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ABSTRACT 

Motorcycle riding is a popular activity among riders of all ages and the number of motorcyclists is still 
increasing, despite safety issues being tricky to resolve for this mode of transport. Motorcycle rides constitute a 
type of vulnerable road user (VRU) since accidents tend to have more severe consequences for them due to the 
lack of physical protection for riders compared to passengers in passenger cars. Since this is a consequence of 
the very nature of the vehicle (being less heavy and more dynamic to move) potential safety interventions for 
motorcyclists need to be based on predictive indicators for unsafe situations and aim to avoid crashes altogether. 

This paper presents the results of ongoing work to improve motorcycle safety by finding causally interpretable 
risk characteristics based on accident data and motorcycle riding dynamics collected from test rides by individual 
riders. Dynamics data at known accident spots and representative data for individual rider-typical motions is 
associated to the type of historical accident in order to produce an estimate not only of risky areas and 
maneuvers, but also to associate types of riding dynamics that put the driver at risk. The relation to potential 
causes is essential for the inclusion of the resulting risk warnings in the activation of an Advanced Rider-
Assistance System (ARAS), in order to produce a tailor-made response to the individual. 

INTRODUCTION 

Though a popular mode of transport, the share of motorcyclist accidents and in particular fatalities is still 
remarkably high. In Austria in 2021 for instance, motorcyclists constituted 20.7% of all road user fatalities [1] 
with the absolute number of motorcyclist fatalities having remained roughly constant over several years, while 
the absolute numbers of fatalities for several other modes decreased. 

Worldwide approaches to improve the safety of motorcyclists are being investigated. Approaches include 
physical methods of various sorts (see for instance [2]). Studies are also tackling the identification and use of 
accident hotspots for motorcycling safety research (see [3]). Historical accident data is one of the main guides to 
understanding motorcyclist safety (see [4]) and will play an important role in the approach presented here. 

We present further developments of a method published recently (see [5],[6],[7],[8],[9]) for deriving risk maps 
based on gathered data during test rides. Vehicle dynamics data on 6 popular motorcycle tracks were collected 
by 5 experienced riders on a Motorcycle Probe Vehicle (dubbed “MoProVe”, see [10]), which was comprised of 
a motorcycle with accessible control area network (CAN)-Bus Data and several external sensor systems 
(additional geo-positioning systems, additional inertial measurement units), as well as a camera to produce video 
documentation on all rides. 

Data was analysed by combining different approaches from machine learning/statistics: Individual riding data 
was clustered to determine typical motions of each driver, driving dynamics at known accident and finally, 
separation functions between accident prone dynamics and uncritical dynamics were derived. Going beyond 
earlier work, the resulting separation functions were now associated with interpretable risk warnings and 
potential interventions are listed. 



Specific risk profiles can be associated to individual riders, by extension allowing to consider specific warnings 
to the ARAS and interventions during riding. Additionally, the dynamic variables contributing the most to a 
present warning give further indications on the cause of a risk warning and can be used in a similar manner, to 
adjust riding dynamics. 

The use of an individual rider’s profile derived from riding dynamics data and dynamics derived from known 
accident spots with associated causes paves the way for a much more specific response of ARAS systems, which 
might save lives without distracting drivers during critical moments. 

MATERIALS AND METHODS 

Data was collected using a KTM 1290 Super Adventure (provided by KTM [11], to support this research) 
equipped with several additional data collection systems (see VBOX [12]; Debus & Diebold [13]), to obtain high 
quality riding dynamics data (in particular angular movements: Yaw-Rates, Pitch-Rates and Roll-Rates) 
alongside a high-quality GPS localisation. 

Measurements 

We collected data on 6 different popular motorcycling tracks via 5 different test drivers. Test drivers were 
instructed to drive in different riding styles (conservative, comfortable, dynamic) to obtain a range of different 
driving behaviours from each rider. On a given track all riders rode several times (at least 3 times in either 
direction) so as not to fit our model to any particular ride but rather to more stable tendencies identifiable from 
several rides in multiple styles. Obtained data was checked for validity, excluding data errors and annotating 
time spans during which the motorcycle was following other vehicles. 

Time based data was projected to a location based (per meter) grid by partners at TU Vienna in earlier work (see 
[8],[9]), 

Accident data was obtained from Statistik Austria for the years 2012 to 2015 on the given tracks. We were 
interested exclusively in single vehicle motorcyclist accidents and collisions with oncoming traffic (as a proxy 
for narrow curves with potentially poor visibility). 

Model 

Our model is based upon per meter values of dynamics data (  yaw-,  roll- and  pitch-rates, as well as a 
measure of driven curvature, see [6] for details) which are used to fit a separation approach (see [14],[15]), based 
on known accident locations and k-means clustering (see [14],[16]) of dynamics data. We use a linear separation 
model (see [14],[17]) to separate cluster centers and dynamics data at known accident locations. 

For a set of variables V, consisting of the yaw-rate , roll-rate  and pitch-rate  (all in degrees per second) and a 
measure of driven curvature 

           (1) 

 we apply a number of transformations to allow for meaningful processing of the obtained data. Firstly, we apply 
a rollmean over 20 meters for each variable, to smooth the sensor data. Then we split given variables V into 
positive and negative parts  and  and calculate approximate derivates of the 
per meter values i.e., “first differences” of the obtained values . The idea behind 
this preprocessing is to allow for separate weights in the statistical model on accelerations and decelerations, as 
well as left and right movements of the motorcycle. 

    (2) 

We use k-means clustering on this data to define “standard motions” for each rider and use those as references 
for “non-risky” dynamics. Conversely, “risky” dynamics are simply defined as dynamics data at known 
historical accident locations. We use these two references to fit a separation model S based on a linear regression 
with target values S = 1 for risky dynamics and S = 0 for non-risky dynamics. 

      (3) 

In this model equation we have , , ,   with  denoting the error term of the regression. The 
coefficients in equation (3) can be used to assign values of  for all considered driving dynamics data  



of the form in equation (2). A threshold separation between risky and non-risky dynamics data was defined for 
each rider and subjected to a joint optimization (see [5] for details). 

We used the language R for our implementations [18]. 
 
The fit separation function can be used to assign weights dubbed “responsibilities” to all the components of a 
given data vector  using the contribution each component makes to the positive value of . If  denotes 
a single element of ( , , , ) and  denotes the corresponding dynamics variable value, then the 
responsibility  of  for the separation value S( ) is: 
 

      (4) 

 
In this sense responsibilities denote the share of a positive contribution of the component  to the value 

 

RESULTS 

Using the separation approach outlined above, the responsibilities for known accident sites were investigated. To 
illustrate, we show an example of the responsibilities for all riders combined into a single estimate in Fig. 1, for a 
right curve and a left curve accident: 

 

Figure 1: Responsibilities by data component for a) a Left curve with a known left curve accident and b) a Right Curve with a 
known right curve accident. Data while following other vehicles or having poor satellite connection has been removed. 

It can be seen that the primary contribution in Fig. 1 a) stems from the negative yaw-rate  and in Fig. 1 b) from 
the positive yaw-rate . Investigating the respective yaw-rate values for drivers at accident spots of the same 
type, we find results depicted in Fig. 2 below. 

 

 



 

Figure 2: Values of the yaw rate at known accident locations with the 90% quantiles (signified by horizontal bars in the 
graph) of each rider being represented by a horizontal bar in the data. Panel a) depicts values of the yaw-rate minus at left 
curve accidents, while Panel b) depicts values of the yaw-rate plus at right curve accidents. Data while following other 
vehicles or having poor satellite connection has been removed. 

This is a first opportunity to determine driver specific thresholds from the dynamics data obtained. We use the 
distribution shown in Fig. 2 to find a limit in the respective parameter for each rider and consider all values 
above to be challenging dynamics that might warrant ARAS Systems to prepare to engage. The thresholds can 
be seen in Fig. 2 as horizontal bars. Since we also note substantial contributions by the change of size in the roll-
rate (  and ) and changes in the size of the pitch rate  to the risk responsibilities of left and right curve, 
we represent those in a similar manner in Fig. 3 and Fig. 4 below: 

 

Figure 3: Values of the change in roll rate size at known accident locations with the 90% quantiles (signified by horizontal 
bars in the graph) of each rider being represented by a horizontal bar in the data. Panel a) depicts values of the delta roll-rate 
minus at left curve accidents, while Panel b) depicts values of the delta roll-rate plus at right curve accidents. Data while 
following other vehicles or having poor satellite connection has been removed  



 

Figure 4: Values of the positive change in pitch rate size at known accident locations with the 90% quantiles (signified by 
horizontal bars in the graph) of each rider being represented by a horizontal bar in the data. Panel a) depicts values of the 
delta pitch-rate plus at left curve accidents, while Panel b) depicts values of the delta pitch-rate plus at right curve accidents. 
Data while following other vehicles or having poor satellite connection has been removed. 

We chose thresholds according to quantiles of the respective data. A 90% Quantile is a good starting point to 
define the thresholds for the challenging domain in terms of driving dynamics. We see that with some variation 
the 90% quantiles in the yaw-rate are fairly close for our (experienced) test riders for the left curve, suggesting 
comparable limits to how riders would typically drive in a given curve. Interestingly estimates vary far more 
widely for the right curve. This may however be due in part to the lower number of accident locations for this 
type. 

This procedure can be applied to obtain thresholds based on different accident locations and types and form 
specific boundaries on yaw-rate, roll-rate and pitch-rate to inform ARAS Systems such as traction control or 
ABS. 

The thresholds derived in this reference data could then be transferred to drivers having similar driving profiles 
i.e., using the k-means clusters derived from the general driving data for a rider. The model which has the lowest 
squared distances in terms of components of the cluster centers  of the reference data (denoted by ) and 
components  of the not previously classified riders with dynamics data clusters : 

       
 (5) 

This can be used to transfer the threshold determined on the reference data here to riders in general. Thus, the 
reference high detail data set used in earlier work, can be used to find safety indicators for riders more generally, 
while the reference data set can continue to be expanded with more reference rider types on more tracks. 

CONCLUSIONS 

Building on a model of finding accident risk locations from driving dynamics data, we have investigated first 
approaches in associating particular accident sites with particular risk types. This allows us to derive thresholds 
for driving dynamics parameters for individual riders for particular accident types. These thresholds can be 
evaluated quickly even during the operation of a vehicle, thus making this a potential approach to guiding ARAS 
for motorcyclists. We have furthermore presented first consideration of how to transfer the models fit on precise 
reference data to more general settings, by using the cluster centers and finding the closest reference types in 
terms of these clusters. 

The kinds of interventions that ARAS might implement based on this information is very much still up for 
debate. Speed recommendations or regulations could be a way forward, given the drivers experience (as 
evidenced by their quantile values of driving dynamics during various maneuvers) or, perhaps more challenging, 
stabilization features to still be developed. 

Similar models could be fit to various levels of experience of the respective drivers and particular states (i.e., 
detecting fatigue from the driving style) and thus instantiate supportive measures in the same manner (reduce 
available power, recommend speed, stabilize motions). 



Using the profiles of certain accident types, it appears feasible that those could also be used to classify accident 
spots with “unknown” accident causes and develop the methodology further towards accident reconstruction. 

The most immediate limitations of these results stem from the size of the data set (5 riders on 6 tracks) and the 
precision of the available accident data. Quality checking available accident data will be necessary to expand the 
available data sets. The quality of the transfer of risk models from one rider to another will have to be 
demonstrated in future data. We note that a system based on these kinds of models might want to have an 
updating methodology and we have discussed first ideas of such a methodology in [19]. Alternatively, 
transferability might be sufficient to address this, as there could be clusters/profiles that encode various stages of 
driver experience. 
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ABSTRACT 

 

In everyday driving situations, potential sources of collisions can appear from any direction around the driver. 

Driver assistance systems have been highly desired to assist driver’s hazard awareness from all directions in order 

to eliminate any kinds of traffic accident fatalities. The current study addressed whether simulated spatial sounds 

providing directional and hazard attribute cues for potential collisions can facilitate drivers’ identification of traffic 

hazards and reduce collision incidence in the front and rear spaces. 

Forty-eight participants took part in our simulator experiment. We used a driving simulator (Honda Driving 

Simulator Type-DB Model S) to present them various traffic scenes with respect to the hazardous direction and 

recorded their driving operations. Participants’ gaze directions were also recorded with an eye tracker 

implemented on the simulator. To provide a directional cue of hazardous traffic participants, we presented spatial 

sounds on the directions of hazard participants, using two speakers implemented in a driver’s seat. To provide an 

attribute cue for hazardous objects, we classified the traffic participants into four categories (vehicles, motorcycles, 

bicycles, pedestrians) and presented a corresponding imitative sound for each hazard object. Presentations of 

monaural sound without directional cue and signal sound without attribute cue were also used as a comparison 

basis. 

The current study observed a decrease in collision frequency and a significant reduction of onset time for pushing 

down the brake pedal for frontal hazard when spatialized signal sounds were presented compared with no HMI 

condition. A decrease in collision frequency with gazed hazards in the rear space was also observed when 

spatialized imitative and signal sound were presented relative to no HMI condition. The results lend to support 

our hypothesis that the directional cue can be effective for safer driving behaviors. On the other hand, 

improvements were not obtained when attribute cues were presented for both behavioral responses or the collision 

frequency. Significant facilitations were found in gaze responses and decelerate operations especially for rear 

hazards, but they did not result in a reduction of collision frequency. 

Although the well-known front-rear ambiguity was confirmed in stationary sound localization, the current study 

observed the effectiveness of directional cue in reducing the collision frequency. It is possible that movements of 

spatial sound sources with hazard traffic participants could improve the resolution of front-rear sound localization. 

The influence of front-rear ambiguity might have also been reduced by extended spatial attention from the rear to 



the front under the auditory directional cue towards the rear space. The attribute cue did not provide any effective 

improvements in the current study. However, we believe that in certain traffic situations where the type of hazards 

involved could represent more important information to the driver, the effects of attribute cue could reveal a 

potentially larger impact. 

Our observations of the effective assistance of directional cue in spatial sound provide important references in 

terms of human factors for considering informative HMI that facilitates hazard awareness from all directions and 

help safer driving behaviors. 

 

INTRODUCTION 

 

In everyday driving, collision possibilities with hazardous traffic participants (e.g., pedestrians, cyclists, other 

vehicles) can occur from any direction around the driver. Hazardous traffic participants can thus appear outside 

the visual field of drivers, including behind them in the rear space. Recently, many of modern vehicles are 

equipped with sensor systems that possess capabilities to detect hazardous traffic participants all around the 

vehicle. There is also a growing interest for human machine interfaces (HMI) in driving assistant systems to 

provide hazard information in all direction around the drivers in order to support safer driving behaviors.  

While simple alarms have often been used to inform hazard states or events, previous studies have addressed more 

informative cues in order to identify hazard sources. For example, a directional cue provided by a spatialized 

sound source location has been shown to facilitate our responses to visual targets within front space [1-4] and 

across front and rear spaces [5, 6]. These findings suggest that drivers can rely on the auditory spatial cue to direct 

their attention effectively towards the space where hazardous traffic participants appear, facilitating identifications 

of such potential hazards. However, such spatial auditory HMI has not been widely implemented in driver 

assistance systems in vehicles to date. The current study revisited the hypothesis on the effectivity of auditory 

directional cue, using a recent spatial sound technology which can produce sound images from any direction 

around drivers.   

It is widely acknowledged that in everyday experiences, sound-producing events due to material interaction 

establish auditory informative cues for humans [7, 8]. Through common driving experiences, drivers are also able 

to use traffic environment sounds as auditory cues directly to distinguish between different types of potential 

hazards.  For visual cues, selective attention based on object features such as size, color and shape have been 

well understood [9], however object-based auditory attention has not been well addressed, because of the lack of 

precise definition of object formation [10, 11] and, to our best knowledge, because of the lack of available realistic 

sound in experimental conditions. Using a recent interactive sound simulation technology, the current study 

created sounds that realistically imitated sounds emanating from actual traffic participants. We examined whether 

the auditory cues for selective object-based attention are effective in facilitating behavioral responses for safer 

driving behaviors and reducing collision possibility. 

The objective of the present work is to reveal whether recent sound technologies can provide effective cues about 

location of potential hazard objects to drivers and enable safer driving behaviors. Considering that our findings 

on audiovisual attention directed in the front space cannot always be generalized to the rear space [5, 12], we 



evaluated the effectiveness of the cues regarding to front and rear hazards separately. Our findings provide 

important references in terms of human factors for considering informative HMI to assist raising awareness about 

potential hazards from all directions. 

 

METHODS 

 

Participants 

Forty-eight participants (including 11 female participants) took part in this experiment. Their mean age was 53.4 

years (range: 23 – 65 years). They had normal or corrected-to-normal eye sight. All participants had a valid 

Japanese driver’s license. Self-reported frequency of driving was three days a week or less for every participant, 

except for two, who reported driving daily. This research received ethical approval from the Bioethics Committee 

of Honda R&D Co., Ltd. All participants gave their written informed consent prior to the start of the experiment. 

They received 14,500 JPY for taking part in this experiment, including travelling expenses. 

 

Apparatus 

An overview of the driving simulator used in this experiment (Honda Driving Simulator Type-DB Model S) is 

illustrated in Figure 1. The participants drove an automatic transmission vehicle using accelerator and brake pedals 

and a steering wheel. A gear shift and turn indicators were also available. Three flat-screen displays provided the 

outside view of the driver’s vehicle from the viewpoint of a typical driver’s position, i.e. at a 104.8 cm distance 

from the central display. The scope of view was 150 deg horizontal and 30 deg vertical. Images of side mirrors 

(50 deg horizontal visual field) and the rear view mirrors (30 deg) were shown on the displays.  

To output spatialized sounds, we used a driver’s seat with two speakers installed to the left and right side of the 

head at shoulders height location. Using interactive audio middleware software, the Vector Based Amplitude 

Panning sound spatialization algorithm [13] was used to control in real-time the relative level of sounds for the 

left and right speakers. A filter for non-individualized head related transfer function (HRTF) was also applied to 

implement binaural processing to generate a sense of sound source location that can distinguish the front and rear 

spaces, as well as distinguish the leftward and rightward directions. Monaural sounds were provided from a single 

speaker (JM10 pro., Conisis) placed at the center of the front panel. 

To create imitation sounds, we first classified traffic participants that could cause hazards into four categories: (1) 

vehicles, (2) motorcycles, (3) bicycles and (4) pedestrians. Samples recorded sounds were acquired for each 

category. Using a layered sound approach mixed with interactive audio middleware, the samples of vehicles were 

simulated by combining engine sound, road noise, and wind noise. The simulated vehicle sound playback 

precisely reflected the effects that engine rotation speed and engine load have on the vehicle engine sounds, and 

the effects of the vehicle’s speed on the road and wind noises, which made it possible to create imitation sounds 

that realistically represent the sounds of actual vehicle in the simulation. This was also the case with motorcycles. 

Additionally to the sound spatialization, a level attenuation effect as a function of relative distance was also applied 

to the simulated vehicle sounds.  

 



 

 
Figure. 1 A. An overview of the driving simulator used for the sound HMI experiment. The experiment 

participants drove an automatic transmission vehicle viewing the outside visual scenes presented on three 

flat screen displays. Spatial and monaural sounds were output with the seat speakers and monaural speaker 

respectively. Driver monitoring cameras (DMCs) were used to record participants’ gaze direction. B. 

Summary of sound HMI conditions and cue factors considered in the present study. Presentation of 

spatialized sound from hazard object provided a directional cue, whereas monaural sound presented from 

front regardless of direction of hazard object gave no directional cue. To provide an attribute cue, traffic 

participants were classified into four categories (vehicles, motorcycles, bicycles and pedestrians), and an 

imitative sound for the hazard object category was presented. In contrast, a common signal sound was 

presented for all four hazard objects categories in order to evaluate sound presentation condition without 

any attribute cue. While the sound presentation conditions (i, ii, iii and iv) provide a timing cue of realized 

hazard event, the no sound HMI condition did not give any cue. 

 

The signal sound consisted of impulsive synthetic tones of individual duration that were repeated at a rate of 0.3 

seconds. The same sound was used for the different categories of traffic participants, and thus it did not provide 

any cues as to the attributions of hazard traffic participants. Attenuation as a function of relative distance was not 

applied to the signal sound. 

 

HMI presentation 

There were five variations of HMI presentation (Fig. 1B): (i) spatialized imitating sound, (ii) spatialized signal 

sound, (iii) monaural imitating sound, (iv) monaural signal sound and (v) no sound. A directional cue was 

presented in (i) and (ii) but not in (iii) and (iv). Therefore, differences in driving behaviors between (i) and (iii) 

and between (ii) and (iv) indicate an effect of multiple factors including directional cue.  On the other hand, since 

an attributional cue was given in (i) and (iii) and not in (ii) and (iv), differences between (i) and (ii) and between 

(iii) and (iv) reveal an effect of multiple factors including the attribute cue. Whereas the conditions (i) to (iv) gave 

a timing cue of realized hazard to the experiment participants which was not the case in (v). Therefore, comparing 

the driving behaviors seen in (i) to (iv) with those in (v), we examined the effect of hazard presence cue on driving 



safety.  

