of a 
vehicle. 
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Figure 3: Steering and pedal actuators, mounted 
in a N3 tractor vehicle 

Robotic Target Systems and Targets 

Robotic target carriers are flat over-runnable platforms 
where a variety of surrogate targets resembling 
passenger cars, pedestrians, bicycles or motorcycles 
can be fitted, see Figure 4 to Figure 7. The platforms 
include a precise position measurement system and 
control logics comparable to the driving robot 
systems, allowing them to achieve approximately the 
same precision in control. 

 
Figure 4: Car dummy on robotic target carrier 

 
Figure 5: Bicycle dummy on robotic target carrier 

 
Figure 6: Motorcycle dummy on robotic target 
carrier 

 
Figure 7: Pedestrian dummy on robotic target 
carrier 

CONCLUSIONS 

A new approach for the formulation of vehicle 
technical regulations has been presented that is 
specifically helpful for advanced driver assistance 
system and automated driving system regulations, but 
for some others as well. 
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The aim of this new approach is to make design of 
systems simply towards test criteria impossible and to 
force manufacturers to develop robust systems that 
will deliver the required performance in realistic 
surroundings. 
This is achieved by three measures: First, by precise 
formulation of verifiable performance requirements 
over the whole relevant operating range, and asking 
for no unreasonable change of the system strategy 
outside of this operating rage. Second, by allowing 
tests in all operating points to be performed, so that it 
is unclear in the beginning as to what exactly could be 
tested, besides a set of standard tests (that still are 
defined in the regulations and will always be tested). 
Third, not part of the regulation itself, by a market 
surveillance system that allows retest of randomly 
selected or suspicious vehicles by independent 
authorities against the regulations. 
The implementation of these three measures in new 
regulations as well as appropriate measurement 
equipment has been shown in the paper. 
The new approach however brings also a shift of 
responsibility for defining test cases from the regulator 
towards the technical services and towards the market 
surveillance authorities, requires more test cases to be 

conducted and more considerations on what is a 
relevant and valuable test to assess the vehicle or 
system characteristics. 
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