In order to assist attention allocation to hazardous traffic participants, HMI requires a distinction between 

hazardous and non-hazardous objects. While the development of discrimination rules in real traffic have been 

difficult issues, the predefined scenarios of the simulator make it possible to identify traffic participants that could 

become hazardous, based on the driving behavior of own vehicle. We identified the potential hazardous 

participants in the scenarios before conducting the experiment. To detect a transition from potential hazard to 

realized hazard, we used the centripetal time to collision (centripetal TTC; Fig. 2A), which extends the well-

known TTC from one dimension to two dimensions. This was obtained by dividing a relative distance from the 

own vehicle to the object by a relative velocity component in the direction from the own vehicle to the object. To 

define the threshold of centripetal TTC, we conducted a preliminary test of subjective discrimination while driving 

the hazard prediction courses. We found that the hazard sense was usually evoked when centripetal TTC became 

less than 5 sec. Here, the TTC is known not to be an effective indicator when the hazard is evoked by uncertainty 

in behaviors of objects that are at a close distance, at a low relative velocity. It is also the case with centripetal 

TTC. Indeed, we found the transition often occurred when the relative distances of potential hazard objects are 

shorter than 5 m. Putting our preliminary findings together, we deemed hazard as realized when the centripetal 

TTC is shorter than 5 sec or the relative distance is shorter than 5 m. The simulator calculated the relative distance 

and centripetal TTC at a frequency of 100 Hz. The sound HMI was presented in the conditions (i) to (iv) when 

this criterion was satisfied. 

 

 
Figure. 2 A. Illustration of simulated parameters used for the estimation of time to collision (TTC) in a 

centripetal form, that is, relative distance to a traffic participant ( ) was divided by approaching speed 

toward the traffic participant ( + ). B. Diagram explaining the estimation of effective visual field for 

spatial perception in the current study. The effective visual field is represented with a virtual cone oriented 

towards the gaze direction. We estimated that the experiment participants obtained spatial perception of 

realized hazard objects when the objects and cone overlapped for longer than 200 ms within a time window 

of 250 ms, which we term “gaze” in this study. 



Procedure 

The experiment started with a measurement of the directional accuracy of sound images. We presented the 

spatialized sounds of the vehicle, bicycle, pedestrian and signal from the directions of front, back, left, right and 

four diagonals, sequentially and in a random order. Note that the location of spatialized sound was fixed for each 

presentation. The time duration of each presentation was 1 sec. After every presentation, the participants indicated 

the direction of the sound image by marking the direction on an egocentric coordinate figure illustrated on their 

response sheet. 

Next, the participants drove a driving course preinstalled in the simulator to familiarize themselves and verify the 

sensitivities of steering and pedaling and the size of their own vehicle. They also drove the 4th of six hazard 

prediction training courses preinstalled on the simulator, in order to familiarize themselves with inner-city driving 

on the simulator. 

We then recorded the driving behaviors (gaze directions, accel and brake pedal operations, vehicle movements) 

as they drove the remaining five courses of hazard prediction training. The driving of five courses were separated 

by short breaks. The order of the courses (1st, 2nd, 3rd, 5th, 6th) was same for all participants, while the five 

Human-Machine Interface (HMI) conditions (spatialized imitating, spatialized signal, monaural imitating, 

monaural signal, no HMI) were given in a random order.  We stopped the experiment if participants showed 

signs of simulator sickness 

 

Recordings and analyses 

To evaluate the effectiveness of HMI presentation on driving operations in the experiment participants, we 

recorded their operations of vehicle accelerator and brake pedals. We also recorded simulations of positions and 

velocities of their own vehicle and the twenty closest traffic participants, as well as the centripetal TTC and events 

of collision. The recording frequency was 100 Hz. To indicate a degree of safe driving with respect to the realized 

hazard traffic participants, the current study used latencies of deceleration operations from the time of hazard 

realization. Here, an onset of brake-pedal and offset of accel pedal after the beginning of hazard realization were 

respectively extracted as the latencies of deceleration operation.  

The effectiveness of additional sound HMI on their attention allocation to realized hazard participants was 

analyzed, using the gaze direction recorded at a frequency of 20 Hz with a camera-based driver monitoring system 

developed by Seeingmachines company. To represent an effective visual field, we set a virtual cone towards the 

gaze direction (Fig. 2B). We estimated that they became aware of realized hazard objects that were overlapped 

with this cone. A previous study indicated that an effective visual field size of spatial perception is larger than 5 

deg, when a visual target stimulus was presented for 250 ms on a dynamical background simulating a driving 

situation [14]. Hence, we set the horizontal radius of cone at 5 deg. Taking into account a large error of gaze 

recording in vertical direction, we set the vertical radius of cone at 8 deg. We deemed that they became aware of 

realized hazard objects when the objects and cone overlapped for longer than 200 ms, within a time window of 

250 ms. In addition to the latencies of vehicle operations and gazing, the frequencies of collision were compared 

among the HMI conditions to show the assistance effect of HMI presentation. 

In statistical analyses, we tested significance of differences in the collision frequency amongst the HMI conditions 



using a z-test. For the difference in the latencies of gazes and deceleration operations, we conducted a Wilcoxon 

signed-rank test. The current study reports uncorrected p-values in multiple comparisons.   

 

RESULTS 

 

Collision and hazard gaze frequencies 

Collision frequency with traffic participants to the front and rear of own vehicle at the time of hazard realization 

have been summarized for each HMI condition in Fig. 3A and B. In the case of the front hazard, a decrease in 

collision frequency was observed in the conditions of spatial signal sound HMI (6.9 %) relative to the no HMI 

condition (11.1 %). On the other hand, in the case of the rear hazard, an increase in collision frequency was 

observed in the presentation of monaural signal sound (10.5 %) relative to the no HMI condition (4.9 %), whereas 

such increase was not found for any other conditions of sound HMI presentation (5.6 – 6.8 %).   

 

 
Figure. 3 A. Collision frequency with traffic participants to the front of own vehicle at the time of hazard 

realization. B. Collision frequency with traffic participants in the rear space. C, D. Gaze frequency of 

hazard traffic participants in the front and rear spaces. E, F. Collision frequency with gazed hazardous 

participants in the front and rear spaces, respectively. The results in each scene and participant were 

merged, and then the frequency was obtained in each HMI condition. The sample number is indicated on 

the top right in each panel. Note the differences in the frequency among the HMI conditions did not reach 

to a significance level in our statistical test (p > 0.1). 

 



To find whether there was an assistance effect that helped prevent drivers from missing hazard objects, the gaze 

frequencies of hazard object in the front and rear spaces is illustrated in Fig. 3C and D. The frequency of front 

hazard gaze ranged from 82 % to 85 % in every condition of sound HMI presentation, and no significant difference 

was obtained relative to the no HMI condition (85 %). In the case of rear hazard, the gaze frequency in the 

condition of spatialized imitating sound HMI (64 %) was lower relative to the condition of no HMI (89 %) and 

the other conditions of sound HMI presentations (Spatialized signal: 81 %; Monaural imitating: 77 %; Monaural 

signal: 71 %), though the differences were not significant (p > 0.1). 

To indicate whether the spatial perception of hazard objects with gazing was effective, the collision frequency in 

the condition of hazard gaze was compared under different HMI conditions. In the case of front hazard, the 

collision frequency obtained with spatialized signal sound (7.3%) was lower relative to the no HMI condition 

(11 %), whereas the other sound HMIs (11 – 12 %) did not show any significant improvement with respect to the 

no HMI condition (Fig. 3E). In the rear hazard scenario, no collision was observed in the spatialized sound HMIs, 

whereas it appeared at a frequency of 6.3 % in the condition of no HMI (Fig. 3F). 

 

Figure. 4 A. Latencies of front hazard gaze from the hazard realization (i.e., the time when the centripetal 

TTC falls below 5 sec or the relative distance is shorter than 5 m.) B. Latencies of rear hazard gaze from 

the hazard realization. Box plots are used to indicate medians, quartiles and range of latency distributions 

in each HMI condition. The results in each scene and participant were merged in each distribution. 

Significant and marginal difference in the median between HMI conditions are marked by an asterisk (*, 

p < 0.05) and dagger (†, p < 0.1), respectively. 

 

Hazard gaze latencies 

Figure 4A summarizes the latencies of frontal hazard gaze in the form of boxplots. We found significantly shorter 

medians of latencies in every condition of sound presentation (Spatialized imitating: 2.5 s; Spatialized signal: 2.3 



s; Monaural imitating: 1.9 s; Monaural signal: 1.5 s), relative to the condition of no sound presentation (3.5 s). 

Significantly shorter medians of latencies were also found with the signal sound presentation compared with the 

imitating sound presentation in both spatialized and monaural conditions. In the cases of rear hazard, the 

spatialized and monaural signal sounds significantly decreased the gaze latency relative to the condition of no 

sound presentation (Fig. 4B; Spatialized signal: 3.9 s; Monaural signal: 1.6 s; No HMI: 5.0 s; p < 0.05). We also 

found a significantly shorter median of latency with the signal sound relative to the imitating sound in the 

monaural condition (p < 0.05). No significant difference was found between the conditions of no sound 

presentation and 3D and monaural imitating sound presentations (p > 0.1). 

 
Figure. 5 A, B. Latencies of accel pedal offset from the hazard realization in the front and rear spaces, 

respectively. C, D. Latencies of brake pedal onset from the hazard realization in the front and rear spaces, 

respectively. Box plots are used to indicate medians, quartiles and range of latency distributions in each 

HMI condition. The results in each scene and participant were merged in each distribution. Significant and 

marginal difference for the median between HMI conditions are marked by an asterisk (*, p < 0.05) and 

dagger (†, p < 0.1), respectively. 

 

Decelerate operation latencies 

The offset latencies of acceleration pedaling relative to the front hazard realizations were summarized in Fig. 5A. 

No significant difference in their median was found among the HMI conditions (p > 0.1). When the hazard traffic 

participants were in the rear space (Fig. 5B), a significant decrease in the latency of acceleration pedaling was 

obtained with the presentation of monaural signal sound (0.6 s), relative to the no HMI condition (2.2 s; p < 0.01). 

A marginal decrease was also observed relative to the conditions of spatialized signal HMI (1.3 s; p < 0.1) and 



monaural imitating HMI (1.1 s; p < 0.1).  

As to the onset latencies of pushing down the brake pedal, a significantly shorter median of latency was obtained 

in the condition of spatialized signal sound HMI (1.9 s) compared with the conditions of no HMI (2.2 s; p < 0.01) 

and spatialized imitating sound HMI (2.2 s; p < 0.05) in the front hazard (Fig. 5C). We also found a significantly 

shorter median of latency in the condition of monaural sound HMI relative (1.6 s) to the condition of no HMI (p 

< 0.05).  When the hazard traffic participants were in the rear space (Fig. 5D), a decrease observed in the 

presentation of monaural signal sound (3.0 s) relative to the condition of no HMI was significant (4.4 s; p < 0.05), 

and that the effect relative to the condition of spatialized signal sound was marginal (4.0 s, p < 0.1).  

 

Directional accuracy of 3D sound image 

To estimate the sound localization accuracy of spatialized sound HMI, we used the directional responses acquired 

for every participant at the beginning of the experiment. We took an absolute value of angular difference between 

the presented spatial sound and the directional response reported by the participants. The errors of directional 

responses obtained from each participant were summarized for vehicle, bicycle, pedestrian, and signal sounds in 

Fig. 6. The median errors obtained for all participants were below the chance level of 90 deg, except for the 

directly in front and rear directions, where the sound image was often perceived as located in the opposite direction. 

The overall median across all the participants, indicated a localization accuracy of 30 deg. 

 

Figure. 6 Distributions of localization errors of spatial sounds presented on the directions of front, back, 

left, right and four diagonals. Imitative sounds of vehicle, bicycle and pedestrian and signal sound were 

used in the measurement of localization error. An absolute value of angular difference was taken between 

the presented spatial sound and the directional response reported by the participants. The chance level 

indicates the error size that we would obtain for random responses. 



DISCUSSIONS 

 

Timing cue assists early hazard gaze 

Significantly earlier gazes of front hazard were found with every condition of sound HMI presentation compared 

with the no sound HMI condition (Fig. 4A). Our results confirmed that the presentation of an auditory cue on the 

occurrence of a visual event can facilitate earlier behavioral responses without providing any spatial or attribute 

cue, as indicated in the previous studies [15-17]. One might think that a cue of hazard presence, rather than a 

timing cue of transition event from potential hazard to realized hazard, decreased the gaze latency. If it were true, 

the experiment participants could have been aware of hazard presence more frequently, which could have been 

observed as an increase of hazard gaze frequency under the conditions of sound HMI presentation relative to the 

condition of no sound HMI. However, the little increase we observed (Fig. 3C) does not support this hypothesis. 

Our results suggest that the early cue of transition from potential hazard to realized hazard decreased the latency 

of gaze under the conditions of sound HMI presentations. 

In the rear hazard situation, a significant decrease of gaze latency was obtained with the presentation of signal 

sound HMI compared with the no HMI condition (Fig, 4B), which could be related to the effect of the timing cue. 

On the other hand, no significant decrease of gaze latency was found with the presentation of imitation sound. In 

this case, because of the attenuation effect on the volume of imitation sound as a function of relative distance, an 

auditory awareness of the gradual onset of imitation sound might be delayed compared with the signal sound that 

was free from the attenuation effect. In addition, a visual awareness of the transitions from potential hazard to 

realized hazard in the rear space would tend to be delayed with respect to those in the front visual field while 

driving forward. For these reasons, no significant decrease was found in the current study with the presentation 

of imitation sounds for rear hazard situations.  

 

Directional cue assists a decrease of collision frequency 

A decrease of collision frequency with the frontal hazard was observed in the presentation of spatialized signal 

sound compared with the no HMI condition (Fig. 3A and E), which could be related to the significantly early 

onset of pushing down the brake pedal in the spatialized signal sound presentation relative to the no HMI condition 

(Fig. 5C). It was not the case where the monaural signal sound was presented. Taken together, the current study 

indicated that a directional cue is effective in the situation of front hazard to facilitate the earlier onset of pushing 

down the brake pedal, resulting in the decrease of collision frequency. The results are consistent with the previous 

studies in which a presence of spatial auditory cue reduced the time for visual search [2] and acceleration or 

braking response in driving hazard avoidance [5].  

The current study also found that the latency of brake pedaling onset was significantly shorter under the condition 

of spatialized signal sound compared with the spatialized imitation sound. Given that the directional cue was 

already enough to identify a hazard in the front space, an intense sense of hazard under the signal sound would be 

more effective to decrease the latency of brake pedaling relative to the spatialized imitation sound attribute cue. 

The assumption was supported by our finding of significantly early onset of pushing down the brake pedal for the 

monaural imitation sound (Fig. 5C), in which the attribute cue would assist an early identification of hazard for 



participants.  

No collisions were observed when the rear hazard was gazed for the presentations of spatialized sound HMI, 

whereas it was not the case with either the presentation of monaural sound HMI or no sound HMI presentation 

(Fig. 3F). This tendency was not observed when the collision frequency includes the cases where the realized 

hazard object was within the effective visual field of spatial perception [14] (Fig. 3B). In other words, neither 

presence perception of realized hazard object, which would be available within an effective field extending 15deg 

[14, 18], nor spatial perception of potential hazard object would be effective to use the directional cue. Taken 

together, the auditory directional cue was informative when the experiment participants obtained the visual spatial 

perception of hazardous object in the rear space, which was effective to reduce the collision frequency.  

The previous psychophysical studies obtained a facilitation effect on earlier behavioral responses as visual targets 

moved towards the peripheral visual field [19] and even towards the rear space [20]. It should be also noteworthy 

that rapid responses were previously obtained with a presentation of close rear auditory warning signal relative to 

a far front auditory warning signal [21]. Taking into account that the seat speakers were close to the ears and were 

in the rear space, the presentation of spatial sound from the seat speakers could result in a better performance 

relative to the monaural sound from the front speaker. Although we did not obtain the rapid responses in both of 

eye movements and pedaling, a better performance was found in the form of low frequency of rear hazard collision 

under the presentation of spatial sound compared with the monaural sound. 

Regarding the sound localization accuracy of the directional cue, front-rear ambiguity is known to occur in 

localization of sound source in humans. Although we can use monaural spectral cues, originating from the spectral 

filtering of sound by the pinnae, head, and torso in order to identify whether sound sources are in front or rear, the 

ambiguity remains for both actual and spatialized sound sources [22-24]. While the spectral filtering is different 

among individuals because of the individual anatomical variance of pinnae, head and torso, the current study used 

the same spectral filtering across the experiment participants (i.e., non-individualized HRTF). For these reasons, 

the relatively large front-rear confusion in localizing sound image occurred in our presentation of spatial sound 

(Fig. 6). Nevertheless, the current study observed the tendencies of effectiveness for the directional cue.  

Recall that the spatial sound source from the hazardous traffic participants moved relative to the own vehicle. 

Considering that the resolution of front-back ambiguity in the localization of a sound source can be improved by 

the movement of sound source [25], the perceived directional cue in the experiment participants might have been 

more accurate than those we measured for the stationary directional sounds.  

It should be also noteworthy that there might be neurophysiological mechanism that makes the front-rear 

ambiguity less serious. Receptive field (RF) of audiovisual neurons in the superior colliculus (SC), known to be 

involved in allocating spatial attention [26-28], can show different spatial properties in the RF extent depending 

on their locations. That is, the neurons in the rostral portion of the SC, responsive to stimuli presented from frontal 

space, have often showed visual and auditory RFs less than 10 deg and 20 deg respectively in diameter, whereas 

those in the caudal SC that respond to stimuli presented from the periphery have visual RFs ranging from 40 to 

100 deg and auditory RFs from 60 to 135 deg in diameter [12, 19, 29]. Thus, an auditory directional cue presented 

in the rear-left spatial area, for instance, is possibly captured within the RF of an audiovisual neuron that has a 

visual RF responsive to visual stimuli in the front-left spatial area. Although the current study found the relatively 



large front-rear confusion in localizing sound image, the auditory directional cue towards a direction in the rear 

might be effective to allocate spatial attention extending from the direction to the front left, which would assist 

the hazard awareness not only in the lateral rear but also in the lateral front on the same side. 

 

Early gaze and deceleration with monaural signal sound presentation for rear hazard  

A significantly shorter latency of rear hazard gaze was found with the presentation of monaural signal sound 

compared with the no HMI condition (Fig. 4B). It was also true for the onsets to release acceleration pedal and to 

press brake pedal (Fig. 5B and D). While the early latencies could give a little extra time to collision, the 

experiment participants were required by themselves to identify the traffic participant causing the hazard status, 

because the monaural signal sound conveyed no spatial nor object cue. Therefore, it would be possible that the 

early gaze did not assist to decrease the collision frequency. The early responses of deceleration would not always 

help drivers from preventing the collision, since the hazard participants were in the rear space. Indeed, the current 

study did not observe any significant decrease of collision frequency when the rear hazard was gazed under the 

presentation of monaural signal sound HMI (Fig. 3F). Rather, an increase of the collision frequency was observed 

under the presentation of monaural signal sound compared with the other HMI conditions (Fig. 3B). Our results 

suggest that the signal sound could decrease the latency of gaze and deceleration, but it could not always assist 

collision avoidance because of the lack of directional information on hazard participant.  

 

Early gaze of frontal hazard with monaural sound from the front 

The source of monaural sound in the current study was always at the front, regardless of the directions of hazard 

participants. Thus, our monaural sound could not exactly provide a cue on the direction of hazard traffic 

participants. However, under the condition of high frequency of hazard events in the front hemifield compared 

with the rear hemifield, the monaural sound from the front location would be beneficial to allocate their attention 

on the front direction. If it was true, an effect of the valid cue should have been found as early responses, as shown 

in the previous studies [5, 15, 30]. Indeed, we found a significantly early gaze of hazard traffic participant under 

the condition of monaural sound presentation relative to the no HMI condition, when the hazard traffic participants 

were in the front (Fig. 4A). Overall, although the monaural sound was not informative on the hazard direction, its 

source location in the front space could be effective to facilitate the front hazard gaze.   

 

CONCLUSIONS 

Our observations of the effective assistance of directional cue in spatial sound provide important references in 

terms of human factors for considering informative HMI that facilitates hazard awareness from all directions and 

help safer driving behaviors. 
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ABSTRACT 

Forward Collision Warning (FCW) systems that alert a driver about the risk of rear-end collisions can contribute 

to a reduction of traffic accidents caused by human errors. Typically, FCWs create alerts that appear late when 

the risk is already high and are of binary nature, i.e., either in an alerting state during high risk or not producing 

any alert at lower risks. The choice at what risk level to start alerting in a binary manner is subject to a tradeoff 

between how much time an alert gives the driver to react and how necessary the alert appears to the driver. Our 

goal is to circumvent this limitation of classical binary FCWs to allow drivers to perceive developing risks early 

and in an intuitive manner and, accordingly, better avert developing risks with foresight. To that end, we propose 

a new system that assesses potentially hazardous situations in real time and continuously outputs a signal that 

alters its strength depending on the risk level. Here we report a study on the effect of variations of the proposed 

system on driving behavior and user acceptance. 

The experiment was carried out in a driving simulator equipped with prototypes of visual, auditory, and tactile 

human-machine interfaces (HMIs). The participants performed driving tasks in two different driving scenarios. 

The subjective ratings of system acceptance were assessed with questionnaires on two dimensions, a usefulness 

scale and an affective satisfaction scale. The results indicate that, compared to an existing FCW system, all HMIs 

reduced driver reaction times and the visual HMI showed positive average scores of both usefulness and 

satisfaction in the driving scenario with high and medium collision risk. On the other hand, there was no HMI that 

achieved a good balance between the effect on driving safety and system acceptance in the scenario with lower 

criticality. These results suggest that the proposed notification system can improve driving safety and be perceived 

as subjectively acceptable in situations with high and medium collision risk despite the early signal. This makes 
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it a promising approach for circumventing the tradeoff between notification timing and risk perception. To address 

system effects on driving safety in situations with lower risk, further development iterations and long-term 

evaluations in a variety of traffic situations may be required.

INTRODUCTION

Forward Collision Warning (FCW) systems that alert a driver about the risk of rear-end collisions can contribute 

to a reduction of traffic accidents caused by human errors [1]. However, it is not guaranteed that a driver will 

successfully avert an accident after such an alert as it is typically triggered rather late when the risk is already high

[2]. One approach to address this issue is to provide alerts at an earlier point in time to give drivers more time to 

react. One issue of such an approach lies in the risk of causing annoyance to the driver. Early warnings are more 

frequent than warnings that only appear in critical conditions and are thus at higher risk of appearing in situations 

regarded as uncritical by the driver [see 3, p. 31]. The driver could then consider system alerts as irrelevant or 

even as false alarms. This can lead to a cry wolf effect [4, 5], which is characterized by the ignoring of alarms that 

were “wrong” previously - even in critical cases. Another approach consists of adapting the timing of an alert to 

the capabilities of the driver. For instance, Jamson et al. [6] have proposed an adaptive FCW system that adjusts 

the timing of its auditory alarms according to each individual driver’s brake reaction time. However, it is difficult 

to collect such individual reaction data in real-world driving environments because the driver’s response to a 

hazardous event including risk cognition, judgment and averting action can vary depending on not only individual

drivers but also driving situations.

To nevertheless convey an increasing collision risk early and successfully in various driving situations, we are 

proposing a system that assesses potentially hazardous situations in real time and continuously outputs a signal

that alters its strength depending on the risk level to intuitively convey increased forward collision risk to drivers.

As such it may be considered to represent an instance of so-called likelihood alarm systems [7]. The potential 

benefit of this approach is a circumvention of the tradeoff between notification timing and risk perception. Thus,

a driver may perceive the signal as less annoying despite its early onset. Our goal is to encourage drivers’ early 

voluntary risk averting action before there is a need for a more salient alert such as those used by present FCW 

systems. Such early and gradual risk communication may further be combined with existing salient FCWs as 

additional “guarantee” (see Figure 1).

Figure 1. Illustration of the new notification that we propose.
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Here we present an investigation of the effect and system acceptance of the proposed method in situations with 

low or medium risk levels. In particular, we try to answer the following research questions for a selection of 

continuous risk level communication methods: 

1. Does the proposed method reduce driver reaction times to developing front collision risks compared to 

classical FCW? 

2. Does driving safety with the proposed method increase compared to classical FCW? 

3. How subjectively acceptable is the proposed method? 

To address these questions, a driving simulator experiment was carried out. Because each signal modality may 

have a different effect on driver behavior, such as reaction times [8], four variations of Human-Machine Interfaces 

(HMIs) for risk level communication that utilize visual, auditory and tactile sensation were implemented into the 

driving simulator. The stimulus changing rate can vary depending on the risk increasing rate in our HMI concept, 

and thus the driver can differently perceive each HMI according to the driving situation. In this study, each HMI 

was tested in two different driving scenarios, which had in common that the ego vehicle eventually approached a 

leading vehicle, resulting in varying degrees of front risk and HMI activation. In one scenario the driver was 

distracted by a secondary task at the moment a sudden front risk appeared. In the second scenario the driver was 

indirectly motivated to produce tailgating behavior and thus become the primary source of front collision risk him 

or herself. Tailgating can produce an insufficient inter-vehicular distance and is one of the most severe driver-

related causes of traffic accidents [9], which makes techniques that reduce such behavior particularly desirable. 

METHODS 

Participants 

The experiment involved 17 participants (13 males and 4 females), whose ages ranged from 23 to 51. All 

participants had a valid Japanese driving license and reported normal, or corrected-to-normal, vision. Prior to the 

start of the experiment, all participants received an explanation of the contents and risks of the experiment as well 

as their rights and voluntarily signed a participation agreement. This study was approved by the Ethical Committee 

of the Honda Motor Co., Ltd. 

Materials and Apparatus 

The driving simulation used in this study was connected to Logicool G29 vehicle controls (Logitech Inc., CA, 

U.S.) for steering, accelerating, and braking. The steering wheel was mounted on a cockpit frame situated directly 

in front of the participant. The foot pedals were placed in a comfortable position on the floor in front of the 

participant. A curved monitor (effective display area: 88.0 x 36.7 cm, LG Electronics, Korea) showing an image 

of the driving scene was positioned 1 m from the participant. A secondary task was displayed on a touch screen 

(29.2 x 20.1 cm, Surface Pro, Microsoft Corporation, U.S.) positioned on the right-side of the steering wheel. 

For analyzing not only the data of driving behavior from the simulator but also the gaze direction of each 

participant, a non-contact driver monitoring system (sampling frequency: 25 Hz, Advanced Driver Monitoring 

System, Seeing Machines, Australia) was mounted on the cockpit frame toward the participant’s face. 
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For visual stimuli, a meter display (29.2 x 11.0 cm, LG Display, LG Electronics, Korea) and head-up display (18.0 

x 13.6 cm, HUD622, Maxwin, Japan) were placed between the monitor and steering wheel. The velocity of the 

subject vehicle was also displayed on the head-up display during a driving task. Environmental sounds of the 

driving simulator and an auditory stimulus generated by one of the HMIs were delivered through cordless 

headphones (WH 1000X M3, Sony, Japan). A seatbelt component, which included a webbing, tongue plate, buckle,

and retractor with a motor for generating force sensation, was installed to a pillar joined to the seat. Tactors (Vp6, 

Acouve Laboratory Inc., Japan) were attached inside the seat to present vibrotactile signals. Figure 2 illustrates 

the simulator setup.

Scenarios of the driving simulator were designed with Unity (Unity Software Inc., U.S.) and the program for HMI 

control was written in MATLAB / Simulink (The MathWorks Inc., U.S.).

Figure 2. Schematic illustration of the driving simulator setup.

HMI Design

To convey a forward collision risk, five different HMIs, including an existing FCW as a baseline system and the 

other HMIs as candidates for a new notification system, were implemented into the driving simulator. For 

representation of continuous collision risk change, the risk estimation method is an important factor to alter the 

strength of stimuli. Typically, Time-to-Collision (TTC) is used for collision risk estimation. However, its value 

has a large variation and can quickly jump between a few seconds and infinity, especially when the subject vehicle 

is far away from the target vehicle or the velocities of the two vehicles are similar. To avoid sudden and extreme 

variations, in this study the Time to Closest Point of Approach (TCPA) was used as a risk estimation method for 

stimulus control. The TCPA extends the concept of the TTC by addition of a term that represents the potential 

deceleration of the leading vehicle at any time [10]. Effectively this makes it not just sensitive to the temporal but 

also the spatial distance between two cars, resulting in a less erratic variation. For two vehicles driving on the 

same trajectory one behind the other, the stop time of the leading vehicle is given as follows:

where is the potential acceleration or deceleration of the leading vehicle and is the velocity of the leading

vehicle. When the stop time of the leading vehicle is larger than the TTC (the leading vehicle is assumed not to 

stop before the collision), the TCPA is given as follows:
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Where   is the relative velocity of the leading vehicle to the subject vehicle and   is the inter-vehicular 

distance between the two vehicles. In other cases, the TCPA is given as follows: 

 

where   is the velocity of the subject vehicle. The outcome of this calculation, up until an upper bound, 

determines the stimulus strength of each HMI. The following paragraphs describe each investigated HMI. 

(a) Head-up warning (HUW): This represents an existing forward collision warning system in the form of 

an amber ellipse (FOV: 4 x 1.5 degrees) that flashes two times on the head-up display. It is triggered 

when the Time-to-Collision (TTC) between the participant vehicle and another simulated vehicle falls 

below a 1.8 second threshold. The TTC describes the time that remains before the two vehicles collide 

based on their current locations and velocities. 

(b) Display color: This HMI conveys the approach of the leading vehicle visually. When the TCPA falls 

below 4 seconds, a 9 x 10 cm red rectangle is displayed on the meter display. The color brightness 

continuously changes according to the TCPA value such that it increases when the TCPA becomes smaller 

and decreases when it becomes larger. 

(c) Road sound: This HMI conveys the approach of the leading vehicle aurally. When the TCPA falls below 

4 seconds, a pre-recorded sound consisting of road noise and engine sounds of the leading vehicle is played 

back through the headphones. Both pressure and playback speed of the sound are modulated depending 

on the TCPA value such that these increase when the TCPA falls (risk increase). 

(d) Seatbelt tightening: This HMI conveys the approach of the leading vehicle via touch. When the TCPA 

falls below 4 seconds, the seatbelt webbing is retracted by the motor, resulting in seatbelt tightening. The 

current of the motor used for seatbelt tightening is set to depend on the TCPA value such that it increases 

when the TCPA falls (risk increase). 

(e) Seat vibration: This HMI exemplifies another form of approach communication through touch. Even 

before the risk increases, vibrations are always generated by transducers inside the seat in a steady rhythm 

during a drive. The stimulus is designed to imitate the vibration that arises when the subject vehicle crosses 

a hump. When TCPA falls below 4 seconds, the interval between vibrations falls with decreasing TCPA 

(risk increase). 

Driving Simulator Scenarios and Tasks 

To evaluate the effects of each HMI on driving behavior and system acceptance, two different driving scenarios 

were designed on a single roadway. The roadway was made up of two lanes for each direction without stops or 

intersections. In both scenarios, the participants could always see a leading vehicle in front of them and a vehicle 

in the right-side lane. In addition, oncoming vehicles sometimes appeared (see Figure 3). 
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Figure 3. Driving scene of the driving simulator.

   (i) Distracted driving scenario: The participants were instructed to drive at approximately 72 km/h (45 mph) 

without changing lanes. In addition to carrying out the driving task, the participants were instructed to 

perform a Surrogate Reference Task (SuRT), which required the participants to find and select the one 

stimulus that differed from others surrounding it [11] on the touch screen, as a secondary task (see Figure 

4). A 36-pixel white circle as the target and 18-pixel white circles as the distractors were used on a black 

background of the touch screen and these stimuli were updated every second. For controlling driving

workload between participants, a lane keeping assist system that allowed the participants to easily steer 

the subject vehicle was applied. After the leading vehicle continued to drive 30 meters ahead of the subject 

vehicle for a period selected randomly between 30 and 50 seconds, it decelerated at 0.4 G at an 

unanticipated timing for the participants.

   (ii) Motivated tailgating scenario: Before starting to drive, the participants were required to imagine an urgent 

situation in which they would have to quickly drive to the airport to avoid missing their flight. The 

participants were instructed to continue to drive for approximately 4 minutes. Lane changes were inhibited. 

The leading vehicle always drove in front of the subject vehicle at approximately 72 km/h (45 mph) and 

sometimes slowed down at 0.08 G. This created a conflict with the driver’s goal to arrive at the destination 

in time and may have facilitated tailgating behavior.

Figure 4. SuRT screen.
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Procedure 

The experiment consisted of three sessions: practice, evaluation in the distracted driving scenario, and evaluation 

in the motivated tailgating scenario. In the practice session, the participants were required to familiarize 

themselves with the simulation environment and the operation of the steering wheel and pedals. After this session, 

the participants received an explanation of how each HMI works according to hazardous events. In each evaluation 

session, a combination of the HUW and any one of display color, road sound, seatbelt tightening, and seat vibration 

HMIs was applied to investigate the effect of the proposed notification system, whereas only the HUW was 

additionally applied as a baseline condition (in total five HMI conditions). The participant performed five driving 

iterations under each HMI condition in the distracted driving scenario and a single drive under each HMI condition 

in the motivated tailgating scenario (see Table 1 for a list of test conditions). The test conditions were randomized 

in each evaluation session. After every drive, the participants answered nine questions (five for usefulness and 

four for affective satisfaction) on a scale from -2 to +2 (five grades) to assess subjective acceptance [12]. 

Table 1. 

Test conditions 

 

Session Task HMI Number of drives 

Practice Driving None 1 

Evaluation in the distracted 

driving scenario 

Driving + SuRT Only HUW (Baseline) 5 

Display color + HUW 5 

Road sound + HUW 5 

Seatbelt tightening + HUW 5 

Seat vibration + HUW 5 

Evaluation in the motivated 

tailgating scenario 

Driving Only HUW (Baseline) 1 

Display color + HUW 1 

Road sound + HUW 1 

Seatbelt tightening + HUW 1 

Seat vibration + HUW 1 

 

RESULTS 

Distracted Driving Scenario 

In this scenario, when the leading vehicle started to decelerate, almost all the participants were looking at the 

touch screen to perform the secondary task and did not see the driving situation. After becoming aware of a 

potential danger, they suspended the secondary task, looked ahead to understand the situation, and decelerated the 

subject vehicle. To evaluate how soon the participant responded to the hazardous event, the time from when the 

leading vehicle started to decelerate until the participant looked ahead, released the gas pedal, and started to press 

the brake pedal was analyzed. The yaw and pitch angles of the gaze were used to determine where the participant 
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was looking at and distinguish between seeing the monitor (driving situation) and seeing the touch screen for the 

secondary task.

Figure 5 shows the reaction times with each HMI condition. A one-way ANOVA was carried out to determine 

whether the response of participants varied depending on the HMI. Significant main effects of HMI on time to 

looking ahead [F(4, 397) = 215.48, p < .001], time to gas pedal release [F(4, 397) = 102.83, p < .001], and time 

to brake start [F(4, 397) = 80.38, p < .001], respectively, were found. Subsequent multiple comparison tests 

(Bonferroni corrected) revealed that, compared to the baseline condition, the participants responded significantly 

sooner to the hazardous event when any of the display color, road sound, seatbelt tightening, and seat vibration

HMIs were activated. The display color, seatbelt tightening, and seat vibration HMIs reduced the reaction time by 

a greater margin than the road sound HMI did (see Table 2).

Figure 5. Comparison of reaction time of (a) looking ahead, (b) gas pedal release, and (c) brake start.

To evaluate how hazardous the situation became in consequence of reactions to the hazardous event, the minimum 

inter-vehicular distance after the leading vehicle started to decelerate was calculated for every drive (see Figure 

6). A larger value means a longer distance to the leading vehicle, i.e., a safer situation. A one-way ANOVA and 

multiple comparison tests were carried out. A significant difference was found [F(4, 397) = 82.58, p < .001] and 

the difference in inter-vehicular distance between conditions had a similar tendency as the differences for reaction 

times (see Table 2).

Figure 6. Comparison of minimum inter-vehicular distance.
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Table 2. 

Multiple comparison test of the reaction time and minimum inter-vehicular distance 

 

HMI condition 1 HMI condition 2 Time to 

looking ahead 

Time to 

gas pedal release 

Time to 

brake start 

Minimum inter-vehicular 

distance 

Mean 

difference 

p value Mean 

difference 

p value Mean 

difference 

p value Mean 

difference 

p value 

Only HUW Display color 1.65 p < .001*** 1.47 p < .001*** 1.33 p < .001*** -10.0  p < .001*** 

Only HUW Road sound .86 p < .001*** .77 p < .001*** .67 p < .001*** -4.11  p < .001*** 

Only HUW Seatbelt tightening 1.71 p < .001*** 1.37 p < .001*** 1.23 p < .001*** -8.96  p < .001*** 

Only HUW Seat vibration 1.71 p < .001*** 1.33 p < .001*** 1.18 p < .001*** -8.27  p < .001*** 

Display color Road sound -.79 p < .001*** -.70 p < .001*** -.67 p < .001*** 5.91  p < .001*** 

Display color Seatbelt tightening .069 n.s. -.10 n.s. -.10 n.s. 1.06  n.s. 

Display color Seat vibration .063 n.s. -.14 n.s. -.16 n.s. 1.75  n.s. 

Road sound Seatbelt tightening .86 p < .001*** .60 p < .001*** .57 p < .001*** -4.85  p < .001*** 

Road sound Seat vibration .85 p < .001*** .56 p < .001*** .51 p < .001*** -4.16  p < .001*** 

Seatbelt tightening Seat vibration -.0057 n.s. -.036 n.s. -.056 n.s. .69  n.s. 

***Statically significant at p < 0.001, n.s. = Not significant at p > 0.05 

 

Motivated Tailgating Scenario 

Because the participants drove in a different manner according to their preferences in this scenario, the stimulus 

strength and activation frequency of HMI during 4 minutes of driving can vary depending on the individual 

participant. To evaluate how far the participants drove from the leading vehicle in consequence to the interaction 

between HMI activation and participant reaction during a drive, the average Time-Headway (THW) between the 

subject vehicle and leading vehicle was analyzed for every drive. Furthermore, although the HUW was set with 

the same threshold as in the distracted driving scenario, it was not activated due to the small deceleration of the 

leading vehicle in all drives of this scenario. In consequence, the drive with only HUW (baseline condition) 

equaled a non-HMI drive. Therefore, for evaluation of the effects of each HMI, the variation of the average THW 

(∆THWave) in each drive with each HMI relative to that of non-HMI drive was calculated for every participant. 

To consider the participant characterization, based on whether the average THW in non-HMI drive exceeds 1.5 

seconds, the participants were divided into two groups: non-aggressive (8 participants) and aggressive (9 

participants). 

Figure 7 shows ∆THWave of each participant group. With the aggressive participants, a trend for an increase of 

the average THW relative to the non-HMI condition is observed (∆THWave exceeded zero for many participants) 

and the effect of seat vibration HMI was significant (t(8) = 2.17, p < .05). To compare the effect of each HMI, a 

two-way ANOVA was carried out with the factors of HMI and participant group and the analysis indicated no 

main effect of both HMI and participant group (HMI: [F(3, 60) = 1.75, p = .33], participant group: [F(1, 60) = 
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9.79, p = .052]). The interaction between HMI and participant group was not significant [F(3, 60) = .39, p = .76].

Figure 7. Comparison of ∆THWave of (a) all participants, (b) non-aggressive participants, and (c) aggressive 

participants.

Subjective Ratings of HMI Acceptance

To evaluate system acceptance, based on the analysis method that Van der Laan et al. have reported [12], the 

average scores of five questions for subjective usefulness and four questions for affective satisfaction were 

calculated. Figure 8 shows the average scores of all participants on two dimensions, a usefulness scale and a 

satisfaction scale. Here, the error bars indicate the standard deviations between participants and there is no plot 

for the baseline condition in the motivated tailgating scenario due to no HMI activation. In the distracted driving 

scenario, the usefulness scores of the display color, road sound, seatbelt tightening, and seat vibration HMIs were 

significantly higher than the neutral score (zero), i.e., they were evaluated positive (display color: t(16) = 8.95, p 

< .01, road sound: t(16) = 2.69, p < .01, seatbelt tightening: t(16) = 17.42, p < .01, seat vibration: t(16) = 11.30, p 

< .01). The satisfaction scores of the baseline condition and the display color HMI were significantly higher than 

zero (baseline: t(16) = 6.01, p < .01, display color: t(16) = 2.78, p < .01), whereas the score of the road sound HMI 

was significantly lower than zero (t(16) = 2.79, p < .01).

In the motivated tailgating scenario, the usefulness scores of the display color, seatbelt tightening, and seat 

vibration HMIs were significantly higher than zero (display color: t(16) = 2.23, p < .05, seatbelt tightening: t(16) 

=5.59, p < .01, seat vibration: t(16) = 6.34, p < .01). The satisfaction scores of all HMIs were not higher than zero, 

whereas the scores of the road sound and seat vibration HMIs were significantly lower than zero (road sound: 

t(16) = 2.47, p < .05, seat vibration: t(16) = 1.98, p < .05) and were thus evaluated negative
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Figure 8. Subjective ratings of HMI acceptance in (a) distracted driving scenario and (b) motivated tailgating 

scenario.

DISCUSSION

The results demonstrate that, compared to the existing FCW, all HMIs that we proposed reduced participant 

reaction times to the hazardous event and the situation, accordingly, became safer in the distracted driving scenario. 

In this scenario, the participants were not able to directly watch the leading vehicle beginning to decelerate because 

of the secondary task. The proposed system has the features of early signal onset and conveying the degree of 

front risk. It is considered that, compared to the existing FCW, these features led the participants to become aware 

of the increased front risk and respond to it sooner. In particular, because the deceleration of the leading vehicle 

was rapid and the collision risk largely increased in this scenario, the change of stimuli from HMIs seemed to be 

easy to perceive. 

The reaction time with the road sound HMI was longer than that with the other three HMIs (display color, seatbelt 

tightening, and seat vibration) and both the subjective usefulness and affective satisfaction were negative on 

average. For the prototype of sound source, not the beep sound but the natural road sound that the driver hears in 

daily driving was used to avoid annoyance. In this experiment, the participants heard both the environmental 

sounds of the simulator and the auditory stimulus through the headphones and it seemed that they were difficult 

to distinguish. However, this issue can be caused by in-vehicle sounds or environmental sounds during actual

driving. It is noteworthy that the display color HMI was perceived as both useful and satisfying.

In the motivated tailgating scenario, compared to the baseline condition, only the seat vibration HMI significantly 

encouraged the aggressive participants to drive farther away from the leading vehicle. In this scenario, the 

deceleration of the leading vehicle was small and the inter-vehicular distance gradually decreased. Because the 

stimulus of seat vibration HMI was output in a steady rhythm all the time while driving and the interval between 

stimuli was changed once TCPA fell below the threshold, the participants were able to notice the start of risk 

increasing more clearly and respond to the increased risk sooner compared to the other HMIs. However, some 

participants were sensitive to the stimulus of seat vibration HMI and the average score of affective satisfaction 

was negative. In fact, a participant commented, “The vibration from the seat is uncomfortable for me.” These 

results suggest that this scenario requires both ease of perceiving the starting point of stimulus changing and 
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subjective acceptance, whereas there was no HMI that achieved a good balance of them on its own. 

One possible reason why HMIs other than the seat vibration HMI did not achieve significant effects on safe driving 

in the motivated tailgating scenario is that each driving time (4 minutes) was too short to evaluate such an effect. 

As mentioned above, besides the small deceleration of the leading vehicle, the degree and frequency of 

approaching the leading vehicle depended on not only HMI effect but also individual participants in this scenario. 

∆THWave was calculated for every participant to evaluate the effect of each HMI on driving safety and this 

quantitative measurement showed consequences of the iterative interaction between HMI activation and 

participant reaction during a drive. Therefore, a long-term evaluation is considered necessary to determine whether 

the system has an effect on driving behavior in such a situation with lower criticality. Furthermore, HMIs can be 

improved to have signal onset at a degree that is not perceived as annoying even in situations with lower criticality. 

For instance, an HMI that is activated all the time while driving can give information on current status or a small 

change of risk to the driver. To focus on these issues, our research group has reported another study for long-term 

system evaluation on a public road [13]. 

From the results in the distracted driving scenario, the display color HMI seems to be the most balanced HMI 

between the effects on driving safety and subjective acceptance. In prototyping the display color HMI, we 

designed the stimulus to be perceivable in the peripheral visual field while driving. However, in cases of severely 

inattentive driving or drowsy driving, it is not guaranteed that a driver will always perceive such a visual stimulus. 

On the other hand, the seatbelt tightening and seat vibration HMIs also showed a good balance of the effect on 

driving safety and subjective acceptance although their satisfaction scores were not necessarily positive. 

Especially concerning the seatbelt tightening, a participant commented, “When I pressed the brake pedal, releasing 

of the tension was too late,” which may explain the low score of satisfaction. In this study, we set the thresholds 

for both start and stop of all HMIs to 4 seconds of TCPA. In consequence, the stimulus stopped too late after the 

participant started to decelerate the subject vehicle and this time gap is considered to partially lead to low scores 

of subjective ratings. A promising approach for this issue is to adapt the HMI stop threshold to driving behavior 

and driver’s attention through combination with not only driving data but also driver’s gaze data from a driver 

monitor camera. To minimize the gap between HMI activation and driver’s risk perception, once the situation is 

improved by the driver’s appropriate attention or averting action, the system should stop the stimulus immediately. 

Furthermore, the multimodal effect using multiple HMIs is another interesting investigation topic. Although the 

stimulus strength of each HMI changes depending on the risk level in our concept, the participant may have 

differently perceived each HMI that utilizes different modality [14]. If we apply multiple HMIs and assign their 

roles according to the risk level, the information may become more subjectively relevant to the effect of averting 

front collision risks. 

CONCLUSIONS 

In this study, we have proposed a new system that assesses potentially hazardous situations in real time and 

continuously outputs signals with a strength that depends on the risk level. A driving simulator experiment was 

carried out to investigate the effects of the proposed system on driving behavior and user acceptance. The results 
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indicate that the proposed system reduced driver reaction times to a developing front collision risk and the situation 

accordingly became safer compared to a classical FCW in a driving situation with high or medium collision risk. 

A peripheral visual stimulus that changes the color brightness on the meter display showed high system acceptance 

in such a driving situation. Future work should aim to achieve more balanced HMI candidates in terms of driving 

safety and system acceptance in driving situations with lower criticality. We expect further insights from long-

term evaluations in which drivers would have more opportunity to become accustomed to the added information 

sources.  
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ABSTRACT 

 

Driving risks for elderly drivers are known to be associated with age-related diseases and cognitive decline. 

Furthermore, daily physical conditions such as drowsiness and fatigue also affect cognitive function and driving 

behavior. Therefore, in order to prevent traffic accidents involving elderly drivers, it is important to provide 

personal driver support that takes into consideration the effects of daily physical conditions. In this study, we 

explored the feasibility of a monitoring system utilizing daily physical condition data that can be assessed by 

wearable devices on elderly subjects. Focusing on the sleep characteristics that affect the physical condition, we 

found the relationship between attention function and driving behavior. As a result of the attention function 

evaluation by the Attention Network Test, irregular sleep time was associated with greater variation in attention 

function, suggesting that people with irregular sleep time had more unstable attention function. In addition, as a 

result of the driving behavior evaluation by the Driving Simulator Test, greater variation of the attention 

function was associated with the larger steering entropy and maximum acceleration of the car. These results 

suggest that instability of the attention function may cause the rough driving. Combined with the results of 

relationship between variability of sleep time and attention function, these results suggest that people with 

irregular sleep time are more likely to engage in rough steering and pedal operation, which may lead to sudden 

steering and acceleration that can cause accidents. It is also known that elderly people have problems in falling 

asleep and maintaining sleep than younger people. In order to eliminate traffic accidents involving elderly 

drivers, a support system that incorporates information on sleep habits will become more important. In recent 

years, the use of wearable devices has made it possible to objectively acquire daily activity and sleep data, and it 

is expected to utilize a wider range of daily activity data. In the future, we are planning to acquire actual vehicle 

driving data to understand the relationship between physical condition and driving behavior in more detail. 

 

 

INTRODUCTION 

 

Honda aims to achieve zero fatalities in traffic accidents involving Honda motorcycles and automobiles 

worldwide by 2050. The number of accidents involving elderly drivers is increasing along with the acceleration 

of the aging society in the world, and it is recognized as social-level problem [1]. Driving risk for elderly drivers 

is known to be associated with age-related diseases (such as cardiovascular disease, diabetes, sleep disorders, 

and other lifestyle-related diseases) and cognitive decline [2-3]. Furthermore, daily activity indicators that affect 

physical condition, such as sleep, exercise, and fatigue have also been reported to affect cognitive function and 

driving [4-6]. Thus, monitoring of daily activity is considered to be important for personal driver support in 

addition to conventional medical checkup data. In this study, we explored the feasibility of a monitoring system 

utilizing daily activity data that can be assessed by wearable devices. We report the relationship between daily 

activity indicators, attention function, which is important for safe driving, and the changes in driving behavior in 

elderly drivers.

 



 Shinkawa 3 

METHODS 

 

Ethics 

This study was conducted in accordance with the Declaration of Helsinki and ethical guidelines for 

epidemiology research authorized by the Japanese government, and it was approved by Institutional Review 

Board of Oita University (Clinical Review Board Approval No. 2355-C45), of Eisai Co., Ltd. (Registration No. 

2022-0793), and of Honda R&D Biotechnology Ethics Committee (No. 99HM014H). Written informed consent 

was obtained from all participants. 

 

Study design 

Elderly residents of Usuki City (Oita Prefecture, Japan) were asked to wear a smartwatch (VENU 2S, Garmin 

Ltd., Olathe, Kansas, USA) for two weeks to obtain daily activity data. Each participant was also administered 

the Attention Network Test (ANT) and the Driving Simulator Test (DST) four times, each at least two days apart 

during the two weeks. First trial of each assessment was served as practice session. 

 

Participants 

ANT was performed on 24 participants (age range 75-86 years, mean = 79.54, standard deviation (SD) = 3.39), 

of whom 16 (age: mean = 73.32, SD = 4.97) completed the DST. All participants held a driver's license (Table. 

1). 

 

Table 1. Characteristics of the participants  
  Characteristic  All, n = 24 DST completed, n = 16  

Age (years), range 75 - 86 75 - 86 

Age (years), mean (SD) 79.54 (3.39) 78.81 (3.52) 

Sex (male), n (%) 18 (75) 13 (81.25) 

BMI (kg/m2), mean (SD) 24.24 (2.38) 24.28 (1.88) 

Warninga, n (%) 3 (12.5) 1 (6.25) 

Crusha, n (%) 1 (4.16) 0 (0) 

a Self-reported number of the experiences in the past 2 years.  
 

Wearable sensor data 

The daily activity and related data were assessed using a smartwatch, VENU 2S (Garmin), and calculated by 

built-in algorithms developed by Garmin [7-9]. Sleep/wake parameters were estimated based on time data and 

RR-intervals (RRI), heart rate variability (HRV), respiration rate and wrist/body movement data assessed by 

optical sensor combined with accelerometer data. The number of steps were estimated by accelerometer data. 

Stress levels (0–100) were estimated primarily using a combination of RRI and HRV data. 
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Attention function assessment 

Using the ANT, we evaluated three attentional networks that constitute the human attentional function; the 

alerting network, which is thought to be involved in maintaining arousal, the orienting network, which is 

thought to be involved in selective attention to sensory stimuli, and the executive network, which is thought to 

be involved in resolving conflicting information [10]. The test program was created and executed using Unity 

(Unity Technologies, San Francisco, USA) and displayed on a monitor with a resolution of 1920 × 1080. 

The test used three Cue conditions (No cue, Center Cue, and Spatial Cue). In the Spatial Cue condition, an 

asterisk indicated the location of the next target. Participants were asked to identify the direction of the arrow 

quickly and accurately in the middle of the target and press the corresponding keyboard button (left button for 

target arrow pointing left, right button for target arrow pointing right). Three target types were used for the 

evaluation (Neutral, Congruent, and Incongruent) (Figure 1). 

 

 
 

Scores for each of the three attentional functions were calculated using the following formula based on the 

Reaction Time (RT) of the two related parameters. 

 

 Alerting Effect = RT (No cue) − RT (Center Cue) 

 Orienting Effect = RT (Center Cue) − RT (Spatial Cue) 

 Executive Effect = RT (Incongruent) − RT (Congruent) 

 

Higher Alerting Effect or Orienting Effect scores reflect the ability to use cues more efficiently, indicating better 

alerting or orienting attention function. On the other hand, higher Executive Effect scores indicate poorer 

function, indicating less ability to resolve conflicts between discrepant perceptual information. 
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Driving behavior evaluation 

Driving behavior was evaluated using HONDA Safety Navi (Honda Motor Co., Tokyo). For this test, a scenario 

consisting of an urban area and a mountain road was created and conducted. 

Participants underwent a 3-minute practice session followed by 3 x 5-minute main test sessions. If a subject 

reported feeling simulator sickness during the practice session, further testing was immediately stopped. The test 

included scenarios depicting situations such as pausing in an urban area, traffic lights, parked vehicles, and car 

jumps at intersections. The mountain road also consisted of a Winding Road consisting of an ascent and a 

descent (Figure 2). Input variables such as steering, accelerator, and brake recorded every 10 ms on the DST 

control PC and data on output changes such as vehicle coordinates and speed were acquired and used for 

analysis. Steering entropy was calculated according to Nakayama et al. (1999) [11].  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical Analysis 

Statistical analysis performed using python and scipy. The Pearson’s correlation analysis was used to evaluate 

the relationships between daily activity data, attention function, and driving behavior. In all cases, p < 0.05 was 

considered statistically significant. 

 

 

RESULTS 

 

Daily activity and attention function 

Figure 3 shows data on total sleep time, number of steps, and stress level obtained using a smartwatch in each 

participant. We first tried to examine the relationship between sleep and attentional function based on previous 

reports [12-14]. 
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Two sleep parameters, mean sleep duration and sleep duration variability (Figure 3A), were used to compare 

with the results of the ANT. The results showed that sleep duration variability is highly correlated with 

attentional function (Figure 4D-F) than mean sleep duration (Figure 4A-C) in all three attentional functions, 

alertness, orientation, and executive functions. These results suggest that irregular sleep duration may cause the 

unstable attentional function. 
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Attention function and driving behavior 

Driving behavior analysis using DST was conducted to examine the effects of attention function instability on 

driving behavior. This study focused on steering and pedaling on mountain roads. 

Steering entropy was used to evaluate steering operation [11]. We found the significant correlations between 

steering entropy and variability for all three attention functions, alertness, orientation, and executive functions 

(Figure 5A-C). For pedaling, the average of the maximum acceleration for each of the nine tests was used for 

the evaluation. As a result, we also confirmed the relationships between maximum acceleration and variability 

of all three attention functions (Figure 6A-C). In short, both higher steering entropy and maximum acceleration 

were associated with greater variation of attention functions. 
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DISCUSSION 

 

The present study focused on relationships between sleep, attention function, and driving behavior. We found 

that the variability of daily sleep duration had more influence on attentional function than the mean sleep 

duration (Figure 4). Continuous sleep loss and circadian rhythm disruption are reported to cause poor attention 

function [15-16]. An association between disturbed circadian rhythm and cognitive dysfunction has been also 

reported [17], and thus, we are planning to further explore the relationships between irregular sleep time, 

circadian rhythm disturbances, and instability in attention function. 

The results on attention function and driving behavior showed that those with unstable attention function tended 

to have larger values of steering entropy and maximum acceleration on mountain roads (Figure 5 and 6). 

Combined with the results of relationship between variability of sleep time and attention function, these results 

suggest that people with irregular sleep time are more likely to engage in rough steering and pedal operation, 

which may lead to sudden steering and acceleration that can cause accidents. 

It has been reported that elderly people have sleep related problems such as difficulties in falling asleep and to 

maintaining sleep than for younger people [18]. In addition, the frequency of sudden and unexpected driving 

risk is thought to be increased in the elderly than in younger people, and it can be hypothesized due to a 

combination of sleep problems, age-related cognitive decline, and unstable attentional function. Therefore, those 

relationship should be carefully addressed to develop the driver support systems utilizing daily physical 

condition data to prevent accidents among the elderly. 

In recent years, wearable devices have made it possible to easily obtain data on daily activities. Further 

accumulation of a wider range of daily activity data in the future will make it possible to study the effects of 

daily driving risk in more detail. As a next step, we are planning to conduct correlation analysis with actual 

driving data to evaluate the importance of monitoring system in real world. 

Currently, as advanced driver assistance systems related to the risk of physical condition while driving, we are 

conducting research on medical emergency stop systems using driver monitoring cameras, driver 

availability/sleepiness monitoring systems, etc. In order to further improvement of the effectiveness of these 

systems, highly accurate estimation of the driver's condition is essential. The use of drivers' daily data as input 

data for this purpose is expected in the future. 

 

 

CONCLUSION 

This study examined the potential of the driver support system to utilize daily activity data. It was found that 

among the elderly, irregular sleep time may cause the instability of the attentional function. Furthermore, the 

results of driving behavior analysis revealed that unstable attention function may lead to rough steering wheel 

and pedal operation. These findings indicate the possibility of prediction of driving risk based on daily activity 

data. 
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ABSTRACT 

The majority of human factors in traffic accidents are the result of cognitive error. Errors of cognition are produced 

by the relationship of the cognitive load of the traffic environment and vehicle interior environment with the 

driver’s information processing. The cognitive load while driving is made up of the loads from the sense organs 

of sight and of hearing. The resources used for processing of visuo-spatial information and phonological 

information are independent, and it has been proposed that each processing resource has its capacity. It has been 

reported in previous research that when the cognitive load increases, driving becomes unstable. On the other hand, 

it has been reported in other research that when the cognitive load becomes high, driving becomes stable. 

Considering that cognitive load has been reported as an influence that both increases and decreases performance, 

it is conceivable that performance varies with the type and magnitude of the cognitive load from each category of 

information, and that a moderate degree of load exists under which performance reaches its highest level. For this 

paper, a driving simulator was used to study the influence on driving performance caused by graded cognitive 

load from the visuo-spatial process and phonological process of input from the sense of sight and sense of hearing. 

In testing, drivers drove on a course with a series of gentle curves while responding to n-back tasks that use 

visual/visuo-spatial process and auditory/phonological process. The result was that in the case of n-back tasks 

using visual/visuo-spatial processing, driving performance was diminished as the difficulty of the n-back task 

increased. However, in the case of n-back tasks using auditory/phonological processing, driving performance did 

not change when the difficulty of the n-back task increased. Also, although the load under which performance 

reaches its highest level was not determined, it was confirmed that auditory n-back tasks do have loads under 

which performance tends not to change. This is thought to be because the visual/visuo-spatial process used in 

driving and other information processes tend not to influence each other, while the same information processes 

did interfere with each other. The conclusion is that, in order to maintain stable driving performance, it can be 

considered important that the cognitive load on the driver does not interfere with the processing of visual/visuo-

spatial information while driving. 

 

 

 



INTRODUCTION 

Honda aims for zero fatalities in traffic accidents involving Honda motorcycles or automobiles worldwide by 

2050. Of human factors resulting in fatal accident cases in Japan, 68.8% are due to cognitive error such as not 

confirming safety, intrinsic absence of attention ahead, extrinsic absence of attention ahead, and so on [1]. Driving 

scenes have various different items of information that drivers should perceive. Drivers perceive not only the lane 

they are driving in, but also traffic signs, traffic participants, the vehicle interior environment, and so on. The 

traffic environment information that is being perceived is constantly changing as driving proceeds. On country 

roads, there is less traffic environment information, and distracted driving and other such errors cause pedestrians 

to be overlooked. On the other hand, there is more traffic environment information in urban areas, and information 

overload can result in delay in noticing pedestrians. These kinds of errors of cognition occur through the 

relationship between the cognitive load from the traffic environment and vehicle interior environment and the 

driver’s information processing [2]. Information processing of the cognitive load takes place by means of the 

working memory. Alan Baddeley and Graham Hitch have proposed a working memory that is considered to be 

made up of a visuo-spatial sketch pad and phonological loops [3]. According to the multiple resource model 

proposed by Christopher D. Wickens, the resources for processing visuo-spatial information and those for 

phonological information are independent, and each processing resource is proposed to have its capacity [4]. 

These suggest that different information processing domains tend not to influence each other while information 

processing domains that are the same interfere with each other. During driving, visual/visuo-spatial processing is 

considered to make up most of the processing. For that reason, the input of visuo-spatial process information 

during driving can be considered likely to influence driving. 

There have also been a number of research reports that cognitive load has an influence on driving performance. 

According to Uno, et al., when cognitive load rises to a high level, variation in lateral movement of the vehicle 

becomes larger when following a vehicle ahead and driving is said to become unstable [5]. On the other hand, 

according to Johan Engstrom, et al., when cognitive load rises to a high level, there are fewer standard deviations 

of lateral position during lane keeping tasks, and driving is reported to be stable [6]. In other words, cognitive 

load can be considered to have an influence that both increases and decreases performance. In addition, the 

Yerkes–Dodson law hypothesized that when arousal and load increase, performance increase, but when arousal 

and load increase too much, then performance decreases instead [7]. Based on this hypothesis, it can be considered 

possible that there is a degree of load under which performance reaches its highest level. 

From these proposals and hypotheses, it can be considered that cognitive load has an influence on driving 

performance, and further that it is possible that the way performance is influenced when the load is in a separate 

domain that does not overlap with processing for driving differs from when it is in the same domain that does 

overlap with that processing. It can also be considered that there is a moderate degree of load under which 

performance reaches its highest level. For this paper, a driving simulator (DS) was used to study the influence on 

driving performance from the graded cognitive load of visuo-spatial processing and phonological processing of 

input from the sense of sight and sense of hearing. This testing was reviewed and passed by Bioethics Committee 

Meetings for Hondas R&D activities. (Bioethics Committee No. 99HM-020H) 

 



METHOD

System

Driving task (lane center tracing task) Driving performance was evaluated by use of the DS. The test 

participants drove in the middle of the roadway on a winding course made up of a series of curves. In order to 

continuously place a cognitive load on them and also to continuously measure their driving performance, the 

curvature of the winding course curves was gradually changed in a design intended to require drivers to be 

constantly steering.

    Cognitive tasks (n-back tasks) In order to control the cognitive load, n-back tasks were used as the 

cognitive tasks. N-back tasks are typical tasks used to impose a cognitive load, and there are many cases of their 

use in other research as well [8]. In the n-back task, the subject is given numbers or letters at regular intervals, and 

if the number or letter is the same as the one n times before, the subject is to respond with a positive sign (○) and 

if it is different, then the subject is to respond with a negative sign (×) (Fig. 1). In n-back tasks, using a higher 

number n makes the load larger, and so it is possible to control the load. For the present research, a preliminary 

experiment was conducted with reference to previous research and a number or letter was presented at 4-second 

intervals [9]. A single n-back trial consists of a total of 37 issues with seven right answers. What was presented in 

the n-back tasks was a graphic that uses the visual sense to employ visual/visuo-spatial processing that overlaps 

with the information processing during driving, and a voice that uses the sense of hearing to employ 

auditory/phonological processing that does not overlap with driving (Fig. 2). The graphic, taking previous research 

as a reference [10], was a figure with a 4×4 grid, as shown in Fig. 3, containing red circles at two locations. Nine 

types of these figures were prepared and displayed randomly. Figure 4 shows where the figure was displayed. It 

was confirmed through advance testing that this display location does not overlap with the location of the line of 

sight during driving and the location is also easy to check when driving through left and right curves, and this 

configuration was determined. For the voice, nine integers from one to nine were played back randomly. In order 

to control the conditions, headphones were worn in the same way during the graphic n-back tasks. During the 

graphic n-back tasks, however, no voice sound was played, and the headphones were muted.

Figure 1. Example of 2-back task.

Figure 2. Content presented in n-back tasks.



Figure 3. Example of graphic in graphic n-back task.

Figure 4. Graphic n-back task display location.

    Subjective evaluation In order to confirm the extent to which test participants engaged in the tasks, the test 

participants subjectively evaluated the degree of task achievement and the degree of effort. For the degree of 

achievement, evaluations were made of the n-back tasks and driving tasks severally. The evaluations used the 

visual analogue scale (VAS), where a score of zero indicates a task was extremely unachieved and a score of 100 

indicates it was extremely achieved. For the degree of effort, a score of zero indicates extremely little effort was 

made and a score of 100 indicates extreme effort was made. These two subjective evaluation indices were 

evaluated on a range from zero to 100.

Test Procedure

A total of 18 men and women (average age 37.6 years) whose consent for testing was obtained participated in the 

tests. This research was conducted with review and approval by Bioethics Committee Meetings for Hondas R&D 

activities (Bioethics Committee No. 99HM-020H). Test participants were also given an explanation of the purpose 

of the research using the consent forms and their cooperation was requested. Test participants whose consent was 

obtained also signed the consent forms.

Figure 5 shows the flow of the test as a whole. To accustom the test participants to the n-back tasks, familiarization 

with n-back tasks was conducted in advance using 3-back tasks. The test participants drove a winding course in 

the DS environment. They were instructed to keep their position in the middle of the course roadway as much as 

possible. The driving speed was set at a fixed 50 km/h, and test participants only operated the steering. To 

accustom the test participants to driving in the middle of the roadway, they were fully familiarized with the DS 

steering operation and the appearance of the field of vision. For this familiarization, both the driver view (Fig. 6) 

and the overhead view (Fig. 7) were displayed together, and the test participants were made able to drive in the 

middle of the course roadway while checking the view of the subject vehicle’s position and the field of vision in 



the driver view. After the test participants’ driving familiarization, the driving for the test itself was done. The test 

itself was conducted in 10 trials in order to have a mixture of each type of n-back task. The graphic and sound n-

back tasks were both conducted under the five conditions of no n-back, 1-back, 2-back, 3-back, and 4-back. 

However, the order of the n-back tasks was made random in order to do away with order effects. The test of n-

back tasks under five conditions was taken as one set, and two sets were conducted. The driving for a single trial 

consisted of a reference interval in which only driving is done and an evaluation interval in which n-back tasks 

and driving are done simultaneously. In order to keep responses to n-back tasks in the evaluation interval from 

interfering with driving, test participants responded using the paddle shift button on the steering wheel instead. 

After the driving ended, test subjects made subjective evaluations of their own driving and the n-back tasks, which 

completed one trial.

Graphic n-back tasks and sound n-back tasks were conducted on separate days.

Figure 5. Test flow.



 
Figure 6. Display when driving in the middle of the course roadway (driver view). 

 

 

Figure 7. Overhead view during familiarization drive. 

 

ANALYSIS METHOD 

Evaluation of Cognitive Tasks (n-back Task Response Reaction Time/Number of Right Answers) 

In order to check whether the cognitive load on test participants was successfully being imposed gradually, the 

performance of the n-back tasks was evaluated. For performance, the n-back task response reaction time and the 

number of right answers were calculated. The response reaction time was taken to be the time from when the n-

back task was presented until the response was made by the paddle shifter. The number of right answers was taken 

as the number of responses for which the response given was that the number or the graphic presented was the 

same as that n times before. The number of right answers can be for a maximum of seven tasks. 

 

Driving Performance Evaluation (Lateral Offset from Course) 

In order to confirm the influence of n-back tasks on driving, the reference interval of each trial was used as a 

standard in evaluating the driving performance in the evaluation interval. It was reported from previous research 

that, compared to when no cognitive load is imposed, variation in lateral movement of the vehicle becomes larger 

when following a vehicle ahead when a cognitive load is imposed. This can be considered to be because the 

number of times of significant deviation from the course increases due to drivers’ inability, as a result of the 

cognitive load, to notice the lateral offset until it has grown large. In order to evaluate the degree of which the task 

of driving in the middle of the course is achieved, the position of lateral offset from the middle of the course 

roadway was calculated (Fig. 8). Fig.9 shows the calculation method of the amount of lateral offset for one trial. 

The average lateral offset position of the reference interval in the data for all trials by that individual was reduced 

from the lateral offset position data of the evaluation interval of one trial. The absolute value of this subtracted 



lateral offset position data of the evaluation intervals was averaged, and the amount of lateral offset was calculated 

for one trial. As there are two trials for each n-back task, the first and second trials are averaged and these amount 

of lateral offsets were taken as the driving performance evaluation values for each n-back task.

Figure 8. Lateral offset position from the middle of the course roadway.

Figure 9. Amount of lateral offset calculation method for one trial.



RESULTS 

Cognitive Task Evaluation (n-back Response Reaction Time/Number of Right Answers and Subjective 

Evaluation) 

Figures 10 and 11 show the response reaction times and the number of right answers to the visual and auditory n-

back tasks that were the cognitive tasks. For both the visual and auditory n-back tasks alike, increasing the size of 

the number n resulted in slower reaction times and the number of right answers decreased. Differences were 

apparent in the visual and auditory n-back task scores. 

In addition, Fig. 12 and Fig. 13 show the average subjective achievement and subjective effort for all test 

participants in each n-back task. The subjective achievement results show that as the n numbers grew higher, the 

tasks were not achieved for both visual and auditory n-back tasks. The n-back task scores and subjective 

achievement evaluation suggest that the n-back tasks were successful in gradually changing the test participants’ 

cognitive load. In both the visual and auditory n-back tasks, the subjective effort indicated that the greatest effort 

was achieved with the 2-back tasks. 

 

 
Figure 10. Average reaction times in visual and auditory n-back tasks. 

 

 
Figure 11. Average number of right answers in visual and auditory n-back tasks. 
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Figure 12. Subjective achievement in visual and auditory n-back tasks. 

 

 

Figure 13. Subjective effort of driving and n-back tasks combined. 

 

Relationship of Degree of Cognitive Load (n-back Tasks) and Driving Performance 

Figures 14 and 15 show the amount of lateral offset in the course roadway during the evaluation interval for the 

visual and auditory n-back tasks, respectively. In the visual n-back tasks, when t-tests were conducted from 1-

back to 4-back tasks with respect to the no n-back tasks, there was a significant difference between the no n-back 

tasks and all of the n-back tasks. As the cognitive load increased, the amount of lateral offset increased. In the 

auditory n-back tasks, when t-tests were conducted from 1-back to 4-back tasks with respect to the no n-back 

tasks, the amount of lateral offset did not show a large, significant difference between the no n-back tasks and 1-

back to 4-back tasks. 
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Figure 14. Amount of lateral offset in the visual n-back tasks.

Figure 15. Amount of lateral offset in the auditory n-back tasks.

Differences in Cognitive Processing Domains and the Relationship with Driving Performance

In order to compare the driving performance when visual and auditory n-back tasks were performed, the 1-back 

tasks, that the difference in the amount of lateral offset between the visual and auditory tasks was slight, were 

taken as a reference and the change in the amount of lateral offset with the n-back tasks was confirmed. Figure 16 

shows the lateral offset relative ratio of each n-back task with the 1-back task as the reference. When t-tests were 

performed on visual n-back tasks and auditory n-back tasks, a significant difference in the amount of lateral offset 

between them was observed in the 2-back and 4-back tasks. In the visual and auditory tasks, there was a tendency 

for the amount of lateral offset that was observed to be larger in the visual tasks.



 
Figure 16. Relative ratio of the amount of lateral offsets in each n-back task with 1-back task as reference. 

 

DISCUSSION 

Relationship of Degree of Cognitive Load (N-back Tasks) and Driving Performance 

Verification was conducted regarding the influence of cognitive load on driving performance and whether or not 

there is a moderate degree of load under which performance reaches its highest level. 

It was suggested that the influence on steering operation that accompanies increases in the difficulty of auditory 

n-back tasks is different from the influence on steering operation that accompanies increases in the difficulty of 

visual n-back tasks. As shown in Fig. 14 and Fig. 15, driving performance in the visual n-back tasks decreased 

more than in the no n-back tasks. On the other hand, driving performance in the auditory n-back tasks showed no 

change from the no n-back tasks. However, no tendency for performance to reach its highest level was observed 

here, either. This is thought to be because differences in the cognitive processing domain result in different 

influences on driving performance. 

 

Differences in Cognitive Processing Domains and the Relationship with Driving Performance 

Verification was conducted regarding whether there is a difference in how driving performance is influenced in 

separate domains that do not overlap with processing for driving and in the same domain that does overlap with 

that processing. The result, as shown in Fig. 16, was that the auditory n-back tasks interfered less with steering 

operation than the visual n-back tasks. Significant differences occurred in the 2-back and 4-back tasks. The n-

back task difficulty was more moderate in the auditory 2-back tasks than in the visual 2-back tasks and the 

subjective effort was higher, and this is thought to be the reason why there was no difference in driving 

performance between the auditory 2-back tasks and no n-back tasks. There was also the opinion that 4-back tasks 

were too difficult for the test participants, who therefore gave up on the n-back tasks and gave priority to the 

driving task. It is conceivable that since the auditory/phonological processing used in the auditory n-back tasks is 

in a separate domain from the visual/visuo-spatial processing for the driving task, participants were able to 

concentrate on the driving task so that there was no difference in driving performance from the no n-back tasks. 

By contrast, the visual/visuo-spatial processing used in visual n-back tasks is in the same domain as the 

visual/visuo-spatial processing for the driving task. It is conceivable that for this reason, a simultaneous balance 



with the driving task could not be achieved, and so driving performance in the n-back tasks decreased more than 

in the no n-back tasks. From this, it can be inferred that there are cases when the load from information presentation 

that employed auditory/phonological processing did not cause driving performance to become unstable, so that 

there were cases when a simultaneous balance with the driving task could be achieved. 

 

CONCLUSIONS 

For this paper, the influence on driving performance from the graded cognitive load of visuo-spatial 

processing/phonological processing of input from the sense of sight and sense of hearing was studied. As a result, 

it was found that driving performance changes with the cognitive load. A degree of cognitive load under which 

performance reaches its highest level was not confirmed, and performance degenerated under the cognitive load 

from visual/visuo-spatial processing. It was confirmed, however, that under the cognitive load of 

auditory/phonological processing, which is in a separate domain from the visual/visuo-spatial processing used in 

driving, there are degrees of load under which performance tends not to change. From this, it was confirmed that 

there are different tendencies for performance to change according to the type of domain of the load being imposed. 

It is conceivable that this is because information processes in different domains do not readily influence each other, 

whereas information processes in the same domain did interfere with each other. In order to maintain stable driving 

performance, it is conceivably important that the cognitive load imposed on the driver does not interfere with the 

information from the sense of sight while driving. It may be considered necessary for automobile manufacturers 

to take the modalities of information equipment into consideration in creating HMIs. As one of the limitations of 

research, there is the fact that not all processing domains based on the multiple resource model can be examined. 

It may also be considered necessary to examine the combination of a visual/phonological processing domain and 

an auditory/visuo-spatial processing domain that does not overlap with the visual/visuo-spatial processing domain 

that is used in driving. 
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ABSTRACT 

This paper presents an update on the research, development, and manufacturing of a novel passive contact-based Near-
Infrared Alcohol Sensor (NIR-AS) for non-invasively measuring Blood Alcohol Concentration (BAC) in human 
subjects and thus, provides potential for application in support of the new US Infrastructure Investment and Jobs Act 
bill, section 24220, signed into law on 11/15/2021, once it is enforced. 
 

Alcohol-impaired driving remains a global problem. According to the most recent published report in 2020, U.S. 
motor vehicle crashes, alcohol-impaired fatalities represent over 30% of the total fatalities; a 14% increase over 2019 
and a 29% increase relative to Vehicle Miles Traveled (VMT). The Infrastructure Investment and Jobs Act bill, section 
24220, cites statistics on the societal and human costs of alcohol impaired driving and specified intent to make 
BAC sensors standard equipment in all new U.S. cars in the future. The NIR-AS design and process for analyzing 
performance in quantifying BAC builds on the R&D carried out in support of the Driver Alcohol Detection System 
for Safety (DADSS). The published research from DADSS provides valuable technical guidance and performance 
targets for BAC sensing in motor vehicles. Blood testing is the established gold standard for measuring driver BAC. 
Although blood testing is the most accurate reference for comparison against NIR-AS (or any new BAC sensor), it is 
highly invasive, time consuming, and cost prohibitive.  Breathalyzers are well established sensors for estimating BAC, 
however, they also have performance limitations in practical, real-life conditions.  Even so, based on published 
research, including DADSS, breathalyzers can provide an appropriate surrogate reference under controlled clinical 
and analysis conditions, for analyzing the performance of any new BAC sensor. The NIR-AS sensor described in this 
paper targets the passive detection performance requirements specified by DADSS. 

An alcohol dosing Design of Experiments (DOE) was carried out using a set of Near Infrared Alcohol Sensor (NIR-
AS) prototypes with human subjects using a repeat low level alcohol dosing protocol.  BAC reference data was also 
collected using several law enforcement grade and commercial breath analyzers. NIR-AS spectra were processed and 
analyzed using commercially available and proprietary software. 

The DOE resultant data was analyzed using commercially available software packages to produce chemometric 
models. The paper presents model performance statistics including root mean square standard error of calibration 
(RMSEC), root mean square standard error of prediction (RMSEP), and square of the correlation coefficient, R2, for 
the NIR-AS calibration. A global model employing multiple sensors was tested across the same DOE and performance 
statistics are presented. Using NIR-AS, it is shown that BAC can be measured at varying concentrations of alcohol 
within the human body, including low alcohol dosing levels. Further improvements on the NIR-AS design and 
function will also be presented. 
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Based on our results, there is significant correlation between BAC breathalyzer and NIR measurements at low dosing 
levels.  The results demonstrate a high correlation between NIR-AS spectra and reference breathalyzers and achieve 
low RMSEP, RMSEC, and RMSECV. NIR-AS, with continued development, can be a potential tool for assessing 
driver alcohol impairment in support of ADAS and/or ADS countermeasures. 

INTRODUCTION 
 

The determination of the Percent Blood Alcohol Concentration (%BAC) in human subjects using Near Infrared (NIR) 
spectroscopy and the multivariate analysis technique known as chemometrics has been established [1]. In 2001, using 
NIR transflectance spectroscopic measurement of analytes (e.g., fat) in milk samples, Norris declared that several 
criteria must be met for an accurate and precise measurement to be made by NIR [2]. Applying these concepts for the 
measurement of the %BAC in humans: 

1. Alcohol must be able to be detected by NIR at a very low levels (< 0.08% or eight one hundredths of one 
percent, 800 ppm) means that there is approximately 0.08 g of alcohol for every 100 mL of blood. This is the 
legal definition of alcohol impairment in most states in the United States.  Very low levels of an analyte can 
be detected and measured by NIR diffuse reflection spectroscopy (0.02% - 0.07% BAC) below the 0.08% 
legal limit.  

2. As NIR is not a primary analytical method, but a correlation technique, accurate constituent data (ground 
truth) is required for developing NIR prediction models of low analyte values. 

3. Sampling errors also must be overcome to obtain high accuracy. 
4. Sampling errors can be greatly reduced by averaging the spectra from multiple samples of the same 

constituent level. 
5. A narrow bandpass spectrometer is not essential to measure a narrow bandwidth constituent. 
6. BAC must be uniquely separable against all other analytes (e.g., specificity). 

 

This paper discusses two experiments (defined further in this paper as Surrogate and Human) which demonstrate that 
all six requirements can be met for the detection and the quantification of %BAC. By first analyzing a laboratory 
surrogate and then using two human subjects (palmar-side finger) and two NIR-AS spectrometers at low alcohol levels 
using chemometrics and as ground truth, a breathalyzer model Draeger Alcotest 5820 (Houston, TX). The paper 
includes procedural discussion, the principle components, loading plots, correlation, and regression coefficients from 
PCA and PLS, and the correlations and regression plots from a recursive chemometrics method called Derivative 
Quotient Math (DQM).   

. 

 
1. Laboratory surrogate (Surrogate) 

In the first experiment, it will be shown that the surrogate, consisting of alcohol and water absorbed 
into a cotton matrix, ranging in concentrations from 0.01% to 0.10 % (~ 100 ppm to 1000 ppm) can 
be measured as % alcohol directly, using a wide bandpass spectrometer (32 nm) with a Signal to 
Noise (S/N) ≥ 1400:1 @ 1700 nm, or 31.46 dB, and sufficiently resolved from water (the largest 
interfering absorber in human subjects) by the method of Derivative Quotient Math (DQM).  

 
2. Human subject dosing (Human) 

In the second experiment, an attempt to detect and estimate quantity of alcohol will be carried out 
using spectra from two different NIR-AS spectrometers (same design used in the Surrogate test) 
and quantified using an evidentiary breathalyzer at low levels 0.02% - 0.07% (200 ppm to 700 ppm) 
as %BAC in human subjects. 



Brauer 3 
 

CHEMOMETRICS 
Chemometrics was defined by Svante Wold in a 1971 grant application and mentioned again in 1972 [3], as “The art 
of extracting chemically relevant information from data produced in chemical experiments is given the name of 
chemometric” in analogy with biometrics, econometrics, etc.”  
 

Nearly three decades elapsed between Wold’s definition and when Karl Norris studied NIR spectra with a 
chemometric application referred to as the Derivative Quotient Math (DQM) and concluded [1] that “an optimized 
second derivative ratio makes it possible to obtain a linear correlation to an analyte from spectral data from diffuse 
transmission and diffuse reflectance measurements.” This further implied that the DQM pre-treatment optimized the 
spectral data in such a way that the processed data then fits the Beer–Lambert–Bouguer law relationship [4]. 

INSPECTING ALCOHOL NIR SPECTRUM AND DERIVATIVES 
The spectrum of an absolute alcohol1 (100% ethanol) transflectance reference spectrum is shown in figure 1, along 
with the spectrum second derivative annotated with prominent wavelength absorption bands shown [5]. 
 

NIR Spectrum and Second Derivative of Absolute Alcohol 

 

Figure 1. Plots of Absolute Alcohol (a) log(1/R) vs wavelength, dashed line, scale on right-hand side) and (b) 
second-derivative log(1/R) vs wavelength (solid line, scale on left-hand side). Near-infrared spectrum of alcohol 
(absolute) measured by transflectance (1mm path-length). 

 
1 From the Handbook of Pharmaceutical Excipients Sixth Edition. Near-infrared (NIR) spectra of liquid samples were 
measured using a FOSS NIRSystems 6500 spectrophotometer (FOSS NIRSystems Inc., Laurel, MD, USA). Liquid 
samples were measured by transflectance using a gold reflector (2 x 0.5mm optical path-length, FOSS) placed in a 
45mm silica reflectance cell against air as the reference. Spectra are presented as plots of (a) log(1/R) vs wavelength 
(dashed line, scale on right-hand side) and (b) second-derivative log(1/R) vs wavelength (solid line, scale on left-hand 
side). R is the reflectance and log(1/R) represents the apparent absorbance. Second-derivative spectra were 
calculated from the log(1/R) values using an 11-point Savitzky-Golay filter with second-order polynomial smoothing. 
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The alcohol second derivative reference displays thirteen prominent bands in the region between 1100 nm and 2500 
nm, where all these features are represented with a sensor resolution of 2 nm. This region is the C-Hn first overtone. 
The molecular formula for alcohol (ethanol) is CH3CH2OH. Therefore, the C-Hn first overtone corresponds to the CH3 
and CH2 (methyl and methylene) group of the alcohol molecule [6]. 

Table 1 compares the reference standard bands with the five bands of the alcohol second derivative bands measured 
on the wide-band spectrometer shown in figure 2 (11-point Savitzky-Golay filter with second-order polynomial 
smoothing). The NIR-AS prototype devices, discussed in the rest of this paper, have a wavelength range of 1350 nm 
to 2550 nm, with a wavelength resolution of 32 nm.   

The alcohol spectrum, 1st (d1A/dλ1) and 2nd derivative (d2A/dλ2) are shown in figure 2 from the wideband spectrometer. 
Second-derivative spectra were calculated using an 11-point Savitzky-Golay filter using a second-order polynomial 
smoothing, indicating the derivative of the optical values (usually the absorbance) with respect to wavelength 
(dnA/dλn). The spectra taken with the spectrometer were converted from Wavenumber (cm-1) to Wavelength (nm) and 
Transmission to Absorbance (log 1/T).  

Of the requirements previously mentioned, the one having the greatest significance to this research is number six: 
BAC must be uniquely separable against all other analytes (e.g., specificity). Water is the largest absorber interfering 
with BAC determination, and useful to investigate several chemometric approaches previously mentioned in other 
analogous applications. The authors are not aware of reports which investigate the use of the Derivative Quotient Math 
(DQM) for the determination of Blood Alcohol concentration (BAC) in humans. The algorithm possesses unique 
capabilities especially suited for measuring BAC in humans. 

 

NIR SPECTROSCOPY SCATTER CORRECTION 
 

The wavelength-dependent redirection of light scattered through a complex media can be defined simply as scatter 
in the NIR application discussed in this paper.    

Davies [7], in presenting an explanation of the origin and use of derivatives in spectroscopy, concluded that, while 
derivatives are useful for removing extraneous signals from NIR spectra, the resulting spectra still contain   
multiplicative effects of scatter.  

Derivative Quotient Math (DQM) Explanation 
 

Karl Norris, “The Father of NIR,” explained the DQM mechanism in “Norris on Norris Regression,” described in 
reference 0 as follows:  

“First, there are two distinct items involved. The first is the gap derivative (sometimes called the Norris derivative by 
mistake), the second is the "Norris Regression", which may or may not use derivatives. 

The "Norris Regression" is a regression procedure to remove the effects of varying pathlengths among samples 
because of scatter effects. This is accomplished by incorporating a divisor into the regression term. The divisor can 
be the absorbance at another wavelength, a difference between the absorbance at two wavelengths, a first derivative, 
or a second derivative. The single wavelength divisor does not work well in many cases because that signal contains 
offset variations as well as multiplier variations, and we only wish to sense the multiplier signal [Multiplicative 
Scatter].” 

More recently, with the publication of the Fourth Edition of the Handbook of Near-Infrared Analysis [9], Hopkins 
offers further insight as to why applying derivative pre-treatments alone are insufficient for removing multiplicative 
effects from light scattering: He asks, “… why use Derivative Quotients? Simply stated, the ratios effectively cancel 
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the multiplicative effects caused by differences in scattering between samples. The ratios will also cancel differences 
between instruments that are due to differences in spectral bandwidth. In addition, it has been observed that DQM 
models generally require only 1 or 2 terms, possibly 3 terms. This may make such calibrations very robust…” 

When considering the use of derivatives to correct scattering, spectral pre-treatments based on derivatives remove 
most spectral baseline offsets.  However, simple derivative-based pre-treatments  cannot remove multiplicative effects. 
The second derivative-based pre-treatments can largely remove linearly (or nearly linearly) sloping baselines. 

Again, considering Figure 2: the Alcohol reference NIR spectrum (Bottom), first derivative (Middle) and second 
derivative (Top) of alcohol measured by diffuse reflection on the wide bandpass spectrometer (NIR-AS-212,), the 
highlighted lines represent peak find solutions using the chemometrics software tool Solo (Eigenvector Research Inc., 
Manson, WA). 

The alcohol wavelengths and their positions are annotated textually. The wavelengths for the raw spectrum are positive, 
zero for the first derivative (points at zero), and negative for the second derivative. 
 
A flow diagram outlining the DQM algorithm is available in reference 8. A MATLAB script, dqm1, was applied on 
the Surrogate and Human data sets. The program executes searches of gaps (segments) or smoothing point intervals 
(smt) that are tested over intervals individually selectable for the numerator and denominator. 

 
The optimal gap segment size for the wavelength range, using the benchmark devices in the wavelength range between 
1350 nm - 2550 nm, can be estimated on (or near) the band centered at 2295 nm (Figure 3). The number of points in 
the half-peak width of this segment is equal to six (6). The peak height has 12 points from peak to base line. Using 
these values for the gap and smoothing search, the DQM will not exceed 6 data points for the gap segment search, or 
12 for the smoothing interval (see Figure 3).  
 

Further from Hopkins: “Derivatives can correct the offset and slope differences that are found in sets of spectra of 
diffusely scattering samples. However, they cannot remove the multiplicative effects. It was observed by Karl Norris 
that the ratio of derivatives terms can remove the multiplicative effects. He used simple multiple regression to find the 
terms of quotients employing optimal wavelengths for the numerators and denominators.” 

Hopkins explains [10], that choosing an optimal gap size can be approximated by “selection of a convolution interval 
about the same size as the number of points in the half-band width of the sharpest band in the wavelength range in 
which you are working.” 
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NIR spectrum, (Bottom) First Derivative (middle) and Second Derivative (Top) absolute alcohol from NIR-AS 
(unit #212) spectrometer. 

Figure 2

Figure 2. Shows the alcohol NIR spectrum, (Bottom) First Derivative (middle) and Second Derivative (Top) of 
from NIR-AS (unit #212) spectrometer. 
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Table 1. 
Compares the reference standard bands to the five bands of the alcohol second derivative bands measured on the 
wide band spectrometer shown in figure 2. 
 

Alcohol NIR Second Derivative of Reference 
Wavelengths (nm) 

Alcohol NIR Second Derivative of NIR-AS-212 
Spectrometer Wavelengths (nm) 

1185  
1671 1579 
1692 1700 
1734  
2078 2074 
2252  
2270  
2292 2295 
2309  
2339  
2355  
2369  
2462 2472 

 

INSPECTING THE ALCOHOL NIR SPECTRA USING THE 
DQM APPLICATION 
 
Having established the known alcohol NIR absorption bands from the wideband spectrometer above, the DQM 
program was applied to the Surrogate spectra in order to find the terms of derivative quotients employing optimal 
wavelengths for the numerators and denominators. 

Experiment 1: Laboratory Surrogate  (Low concentrations (0.01% - 0.1%) of alcohol and water) 
 
Material and Equipment 
 

The following chemicals were used to conduct the NIR measurements: pure lab grade Alcohol (PHARMCO-AAPER, 
Brookfield, CT) and distilled water. A micropipette, (Wilmed LabGlass, MED Plus, Vineland, NJ) was used to 
perform the serial dilutions. 100% cotton medical-grade gauze pads were used as the sampling matrix for these tests. 
 
Procedure 
 

Stock Standard 
Serial dilutions were from 0.10% alcohol by volume down to 0.01% in steps of 0.01%. A 0.10% solution stock solution 
was prepared (500uL alcohol into 500mL water) with a micropipette. Serial dilutions were made with a 10 – 100uL 
micropipette.  
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NIR Measurement
To present the samples to the detector window, small uniform cotton squares were prepared and fit into a small holder 
on the NIR-AS sensor. A spectral sample of the cotton was measured as the reflectance background correction. After 
the dilutions were made, 300ul of solution was pipetted onto the cotton swab and then placed into the holder. Alcohol
Spectra were collected (a total of 10) using 10-second dwell times. This process was repeated for each subsequent
concentration.

Chemometric Analysis
The DQM parameters selected for searching the wavelengths from 2000 nm - 2550 nm (alcohol range) (at 32 nm, 
there are 80 wavelengths) used were:

1. # of Calibration Samples: N22
2. # of Validation Samples: N21 
3. Number of terms (1 or 2): 2
4. Derivative order (d): Term #1: 1D, Term #2: 2D
5. Number of differential gaps (gap): 3
6. Number of smoothing points (smt): 6

Recall that, from the inspection of the absolute alcohol NIR spectra, it was determined that the optimum gap and 
smoothing for peaks in a spectrum is predicated on the half-width of a peak. For alcohol, it was determined that, based 
on the second derivative spectrum, the most intense absorption band is found at 2295 nm. Based on this fact, the 
number of data points in the spectrum (80), and studies on the NIR absorption of alcohol and water [11], the selection 
of DQM parameters were optimized. 

With respect to alcohol detection, our research into the optimum range for the detection of alcohol in the presence of 
water and other absorbers that can interfere with the detection, showed that for the NIR-AS prototype the selection of 
the 2000 nm – 2550 nm (CH - CH combination) portion of the full range was required in order to identify principle 
components, latent variables, and to determine the correlation of breathalyzer to the NIR-AS spectra to generate the 
regression coefficient (PLS model) of the surrogate calibration data set specific for the determination of alcohol.

Second Derivative of the absolute Alcohol NIR Spectra (11, 2, 2D) @ 2295 nm

Figure 3. The optimum gap and smoothing for peaks in a spectrum is predicated on the half-width of a peak of 
interest.  Alcohol peak at 2295 nm shows expanded view in order to count data points for band.
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The Human experiment analysis will show that the range from 2000 – 2550 nm, uses these same wavelengths for
the selection of alcohol. The final results following implementing the dqm1 program Surrogate experiment 1 
(surrogate) were:

%Alcohol Regression Results

SEC = 0.008    RSQ = 0.9375    N = 22                                                                                                               RMSEP 
= 0.009   SEP = 0.009   bias = 0.000   RSQ = 0.9215   N = 21

2-Term Model:  WAEXP2 N22 CAL 4.modl,  Ders normalized                                                                      
Term #1:  (2D 2273.6842 NM, gap=1, smt =0)/(2D 2198.8024 NM, gap=3, smt =6)                                    
Term #2:  (2D 2392.1824 NM, gap=3, smt =6)/(2D 2028.7293 NM, gap=1, smt =5)                            

Coefficients B0, B1, B2, .. =  -0.61818  0.54646   -0.017699

Figure 4 shows the surrogate NIR spectra and Extended Multiplicative Scatter Correction (EMSC) spectra used in
experiment 1. Note that the spectral concentrations (0.01%, 0.03%, 0.05%, 0.07%, 0.09%) do not increase linearly 
from low to high alcohol concentration with wavelength, but changes due to scatter, instrument, sampling, and other 
effects previously mentioned. 

The spectra are corrected for multiplicative scatter using Extended Multiplicative Scatter Correction (EMSC) [12]
prior to analysis following a DQM analysis of unprocessed spectra, giving poor ratio quotient results for the % alcohol
at five concentration levels.

Table 2 lists the DQM results for the 2-term and 1-term models for the determination of surrogate concentrations by 
NIR. 

Figure 5 shows the optimal derivatives selected for alcohol by the DQM algorithm. The DQM Matlab application 
dqm1 (MathWorks, Inc., Natick, MA) was used to find the terms, quotients employing optimal wavelengths for the 
numerators and denominators terms. Figure 6 shows the calibration from the optimal wavelengths using DQM. The 
output for the Standard Error Calibration (SEC) and Regression Coefficient plots for the DQM results of the surrogate
are shown in Figure 7.

%Alcohol NIR Spectra and Extended Multiplicative Scatter Correction (EMSC) (CAL N = 22)

Figure 4. Shows the surrogate NIR spectra and Extended Multiplicative Scatter Correction (EMSC) spectra used 
in experiment 1.
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Optimal Derivatives Selected For %Alcohol (Spectra (N22) By the DQM Algorithm (2-Term Model 2D/2D)

Figure 5. Optimal (2-term model 2d/2d) derivatives selected for %alcohol surrogate (N22) by the DQM algorithm.
Note the prominence of regions of the spectra where wavelengths have been selected correspond to regions of no 
scatter: the cross-over regions of the spectra. Other wavelengths center on or near a region of the alcohol analyte 
where known NIR absorption is expected to occur.

Surrogate Concentration Scatter Plot CAL (N22) And VAL (N21)

Figure 6. shows the surrogate concentration scatter plot from the DQM calibration and validation as a result of 
the gap, smoothing (smt) derivative quotient wavelength search.
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TABLE 2.  
DQM Results for the 2-Term and 1-Term Models for the Determination of Surrogate Alcohol Concentrations by 
NIR 
 

 Wavelengths 2-Terms GAP   
Derivative Ratio SEC (%BAC) N1 smt D1 smt N2 smt D2 smt R2 

1D / 1D 
Term 1 2384 / 2239 
Term 2 2062 / 2062 0.012 2 0 3 5 3 0 2 0 0.846 
1D /2D 
Term 1 2062 / 2309 
Term 2 2225 / 2392 0.011 3 6 1 1 1 0 1 1 0.876 
2D /1D 
Term 1 2309 / 2057 
Term 2 2338 / 2017 0.010 1 1 3 6 1 5 3 6 0.883 
2D / 2D 
Term 1 2273 / 2198 
Term 2 2392 / 2028 0.008 1 0 3 6 3 6 1 5 0.938 
  1-Term GAP   
 SEC (%BAC) N1 smt D1 smt         R2 

1D /1D 
Term 1 2384/ 2239 0.013 2 0 3 5     0.798 
1D /2D 
Term 1 2062 / 2309 0.013 3 6 1 1     0.796 
2D/1D 
Term 1 2309 / 2957 0.013 1 1 3 6     0.816 
2D /2D 
Term 1 2273 / 2198 0.015 1 0 3 6     0.738 
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Standard Error Calibration (SEC) and Regression Coefficient Plots for the DQM results of the 
surrogate

SEC Plot N22 Regression Coefficient Equation

Term 1

  2nd Der.

   Numerator

    2nd Der.

  Denominator

    Term 2

     2nd Der.

Numerator

2nd Der.

Denominator

Figure 7. Standard Error Calibration (SEC) and Regression Coefficient Plots for the DQM results of the 
surrogate mixtures

The best model is found with the lowest standard error of the calibration (SEC) and a coefficient of determination (R2) 
approaching 1.0. The SEC was 0.008 and R2 was 0.938 for sample N = 22 for concentrations in the range 0.01%, 
0.03%, 0.05%, 0.07% and 0.09% (Figure 6). The wavelengths selected to be specific for the alcohol should be on or 
close to those wavelengths specific for alcohol as shown in figure 2. For this analysis, those bands are the alcohol 
bands at 2273 and 2028 nm.
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Based on the results of Surrogate, we will show that the results for the Human experiment over the calibration range 
from 2000 – 2550 nm is the only range showing specificity for alcohol using the NIR-AS  
 

 

IDENTIFICATION OF ALCOHOL BY PRINCIPLE 
COMPONENT ANALYSIS 
 

 

 

Since the DQM provides excellent correlation of the Surrogate data to the NIR spectra (low error, high coefficient of 
determination), it may be reasonable to assume that this may be also true for the Human data. However, prior to 
testing this hypothesis, a very useful tool to probe for alcohol following a NIR measurement and correlation with the 
corresponding breathalyzer values is to review the Principle Components (PCs), and residual analysis.  

Principal Component Analysis (PCA) 
The basic procedure fundamental to most chemometric analysis is the technique known as Principal Component 
Analysis (PCA).  As reviewed by Wold et al. [13], and first explained by Pearson [14], the problem at hand is 
applicable for the use of PCA in determining the differences between groups of spectra. Wold et al. provide a general 
approach for extracting the dominant patterns from data matrices. They are: 

1. Formulate the problem statement by asking why the data matrix (in this study, spectra and alcohol doses) 
were collected in the first place. 

2. What is the purpose for the experiments and measurements? 
3. Specify, before the analysis. what kinds of patterns are expected to be found. 
4. The decomposition of the independent variables (X-wavelengths) and the dependent variables (Y-

absorptions) matrices comprising the spectra results in a set of loading and scores describing the variance.  
(See section on Loadings and Scores). 

5. In examining the resulting scores plot, look for outliers (spectra that do not fit any observed pattern), but 
do not remove outliers without understanding their underlying cause. 

6. Use the resulting Principal Components to guide continued investigation or chemical experimentation, not 
as a result. 

For the NIR-AS system under study the general approach is answered by the following statements. 

     Problem Statement: Development of a passive touch-based Near-Infrared (NIR) sensor for non-invasively 
measuring the Blood Alcohol Concentration (BAC) in the driver of a vehicle. 
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     Purpose for the experiments and measurements: A NIR touch-sensor potentially offers non-invasive, non-
destructive and rapid measurement times. This novel sensor is intended to meet the passive detection requirements of 
the Driver Alcohol Detection System for Safety (DADDS), improve driver safety by providing a non-intrusive means 
of notifying a driver or applying some other countermeasure when their estimated %BAC may exceed established 
threshold(s). When BAC values are modeled, it is intended that the model follows Beer–Lambert–Bouguer Law which 
describes a linear relationship between the spectral absorbance and the concentration, molar absorption coefficient 
and optical coefficient of a solution. 
  
However, measuring BAC in human fingers is non-trivial.  The finger is a highly scattering, chemically complex 
matrix, composed of tissues varying in thickness and densities, contributing to scatter. The purpose, therefore, is to 
find, through well planned and designed experiments, conditions that model this nonlinear phenomenon by reducing 
scatter, identify and minimize interfering absorbers (e.g., hemoglobin), and linearly correlate only the highly scattered 
spectra to the % BAC values obtained by suitable reference (in this study, an evidentiary breathalyzer, model Draeger 
Alcotest 5820 (Houston, TX). In future studies, there is a plan to use Headspace Gas Chromatography with Flame 
Ionization Detector (HS-GC-FID) on drawn blood taken simultaneously with the NIR-AS and breathalyzer 
measurements for validation of the NIR-AS touch sensor. 

     What kinds of patterns are expected to be found:  Alcohol dosing curves (Y-matrix) obtained from breathalyzer 
measurements, when linearly correlated with the NIR-AS spectra (X-matrix) that are obtained simultaneously, result 
in correlation, score, and loading plots are a function of the relationship of the X – Y matrices. When corrected for 
variances from the NIR-AS spectra and breathalyzer values, using chemometric preprocessing techniques, the result 
is a linear regression curve from the calculated NIR-AS wavelength regression coefficients that can be useful for 
predicting %BAC.     

     Describe the expected results from the scores and loadings with respect to the observed variance:  
NIR %BAC results, when linearly modeled by correlating alcohol concentration absorbances and NIR spectral 
wavelengths, can be used to analyze future unknown NIR-AS spectra obtained through the finger for %BAC.   

     Describe any observed outliers and explain their root cause: NIR-AS Spectra and %BAC results not within the 
models 95% confidence limits must be investigated and root cause determined. 

     Propose future use of the resulting principal components to guide the ADS program:  Unknown NIR-AS 
spectra may be compared with the model PCA scores to classify the spectra as either "free of alcohol” or “containing 
alcohol” and subsequently analyzed by regression analysis to estimate how much alcohol is or is not present. 

     Loading and scores: Plots of spectra, scores, loadings, and residuals may be used to extract the relevant 
information pertaining to the alcohol analyte and provide scientific evidence for the presence or absence of the 
compound in blood. As such, Nørgaard et al. [15] provide a methodology for achieving the objective as stated by 
Pearson, “to represent a system of points in plane, three, or higher dimensioned space by the “best-fitting” straight 
line or plane.” Principal Component Analysis (PCA) can be used to “estimate the latent spectra (loadings) and 
determine the corresponding concentrations in the samples (scores) from the measured spectra.” 
 

The following analysis will be used to demonstrate if NIR spectroscopy can be used to detect the presence or absence 
of alcohol at low concentrations. Utilizing PCA of the spectra, Partial Least Squares (PLS) followed by DQM will be 
explored to analyze the spectra for the Percent Blood Alcohol Concentration (%BAC).  

Experiment 2:  Human (Methodology Described by Nørgaard et al.) 

The data set used for accessing the utility of NIR spectroscopy for the analysis of %BAC is composed of two subjects 
on two benchmark devices (NIR-AS-103 and NIR-AS-215) and are presented in Table 3.  

The %BAC ranges from 0.017% to 0.075%, from NSpectra = 1,171, averaged (Coadd) = 586, and then split into 
calibration (N = 291) and validation (N = 295) samples. Outlier removal, using Robust PLS, was performed on the 
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calibration, while manual removal was used on the validation set. Wavelength ranges from 1350 nm - 2550 nm (257 
variables), 32 nm bandpass. The Signal to Noise (S/N) was determined to be (≥ 1400 : 1 @ 1700 nm) or 31.46 dB.  

TABLE 3.  
Design of Experiment for Two Human Subjects Measured on Two Benchmark Devices (N = 1,171) 

 
Device Subject 1 NIR-AS-103 Subject 2 NIR-AS-215  

 Calibration (N = 683) Calibration (N = 488) 
%BAC 0.031% – 0.075% 0.017% – 0.074% 

Coadd Data 
(Before Sorting) 

Calibration (N = 586) 

N (X-Matrix) 
(Outliers removed) 

 (N = 206) 

%BAC 0.017% - 0.074%) 
N (Y-Matrix) 

 
(N = 206) 

Wavelengths       
1350 nm - 2550 nm 

257 

Split from Coadd 
Data 

Validation (N = 291) 

N (X-Matrix) 
(Outliers removed) 

(N = 127) 

%BAC 0.019% - 0.075% 
N (Y-Matrix) 

 
(N = 127) 

 
Wavelengths      

1350 nm - 2550 nm 
257 

 

Figure 8 shows plots of raw and Extended Multiplicative Scatter Correction (EMSC) from the Human data calibration 
spectra, measured against a 99% Spectralon® reflection standard, following outlier removal. Spectra are colored by 
the %BAC levels. The alcohol dosing range (after sorting on ascending values) is shown for each subject in Figure 9. 

As seen in figure 8, the BAC observed in the raw and EMSC treated spectra are not varying with alcohol absorption 
as one goes from the lowest to the highest value BAC, but from the scatter created from the tissue comprising the 
finger, the measurement placement and other non-absorption sources. 
 
As mentioned in the introduction to this section that, the loadings and the sample residual plots  may be analyzed using 
the approach recommended by Nørgaard et al. for “estimating the latent spectra (loadings) and determines the 
corresponding concentrations in the samples (scores) from the measured spectra.”  
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Plot of Raw and Extended Multiplicative Scattered Correction Spectra From Humans Following Alcohol 
Consumption Calibration (N206) Validation (N127)  

Calibration    Validation 

              Raw Spectra      

 (Not useful due   
to variance of  
subjects,   
devices and clutter) 

 

  

              EMSC Spectra 

 Corrects for the 
variance (baseline  
offset and  
(multiplicative  
and additive scatter)  
from subjects and  
devices 
 
 

Figure 8. Plot of Raw and Extended Multiplicative Scattered Correction Spectra (Human) 
 
 
 Alcohol Dosing Plots Extended Multiplicative Scattered Correction Spectra After Sorting (Human) 

Calibration    Validation    

 

 

 

 

 
 

Figure 9. Sorted alcohol breathalyzer value plots for Calibration (N206) and Validation (N127)). 

Figure 10 shows the PCs of the BAC values from human subject data of three selected samples, a low, middle, and 
high %BAC. Note that the PCA model is calculated on the calibration samples (N206) X-variables only (wavelengths); 
the Y-matrix breathalyzer values are not used. To the left, in column one, the raw spectra are shown for calibration 
sample 0.030 %BAC (#50), sample 0.050 %BAC (#149), and sample 0.070 %BAC (#241). Column two shows the 
mean spectrum over all calibration sample. The mean spectrum is identical for all samples.   

The first loading vector is the spectral structure that is best at describing the variation in the EMSC data (Figure 8). 
No other structure can explain more of the variation in the data than the first loading vector. The first loading is 
common to all samples; what makes the samples different is the content or concentration of this structure in their 
spectrum. This concentration is called the score value. The score value for 0.030 %BAC is 22.6, for 0.050 %BAC is 
47.5, and 0.070% is 10.0. The 288 remaining samples in the data set have different score values. Multiplying the 
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loading vector with the score values for samples #50, #149 and #241 are the best descriptions one can obtain for these 
samples, when the loading vector should also describe the other samples. Other observations are the following: 

 The shape of the first loading vector is the inverse of the EMSC treated spectra. This explains the greatest 
variance of the spectra (N206), and is describing all non-absorbing phenomena, (i.e. physical offset of the 
spectra related to finger placement, differences in individuals, and different NIR device). 

 The shape of the second loading vector resembles the human subject finger EMSC spectra. Prominent 
features of this spectrum are seen around the 1450 nm and 1940 nm wavelengths. These are known 
wavelengths for the NIR absorption of water.  

 The residual spectrum shows, as one goes down the table with increasing alcohol concentration, the 
wavelengths between 1350 nm – 2000 nm increase at those wavelengths associated with water. 

 The residual spectrum also increase between 2000 nm – 2550 nm as one goes from 0.05% to 0.1% alcohol. 
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Loading Plots of %BAC Alcohol Consumption (Range = 0.030% – 0.070%) 

Raw Spectra #50 
0.030%  

Mean Spectrum First Loading      
Score 22.6 

Second Loading 
Score -5.8 

Residual 

     
Raw Spectra #149 

0.050% 
Mean Spectrum First Loading      
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Second Loading 

Score 4.6 
Residual 

     
Raw Spectra #241 

0.070% 
Mean Spectrum First Loading      

Score 62.8 
Second Loading 

Score 10.0 
Residual 

     
 

Figure 10. PCA of %BAC Alcohol Consumption (Range = 0.030% – 0.070%) 

The second loading is the structure that describes the second most variation in the data set. The vector has the special 
property of being orthogonal (perpendicular) to the first loading. Once again, the sample diversity is reflected in the 
loading score value.  

The part of the variation in the data set not described by the first two loading vectors is represented by the residuals 
(Figure 10, column five). The residuals are specific for each sample and can be used for the detection of deviating 
sample patterns. Note that, as one moves down the residual column, the features of the residual describing all other 
samples other than the sample selected look less like the loadings as they increase from 0.030% to 0.070%. By 
comparing the size of the residuals with the variation of the EMSC data, one can calculate the variance explained for 
each Principal Component. 

An important observation in the residual plots as the concentration of alcohol is increasing moving  down the residual 
column, the intensity of the peaks other than those of alcohol in the 1350 nm – 2000 nm region begin dominating the 
whole absorption spectrum. Prior to testing the DQM on experiment #1, the PLS calibration was tried on the set using 
the full wavelength range. The resulting derivative plots show the wavelength range being calibrated on is from 1350 
nm – 2550 nm, and clearly shows the effect of water in this region around 1450 nm and 1940 nm (see figure 11). 

So, while PCA is useful, in this case, finding loading vectors describing the absorption spectrum of water in the finger, 
these is no clear indication of where alcohol is in the spectrum using the whole wavelength range 1350 nm – 2550 nm.   
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Surrogate experiment, PLS calibration on %Alcohol NIR Extended Multiplicative Scatter Correction (EMSC) 
(N = 21) Set using the full wavelength range (1350 nm – 2550 nm) 

 

2nd Loading   Correlation   Regression Coefficient 

 

 

 

 

 

 

Figure 11. Surrogate Experiment, calibration full range 1350 nm – 2550 nm, shows 2nd loading explaining 99.96% 
model variation due to water, correlation plot showing water and the regression coefficient showing variables 
contributing most to the model. Note the large negative coefficient at ~1450 nm and large positive coefficient 
around ~1940 nm, associated to water.      

As can be seen in figure 12, water absorption dominates the correlation and regression even though alcohol and other 
absorbers from hemoglobin, fat, and other analytes are present in the human. The relationship to these wavelengths is 
a function of the surrogate concentrations at 0.01%, 0.05% and 0.10%. Hence, the correlation and regression from the 
wavelengths associated with water strongly exhibit absorption effects (1350 nm – 2550 nm) greater than that of alcohol 
across the full spectrum.  

Can the same patterns from the loading, correlation, and regression coefficient be observed in the Human experiment 
(BAC% estimation for two subjects and two devices) presented in table 3?  Figure 12 shows that the same patterns 
seen from the surrogate data across the full range spectrum can also be seen in the %BAC human subject plots leading 
to the conclusion that the spectra from the Human data set behaves in the same manner as the spectra from the 
Surrogate model.  

That is, the full wavelength range 1350 nm – 2550 nm is detecting and calibrating on water and other absorbing  
components of the fingers, not alcohol. The alcohol wavelength range 2000 nm – 2550 nm is detecting and calibrating 
on alcohol and other absorbing components of the fingers, but not calibrating on water since there are no NIR 
absorption bands of water in this range. 
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Experiment 2, 2. Human subject dosing PLS %BAC 2nd Loading, Correlation Plot & Regression Coefficient 
Calibration (N = 206) Wavelength Range (1350 nm – 2550 nm)

2nd Loading Correlation Regression Coefficient

Figure 12. Experiment 2 Human subject dosing calibration range 1350 nm – 2550 nm. Compare this with figure 
11. The 2nd loading explains 98.08% model variation due to water, correlation plot showing water and the 
regression coefficient showing variables contributing most to the model. Note the negative coefficients at 
approximately 2050 nm, 2300 nm, and a positive coefficient around 2450 nm, is undoubtably an affect from the 
alcohol.     

What is the takeaway from the Surrogate experiment and subsequent review of the Human experiment being analyzed 
in PLS using the full wavelength and alcohol range (2000 – 2550 nm) for calibration? Correlation is not causation. 
Figure 13 shows the regression scatter plots for the surrogate and human subject data sets from a full range and an 
alcohol range calibration.

PLS Regression Scatter Plots (Experiment #1 and #2)

Surrogate Data Set 1 Human Data Set 2

Surrogate N22 %BAC 2 Subject / 2 Devices N206

7(1350 nm – 2550 nm) (2000 nm – 2550 nm)            (1350 nm – 2550 nm)           2000 nm – 2550 nm)

Figure 13. PLS regression plots of calibration (left) and validation (left middle) of surrogate data set, compared 
to calibration (right middle) and validation (right) of human data set.

The correlation for the 2000 nm – 2550 nm range for data set 2 falls from R2 = 0.907 to R2 = 0.270 when using the full 
wavelength range. This is in contrast to the Surrogate experiment, where the calibration correlation went up from R2

= 0.897 to R2 = 0.924. This leads to the conclusion that the correlation for %BAC (Human) was caused mainly by the 
water in the 1350 nm – 2550 nm range. When the calibration wavelength range was shortened to the alcohol range in 
the Surrogate experiment, alcohol was the dominant component contributing to the calibration as shown in figure 18. 
Note that alcohol now dominates the regression coefficient, as evidenced by the dramatic change in the first loadings. 
They no longer resemble water providing strong evidence that its influence has been reduced in the 2000 nm – 2550 
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nm range). The explanation for the cause of the correlation for both the Surrogate and Human spectra has now been 
correctly determined using loadings, correlation, and regression coefficient plots.  

PLS on Human experiment, %BAC 2nd Loading, Correlation Plot & Regression Coefficient Calibration (N = 
206) Wavelength Range (2000 nm – 2550 nm) 

2nd Loading   Correlation       Regression Coefficient 

     

Figure 14. Shows the loadings, correlation, and regression vector plots for human subject data set 2 (2000 nm – 
2550 nm) calibration range.  

Figure 14 shows that while the regression coefficient is using the wavelengths of those associated with alcohol (see 
figure 2 and table 1). The second loading from figure 14 explains 74.47% of the model variation, but it does not 
follow the same pattern as in the surrogate or the %BAC human (N206) full-range calibration. It can only be 
concluded that other absorbers and non-absorbing phenomenon such as noise and scatter, are also contributing to the 
variance seen in the model. Moreover, the very low value and random appearing correlation plot may be showing 
that wavelength multicollinearity is impacting the calibration even more than that already present in the full 1350 
nm -2550 nm range. This is not unexpected and can be explained by the reduced number of wavelength variables in 
the 2000 nm – 2550 nm range (80 compared to 257, when the full range is used), and the decrease of signal to noise.  

 
Experiment 2 (Human): The DQM Equation Applied to %BAC Estimation for Human Subjects  
 

Data from Human experiment (%BAC 2 Subject / 2 Devices) N206 can now be tested by the DQM regression program, 
following the parameters used on the Surrogate experiment, except for two differences. First, because the correlation 
obtained in the data set 2 %BAC 2 subject /2 devices (CAL N206) VAL (N127), it was postulated that using the large 
number of samples for the 2000 nm - 2550 nm range as was originally used for the full range calibration (N206) was 
introducing nonlinearities. The data set was trimmed down to CAL N159 and VAL (98) using combined leverage, 
KNN and manual outlier removal. Second, the spectra from the Human experiment have significantly lower signal to 
noise ratio then the Surrogate experiment, the gap / smoothing was set to a maximum of 6 and 12 respectively, based 
on the analysis of the alcohol peak at 2295 and measuring the number of data points in the peak at half-width (see 
figure 3). 

The DQM parameters selected for searching the wavelengths from 2000 nm – 2550 nm (alcohol range) (at 32 nm 
resolution, there are 80 wavelengths) used were: 
 

1. # of Calibration Samples: N159 
2. # of Validation Samples: N98 
3. Number of terms (1 or 2): 2  
4. Derivative order (d): Term #1: 1D, Term #2: 2D 
5. Number of differential gaps (gap): 6  
6. Number of smoothing points (smt): 12 
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Figures 15, 16, and 17 give the correlation scatter plot, the derivatives, the SEC, and regression coefficients plots from 
the analysis. Table 4 provides the DQM final result for the 2-term model for the Determination of %BAC on two 
subjects and two devices. The final results following implementing the dqm1 program were: 
 

 

%BAC Regression Results 

SEC =  0.005    RSQ = 0.8230    N = 206 

RMSEP =  0.004   SEP =  0.004   bias =  0.002   RSQ = 0.9501   N =  98 

2-Term Model:  %BAC S1 S2 N206 CAL 31.modl,  Derivatives normalized 

  Term #1:  (1D 2198.8024 NM, gap=6, smt=10)/(2D 2147.3685 NM, gap=6, smt=12) 

  Term #2:  (1D 2338.8535 NM, gap=2, smt=2)/(2D 2057.1429 NM, gap=4, smt=11) 

  Coefficients B0, B1, B2, .. =  0.064373  -0.002534 -0.00018087 

 

Optimal Derivatives Selected For %BAC Spectra CAL (N159) VAL (98) By The DQM Algorithm 

(2-Term Model 1D/2D) 

  

Figure 15. Optimal Derivatives Selected For %BAC Spectra CAL (N159) VAL (98) By the DQM Algorithm. As was 
shown for the surrogate DQM model experiment 1, note the prominence of regions of the spectra where 
wavelengths have been selected that correspond to regions of no scatter: the cross-over regions of the spectra. Other 
wavelengths center on a region of the alcohol analyte where known NIR absorption is expected to occur. 

 

Figure 16. %BAC Spectra CAL (N159) VAL (98) Scatter PlotStandard Error Calibration (SEC) and 
Regression Coefficient Plots for the DQM results of the %BAC Spectra CAL (N159) VAL (98) 
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SEC Plot                                             Regression Coefficient Equation 

 

 

Figure 17. Standard Error Calibration (SEC) and Regression Coefficient Plots for the DQM results of the Human 
Subjects  
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TABLE 4. 
DQM Results for the 2-Term and 1-Term Models for the Determination of %BAC in two subjects and two devices 
by NIR 
 

 Wavelengths 2-Terms GAP   
Derivative Ratio SEC (%BAC) N1 smt D1 smt N2 smt D2 smt R2 

1D /1D 
Term 1 2252 / 2034 
Term 2 2172 / 2062 0.005 4 12 2 12 6 0 2 0 0.810 
1D / 2D  
Term 1 2198 / 2147 
Term 2 2338 / 2057 0.005 6 10 6 12 2 2 4 11 0.823 
2D / 1D 0.006 5 0 3 0 5 2 5 1 0.767 
2D / 2D 0.006 1 0 1 0 5 9 6 12 0.739 
  1-Term GAP   
  SEC (%BAC) N1 smt D1 smt         R2 
1D / 1D 0.006 4 12 2 12     0.754 
1D / 2D 0.006 6 10 6 12     0.793 
2D / 1D 0.008 5 0 3 0     0.597 
2D / 2D 0.007 1 0 1 0     0.645 

 

PLS calibration on %Alcohol NIR Extended Multiplicative Scatter Correction (EMSC) (N = 21) Set using the 
alcohol wavelength range (2000 nm – 2550 nm) 

2nd Loading        Correlation   Regression Coefficient 

 

 

 

 

 

Figure 18. PLS calibration on %Alcohol NIR Extended Multiplicative Scatter Correction (EMSC) CAL (N22) 
Surrogate data set using the alcohol wavelength range (2000 nm – 2550 nm). The second loading explains 99.72% 
of the model variance and is now dominated by positive wavelength variables specific for alcohol. Note the 
coefficients around wavelengths closely associated with alcohol.  
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DISCUSSION 

The PCA, PLS, and DQM analysis applied to NIR spectra obtained from surrogate mixtures of alcohol : water and 
two human subjects on two benchmark devices demonstrate several aspects of the measurement of %BAC that fulfill 
the requirements for an accurate and precise measurement to be made by NIR. However, challenges still remain 
considering instrument Signal to Noise S/N, limited spectral resolution, instrument variability, and measurement 
sampling variability contributing to additional scatter from nonlinear phenomenon related to biological tissue 
heterogeneity. Observations from these experiments and analysis using the NIR-AS prototype sensors are the 
following: 

1. The correlation has been shown to be attributed to wavelengths that are specific for the absorption of alcohol 
in the wavelength range from 2000 nm – 2550 nm. The first and second latent variables of the calibration 
data set can be used to explain the high linear correlation and model wavelengths variance contribution to 
the model.  

2. PCA of the residual spectra is useful for attributing the cause of the correlation from increasing concentration 
of the water or alcohol in these experiments. 

3. The breathalyzer measurements are accurate and precise, at least sufficient to be used on several different 
subjects, correlated to different devices and are reproducible over time despite the high variance of the human 
data set.  

4. The analysis presented in this paper is standard protocol for working through PLS model results. The analysis 
of loadings, correlation, regression coefficients, and residual plots are necessary for establishing the cause of 
the PLS correlation model. The difference between water NIR absorption versus alcohol NIR absorption 
show up in the loadings and regression coefficients indicating the source of the correlation of x-matrix 
wavelengths to Y-matrix breathalyzer values when either the full wavelength or the reduced wavelength scale 
are selected for calibration.  

5. In this study, the basic experimental design of pairing laboratory in vitro surrogate (alcohol-water mixture) 
studies with human studies, in order to have a simple frame of reference (low noise, no scatter) for 
interpreting the spectra and resulting model information for analysis was the key to understanding the 
complex nature of %BAC determination in humans. This is a major milestone for this experiment and the 
adoption of this simple approach should be useful in guiding the next recommended R&D phase: human 
dosing and clinical analysis of breath and blood.  

6. PLS analysis shows that there is a significant correlation between BAC breathalyzer values and NIR 
measurements at low dosing levels. While the use of PLS for calibrating multiple human subjects and NIR 
devices looks promising in the 2000 nm – 2550 nm wavelength range, further work is ongoing for improving 
the NIR-AS, design of experiments, alcohol dosing spectral preprocessing and ongoing model variance 
studies over time.    

7. A correlation on the surrogate data set was made using a wideband NIR device (NIR-AS) to measure very 
low concentrations of alcohol in the range from 0.01% to 0.01%. The same range was used for the 
determination of the %BAC in humans and gave similar results. This was useful for studying and 
understanding the cause of the loadings, regression coefficient and correlation plots in a low noise and non-
scattering environment. This approach is a significant finding that will aid in improving the human studies, 
device design and software performance for future NIR-AS devices. 

8. Sampling averaging leads to improved correlations. The design of experiment for the human subject data set 
takes into consideration one of the requirements of measuring low amounts of a constituent on a wide band 
device. 

9. Averaging the spectra from multiple samples of the same constituent level in order to reduce the sampling 
error, and hence the impact of spectra preprocessing and final model variance due to unwanted physical 
effects. 

10. Attention paid to the handling of spectral outliers and the design of individual data sets are paramount if good 
correlation models are to be robust. 

The introduction of the use of the DQM regression tool for both calibrating and diagnosing data sets used by both PLS 
and PCA approaches offers renewed insight into the causes of correlation in determining %BAC. The method can be 
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used to target the identification of derivative ratios at optimal wavelengths that are specific for the alcohol analyte by 
adjusting the wavelength range, derivative order, gap, and smoothing parameters. DQM offers a specific and sensitive 
(detection of the analyte in the presence of interfering absorbers and the elimination of multiplicative scatter) method 
for the accurate and precise determination of BAC in humans by NIR spectroscopy.    

Norris [16] describes the utility of DQM moreover, he explains the method as it applies to single, and two term 1st and 
2nd derivatives combined with gap and smoothing pretreatment and is excerpted below.   

Near infrared spectra of diffusely reflecting samples [e.g. human skin] are characterized by: 

 poor reproducibility 
 poor linearity 
 high noise and high sensitivity to sample measurement geometry.  

Typical calibration procedures for such spectra involve pretreatment with multiplicative scatter correction or standard 
normal variant correction, first or second derivative, and partial least squares regression. In the case of determining 
BAC in NIR, spectral preprocessing using EMSC followed by DQM, has proven successful as shown above. Studies 
are ongoing for exploring the utility of the DQM for the determination of BAC using multiple subjects and devices 
for understanding how DQM can be used in conjunction with other techniques, to arrive at a better understanding of 
BAC measurements, correlations to breath, blood, or other biological markers identified for alcohol intoxication and 
the goal of achieving a chemometric predictive model for %BAC by NIR.  

CONCLUSION 
The determination of blood alcohol concentration by NIR has been shown to primarily the result of wavelengths in 
the 2000 nm – 2550 nm region of the spectrum. Based on the known NIR absorption bands from alcohol reference 
material, and the known NIR absorption spectrum of water, it was shown by exclusion and inclusion experiments of 
portions of the wavelength range that correlate solely to water (1350 nm – 2000 nm) and to alcohol (2000 nm – 2550 
nm), that the cause of the correlation and regression equation could be attributed. More importantly, the PLS equation 
in the wavelength range from 2000 nm - 2550 nm was shown to not be able to regress on two subjects measured on 
two devices. The reasons for this are not immediately obvious, but sources of variance from multiple subjects and 
multiple devices as well as diminished signal to noise and absorption from other constituents (i.e., hemoglobin, protein, 
fat and other NR absorbers in human tissue) are likely the leading causes. This immediately led to the design of the 
experiments for including the surrogate for analysis and trying to understand the cause of this. 

Again, the authors introduced DQM for the reason of trying to understand the cause of the alcohol correlation failing 
in the human study, but succeeding in the surrogate study using PLS chemometrics. The output of the DQM reveals 
several attributes of NIR-AS spectra.  

1. Wavelength selection for the optimal detection of alcohol correspond to spectral regions of no scatter 
(the crossover regions) seen in the surrogate and human spectra. 

2. The effect of the selection of wavelength range for inclusion for DQM analysis also shows that DQM 
will select regions of spectra that have a low error for wavelengths in the crossover regions of the 
spectra, not necessarily from the analyte of interest.  For instance, limiting the range to 2000 nm – 2550 
nm for gap, smoothing, derivative selection, and optimization will correlate and regress on the alcohol 
for both the surrogate and human data set. However, when the full wavelength range is selected (1350 
nm – 2550 nm), water is selected for calibrating against the breathalyzer values just as in the PLS 
algorithm as shown for both the surrogate and human data. 

3. The regression vector explaining the correlation of the final DQM model can be shown by the PLS 
analysis of the same data set using loadings, correlation, and regression coefficients that the analyte in 
the DQM model is in fact alcohol based on known NIR absorption of reference spectrum. 

Further experiments have already been carried out and additional are underway for refining the surrogate experiment 
(i.e., controlling evaporation and understanding the contribution of scatter from the cotton matrix), controlling NIR 
measurement of the finger, and optimizing the NIR test device for enhanced signal to noise and resolution. The next 
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phase for beta testing the devices will focus on completing the pre-clinical study of multiple human subjects on 
multiple test devices and regression analysis of the data by DQM, PLS, and PCA. The goal of providing a global 
model for the determination of BAC in humans, which we believe is achievable based on this and other decisive and 
targeted studies designed to understand the cause of correlation and regression of the BAC model.         
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ABSTRACT 
 
Drowsiness is one of the mean causes of road accidents, accounting for 1,200 fatalities and 76,000 injuries per 
year, according to several authors [1]. This transitional state between awake state and the sleep state behaves 
physiological symptoms such as yawning, loss of neck muscle tone, pupillary constriction, ptosis, decreased 
attention, psychomotor and cognitive performance [2]. The purpose of the present study is to observe the effects 
of monotonous driving on long journeys on driver behaviour in order to develop driver monitoring systems 
capable of detecting symptoms of drowsiness and thus be able to reduce its negative impact on the road. The 
experiment is conducted on a dynamic driving simulator, where conditions were configurated according to the 
aim of having a monotonous environment free from any distraction. Participants drive for 90 minutes and every 
5 minutes the experimenter ask about their level of KSS, using the Karolinska Sleepiness Scale, a standardized 
instrument that measures the participant’s subjective level of drowsiness. Moreover, participants are 
instrumented to collect physiological data (ECG, EEG, EDA and respiratory rate) and an eye-tracking system 
monitors other drowsiness behaviours such as blinking or yawning. The test finish when 90 minutes passed, or 
participants reached an advanced level of drowsiness on the Karolinska Sleepiness Scale (KSS). The study 
consists of two phases of testing. The first phase, with 10 participants, aims to validate the test method for both 
sleep induction and the integrated data collection setup. The second loop of testing, planned in January 2023, 
will involve 20 participants with different age and gender representation and aim to try to define the sleep 
behaviour patterns in relation to the different levels defined by KSS. In this paper we present the preliminary 
results of first phase of testing. 
 
BACKGROUND 
 
In recent years, it has been noticed that driving in a sleepy state poses a high risk to road safety. According to 
the DGT, drowsiness intervenes, directly or indirectly, in between 15-30% of traffic accidents in Spain [3]. 
Also, as reported by the recent statistics, drowsiness-related accidents account for 1,200 fatalities and 76,000 
injuries per year [1] For this reason, there is growing interest in finding automatic systems capable of detecting 
the state of driver fatigue. In addition, as the implementation of this technology becomes more widespread, 
driven by the current regulations of entities whose objective is to reduce traffic accidents, such as the European 
Commission or EuroNCAP, the requirements for drowsiness detection systems validation tests are increasing. 
Validation tests can be conducted on test tracks (involving high cost and limitations by safety restrictions) and in 
a driving simulator (requiring a time and cost intensive integration process). Benefits of carrying it out in a 
laboratory-based driving simulator are the safety and the reproducibility of the experiments. [4]. To date, 
IDIADA has already developed specified methods for this type of testing, with a first successful application in 
proving ground since 2021. 
 
Drowsiness definition 
Drowsiness can be defined as the transition between the awake state and the sleep state where one’s ability to 
observe and analyse are strongly reduced [5]. This transitional state usually goes hand in hand by physiological 
manifestations such as yawning, loss of neck muscle tone, pupillary constriction, ptosis, decreased attention, 
psychomotor and cognitive performance [2]. In addition, drowsiness mainly causes the following disruptions: 
increased reaction time, decreased concentration and more distractions, slower and more errors in decision 
making, motor disturbances and automatic behaviours, occurrence of micro dreams, sensory and perceptual 
disturbances, and changes in your behaviour [3]. 
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Because of there are so many definitions of this concept, some authors disagree with each other. Even so, there 
are two concepts important to emphasise due to the contribution in developing different instruments that 
quantify drowsiness (instruments that we use in the present study): objective drowsiness and subjective 
drowsiness. The first refers to a person’s tendency to fall asleep, and the second is considered as the subjective 
perception of the need to sleep associated with several subjective sensations and symptoms mentioned above 
[2]. Another way to measure drowsiness is gathering data from physiological parameters like 
electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), respiratory rate and 
conductivity of the skin in where changes have been observed [6]. These changes include heart rate slowing, 
blinking, eyelid movement and breathing slowing, among others [7]. 
 
Purpose of the study  
Considering the intention of increasing the benefits in terms of road safety for both driver and occupant [8] the 
aim of this study is to observe the effects of monotonous driving on long journeys on driver behaviour and to 
find patterns in variables for the development of driver monitoring systems. 
 
OBJECTIVES 
 
These testing activities have so-far involved representative inducements of sleepiness in naïve driver 
participants, with principal use of metrics for verification of sleepiness condition. Based upon discussions with 
existing and potential future automation industry needs, as identified two key areas of development for these 
types of sleepiness tests which form this paper objectives: 
 
Technical objectives 
The KSS (Karolinska sleepiness scale), regarded as the principal means of comparative evaluation, relies on 
participant subjective assessment. This additional objective measures have the potential to greatly improve the 
robustness of the assessment of participant condition. These are readily identified in literature, however there is 
a lack of a clear reference to critical KSS values. 
 
Strategic objectives 
Use of driving simulator and test tracks both involve prohibitive cost and timing implications for some 
validation activities. In response to this, a concept for a HiL (Human in the Loop) testing methodology has been 
developed, where relevant driver behaviour metrics would be fed into a client module for assessment of DMS 
sleepiness detection performance. Central to its potential implementation is the availability of a data set of 
relevant metrics for the detection of drowsiness / sleepiness in drivers with the KSS as a reference for subjective 
driver condition.  

 
METHODOLOGY 
 
Subjects 
In this first phase of the study, 10 volunteers between 20 and 70 years were selected for the experiment, the 
proportion of which, between men and women, was almost equal: five and four respectively. Participants were 
separated into 4 groups during the course of the night: from 10 to 12pm, from 12 to 2am, from 2 to 4am and 
from 4 to 6am. This made it possible to englobe all the driving around the period of 2 pm to 4 pm, where it has 
been scientifically proven that the circadian rhythm renders a person more likely to get drowsy [3]. In addition, 
they were deprived of sleep by staying awake for the preceding 24 hours and were not allowed to drink coffee or 
any other type of stimulant either. All subjects signed a consent form, received a briefing (Annex 1), and did a 
previous questionnaire specifying driving characteristics and biometric measures as age, gender, height, skin 
tone among others (Annex 2).  
 
Scenario’s definition 
Certain elements as the environmental stimulation, the time of the day, the hours of continuous wakefulness and 
driver’s activity level can have an impact to the onset of drowsiness [3]. Taking this into consideration, we have 
implemented the following conditions for the test environment:   
 

Table 1.  
The conditions set for the KS-SLEEP tests 

 

Time of the day Participants did the test during the following interval of time: from 10pm 
to 6am. The scenario is configurated with to modes:  
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- Day 
- Night 

Wakefulness hours 
Participants cannot sleep before the test to increase the hours that they 
are awake. They were not allowed to drink coffee or any other type of 
stimulant either. 

 
 
 
 
 
Driver’s 
activity level 

Traffic No random car traffic to avoid stimulating the driver's attention 

Luminosity of 
the environment 

Dim light, that it is like at night and that the time also advances with the 
duration of the simulation 

Noises 
No random noise. The scenario has been predefined with vehicle noise 
and ambient noise. To improve immersion, the sound of crossing the 
lane line has been reproduced. 

Speed 
Sensation of speed at 80km/h.  
Annotation: We raise the speed in the simulator at 110 km/h to be able to 
reach this sensation. 

Test track  A 20km highway loop, where you have a monotonous driving with a 
slightly changing environment in different places. 

ACC ADAS 
system  The ADAS ACC system has been integrated into the vehicle model so 

that the participant can activate it during the test. 
 

Measurement 
Corresponding technologies and tools are used depending on the type of data. The data collected by the different 
data acquisition systems is integrated into the iMotions software. This software is an integrated analysis 
platform designed for human behavioural research and synchronizes all data obtained during testing. 
 
Physiological sensors  
The system used to collect EEG, ECG, EDA and respiratory data is OpenSignals. This software then shares the 
information with iMotions. The specifications of the sensors used are as follows: 
a) Electroencephalography (EEG), one channel.  
b) Electrocardiography (ECG), one channel. 
c) Electrodermal Activity (EDA), one channel with two electrodes placed on the second and third finger of 

the hand. 
d) Respiratory frequency with wearable chest-belt with an integrated localized sensing element. 

 
Eye tracking 
The system used for eye tracking is SmartEyePro. This system can determine the position of the head, the 
participant's features and iris and pupils’ behaviour. Despite its multiple functionalities, the most relevant 
information for this project is eye opening and blinks. The instrumentation required to install this system 
consists of three cameras with their corresponding infrared light connected to the SmartEyePro computer where 
the software that processes the data is installed. This data is subsequently sent to iMotions. 
 
The interest in this data collection lies in the measures of PERCLOS and blink measurement because they are 
one of the best indicators of drowsiness. Moreover, this data can be detected with non-intrusive, real-time 
detection systems, which is of benefit to users.  
 
KSS 
Karolinska Sleepiness Scale (KSS) is a 9-point scale able to measure the subjective level of sleepiness 
indicating which level is more in line with the psychophysical condition experienced [9]. It has been used in 
some studies to assess driving abilities and fatigue [10] [11].  Current regulations state that sleep monitoring 
systems must warn the driver when the driver is at KSS level 7 or higher. 
 
This self-rated scale is assessed every 5 minutes by the experimenter asking to the volunteer “What is your 
perception of drowsiness in the last 5 minutes?”. The participants were informed previously that was important 
to understand the scale for the proper functioning of the test. The experiment finalises when the participants 
reach the 8 level of drowsiness (where it is considered a certain effort to keep alert) or when 90 minutes have 
passed. Drowsiness subjective level is defined as follows: 
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Table 2.  
Karolinska Sleepiness Scale (KSS) 

 

Rating Verbal descriptions 
1 Extremely alert 
2 Very alert  
3 Alert 
4 Fairly alert 
5 Neither alert nor sleepy 
6 Some signs of sleepiness 
7 Sleepy, but no effort to keep alert  
8 Sleepy, some effort to keep alert 
9 Very sleep, great effort to keep alert, fighting sleep 

  

Driving simulator 
One of the main axes of this research is the Dynamic Driving Simulator: a cutting-edge tool with high added 
value that allows you to drive and experience dynamic driving sensations close to reality in a totally safe 
environment. 
 
The simulator set-up consists of a cockpit based on a real VW Golf Variant 8 mounted on a dynamic platform 
with 9 degrees of freedom. The platform consists of a tripod for low frequencies and a hexapod for high 
frequencies which allows having movement and vibrations sensations while driving.  
 
The cockpit interior is based on the actual vehicle, so all interior details are virtually the same. In addition, the 
cockpit also incorporates a parameterized active steering wheel and brake pedal, as well as a pneumatic seat and 
seat belt, which offer a more than correct response to the limitations of the platform movement when 
maintaining constant longitudinal and transversal accelerations. The driver's position inside the cockpit has no 
blind spots in terms of visibility and immersion within the virtual environment. The visual component is very 
important, so the driver will be surrounded by 5 fully merged and synchronized conical screens with a 240-
degree field of view at frequency of 120Hz and 2k resolution. 
 
At the software level, two different company tools are integrated. On the one hand we have the dynamic 
simulator software, provided by Vi-Grade, and on the other hand we have the virtual environment software, 
from AV Simulation. Both are being co-simulated and are fully integrated. The communication between the 
simulator computers and SCANeR is done entirely through the UDP protocol. 
 
VI-Grade 
VI-Grade is the company which provides the simulation tools and licenses. This includes different software such 
as SIMulation Workbench (for real-time execution and configuration of the processes and tests to be executed), 
VI-DriveSim (as a slightly more user-friendly interface of SIMulation Workbench), VI-CarRealTime (for the 
dynamics of the vehicle), VI-SimSound (for sound), etc. 
 
AV Simulation 
The AV SIMulation tool used in this study is comprehensive simulation platform called SCANeR Studio. 
SCANeR software takes care of everything related to the environment in which the car moves: the scenery. In 
addition, it also controls the interaction of the scenery with all the elements that appear on it. SCANeR is used to 
design the route and what the participant will see. The designed route runs along a 20km highway loop which is 
practically a linear road. In this way, a calm and smooth driving is achieved so that the participants have a high 
state of comfort and relaxation during all tests.  
 

Procedure 
The experiment has been distributed over 3 days, with 3 participants on the first day, 4 on the second day and 3 
on the third day. Subjects were informed of the content of the study and signed the consent forms previously. 
They also completed a questionnaire beforehand (explained in Annex 1). Participants were transported by taxi 
from their home to our facilities to avoid driving before the test, which would have affected their alertness, and 
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on their return home, to avoid the risk of driving after having been induced to sleep and due to the 
recommendation not to drive 30 minutes after driving on the simulator.  
 
The experiments were preceded by a few minutes of pre-driving to make the participant comfortable with the 
driving simulator. Subjects were instructed to drive safely, respecting traffic rules, and behaving as close as 
possible to a real situation. When the participant felt adapted, the driving simulation started and was extended 
for 90 min. Procedures were prepared to begin the driving session around 2 pm. This made it possible to englobe 
all the driving within the period of 2 pm to 4 pm, where it has been scientifically proven that the circadian 
rhythm renders a person more likely to get drowsy [3]. Aside from the driving task, participants were asked to 
rate their levels of drowsiness/alertness through the KSS, in 5-minute intervals. 
 
 
PRELIMINARY RESULTS AND DISCUSSION 
 
Expected results from this paper was obtaining objective measures to give robustness to the subjective 
Drowsiness Detection Assessment and to develop a drowsiness baseline data set. This also will be useful for the 
current development of ADAS, and ADS technologies related with driver drowsiness detection.  
 
Objective measures of sleepiness are identified in the literature, but there is no clear correlation with KSS 
values, suggesting the complexity of identifying behavioural patterns easily generalisable to the population. In 
this first phase of the analysis, we have focused on validating the methodology to be applied in a second phase 
of the experiment and, secondly, on obtaining a data profile in relation to the results expected by the literature 
and exploring a possible relationship with the level of KSS. The study is still ongoing, and although we will not 
draw firm conclusions at this stage, it is a good opportunity to analyse objective data on drowsy behaviour 
collected under controlled test conditions. Thus, the following is a sample of some of the data obtained by one 
of the participants: 
 
Physiological data 
Regarding heart rate, the expected results are that it decreases as the level of drowsiness increases, being aware 
that the normal heart rate ranges between 60-100 beats per minute (bpm). Two further indicators that 
participants are approaching a state of drowsiness are increased yawn frequency and decreased respiratory rate. 
Normal breathing in adults is regarded as between 12 and 25 breaths per minute. In both cases the trend of the 
data is as expected. Figure 1, Figure 2 and Figure 3 show participant results in relation to the declared KSS 
level. 
 

 
Figure 1. Heart rate-KSS level. 
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Figure 2. Yawn frequency-KSS level. 
 

 
Figure 3. Respiratory rate-KSS level. 
 
 
CONCLUSIONS AND NEXT STEPS 
 
In this paper we present data that validate the method proposed in this first phase. This will be used to apply it in 
a second testing phase. The most relevant observed trends concerning one participant are: a) A relation between 
KSS level and yawning frequency: as the level of KSS increases, so does the frequency of yawning. This is not 
best explained by the time the participant resides in each KSS phase, as it refers to KSS=5 level for 25 minutes, 
while KSS=8 level only lasts for 15 min.; b) Regarding heart rate, it seems that decrease while KSS level 
increase. Even so, empirical assessment of the data will be necessary to draw definitive conclusions; and c) 
Respiratory rate decrease as expected while KSS level increase.  
 
Once the methodology has been designed and validated, two parallel future lines of action emerge. On the one 
hand, consolidate the application of the methodology in the second testing phase in order to be able to reach 
definitive conclusions and, on the other hand, its improvement and extension.  
 
- After a first analysis of this first loop of testing, the following aspects have been detected and should be 

considered for the second testing phase: Initially, the premise was to reach KSS level 8. However, as the 
simulator was assessed as a safe and risk-free space, it was considered to increase this level to score 9 to 
assess a further stage of sleepiness and its effects. 

- Participants: it is important to EEG sensors signal that the volunteers come without products on hair. It has 
been observed that this interferes with the sensor signal. 

- Extension of the instrumentation: it is proposed to extend the ECG sensors instrumentation to optimise 
their signal and to place some more cameras to obtain better visualisation of the participant's behaviour. 

- Instrumentation variation: change EDA sensors (Electrodermal Activity) to obtain clearer results than with 
the present sensors. 
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As for the application of this methodology in future development, these are the main proposals for its 
implementation: 

 
- Assessment of the effect of drowsiness on drivers.  
- Comparative analysis of different drowsiness detection systems.  
- Evaluation of the influence of distractions on the evolution of sleepiness.  
- Validation of new systems in an autonomous vehicle. 
- New users: the idea is to be able to apply the methodology developed to new groups of users. 
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APPENDICES 
 
Appendix A 
 
Participants’ briefing 
Thank you for participating in this study. In this document we explain the details of the test that you will 
voluntarily take as part of a research project of the Human Factors team of the ADAS department at APPLUS+ 
IDIADA.  
 
Before it is important that you understand why the research is being conducted and what it consists of. Please 
read this document carefully and ask the research staff any questions you may have. You will be asked to sign a 
consent form confirming that you have read and agreed to all the information contained in this document. In 
addition, you will be given a document requesting your consent to share the data recorded during the test with 
the client responsible for the study. 
 
It is important that before the test you do not drink stimulating substances or beverages such as coffee, nor are 
you under the influence of any medication, alcohol or other drugs that could affect your alertness during the test. 
The research staff will inform you when the test is completed. 
 
Description of the activity 
The aim of this test is to observe the effects of monotonous driving on long journeys on driver behaviour. This 
type of study is important for the development of new driver monitoring systems capable of improving the 
safety of both driver and occupants. 
 
The test will be conducted on the dynamic driving simulator. During the test, you will be asked to drive for 90 
minutes in the centre of the lane at a constant speed.  
 
Every 5 minutes, the researcher will ask you about your drowsiness, which will be assessed using the Karolinska 
Drowsiness Scale. It is important that you carefully read and understand the scale for the proper functioning of 
the test. It is defined in Table A1. 
 

Table A1.  
Karolinska Sleepiness Scale (KSS) 

 

Rating Verbal descriptions 
1 Extremely alert 
2 Very alert  
3 Alert 
4 Fairly alert 
5 Neither alert nor sleepy 
6 Some signs of sleepiness 
7 Sleepy, but no effort to keep alert  
8 Sleepy, some effort to keep alert 
9 Very sleep, great effort to keep alert, fighting sleep 

 
You will report your state of sleepiness by giving a value from 1 to 9 according to your actual state. In the 
course of the test, we will collect data from different sources: your driving behaviour, your interaction with the 
vehicle controls and your visual behaviour while driving will be recorded. In order to measure behavioural 
effects, we will instrument you with a total of 9 sensors (distributed on the head, abdomen and right hand) that 
will collect physiological signals such as heart rate, respiratory, skin conductivity and brain waves. 
 
During the first 5 minutes of driving feel free to ask any questions you may have, but please remain silent for 
the rest of the test to avoid influencing your alertness through no fault of your own. 
 
We remind you that participation is entirely voluntary. If for any reason you wish to stop driving, please inform 
us and you are free to leave the test. 
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Appendix B 
Table B1.  

Biometric data 
 

1. Age  
2. Gender  
3. Driving experience (years)  
4. Overall driving frequency (hours/week)  
5. Commuting frequency (hours/week)  
6. Skin tone (Fitzpatrick scale)  
7. Standing stature (cm) 
8. Maximum distance between eyes (mm) 
9. Minimum distance between eyes (mm) 
10. Nose length (mm) 
11. Vertical relaxed left eye-opening aperture (mm) 
12. Vertical max left eye opening aperture 
13. Horizontal relaxed left eye-opening aperture 
14. Vertical relaxed right eye-opening aperture (mm) 
15. Vertical max right eye-opening aperture 
16. Horizontal relaxed right eye-opening aperture 
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ABSTRACT 
 
This project examined how middle-aged and older drivers adapt to the use of Level 2 (L2) advanced driver 
assistance system (ADAS) features (i.e., the system controls lateral and longitudinal motion). Data were drawn from 
two naturalistic driving studies (NDS). In the L2 NDS study, 82 participants were recruited from the Washington, 
DC metro area and drove L2 vehicles for four weeks. A second NDS was conducted with 14 older adults (Older 
Driver NDS). In the Older Driver NDS, participants aged 70-79 drove L2 vehicles for six weeks. Speed setting 
above the speed limit was significantly more common when L2 was active than when it was available-but-inactive 
in the Older Driver NDS dataset. Older adults had shorter off-road glances than middle-aged drivers in the L2 
NDS when L2 was available, regardless of L2 engagement status. Older drivers showed shorter glance durations 
overall. Older adult drivers had fewer glances away from the forward roadway and were significantly less likely to 
engage in secondary tasks when L2 was active. Evidence of older adult driver adaptation to L2 systems is seen most 
predominantly in the speed selection.  
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INTRODUCTION  

Driving automation technology is rapidly proliferating into the U.S. vehicle fleet. Along with this trend, our society 
is aging.  In light of this, questions remain regarding how older adult drivers adapt to novel technologies in the 
driving environment and how drivers respond to the introduction of new technology that serves specific needs. The 
primary research objective was to compare middle-aged and older adult driver safety behaviors and adaptation 
during initial exposure to SAE International (SAE) Level 2 driving automation (L2) advanced driver assistance 
systems (ADAS). 

Vehicle automation control paradigms are becoming more novel across a variety of dimensions, specifically L2, 
where some degree of driving automation control is simultaneously exerted in the longitudinal as well as lateral 
dimensions. Typically, longitudinal control is manifested by adaptive cruise control (ACC) and lateral control via 
lane keep assistance (LKA) or lane centering assistance (LCA). Additionally, we are witnessing an aging of our 
society.. While there are theoretical approaches to conceptualizing driver adaptation (e.g., risk homeostasis, [1,2]; 
risk allostasis, [3]), questions remain about how older adult drivers specifically adapt to automation in the driving 
environment. The construct of adaptation is perhaps even more complex with older drivers in that cognitive decline 
may progress with age.  

A few studies have examined this space. In a study focused on situation awareness in a simulated driving 
environment, researchers found that a group of older drivers (65–81) adapted to dynamic hazards with greater 
vehicle speed reduction than a group of younger drivers (18–25) [5]. While each study is unique, the naturalistic 
driving study (NDS) research paradigm typically involves the automatic recording of driver behaviors, vehicle 
kinematics (including speed and acceleration), and a GPS record of the vehicle’s route driven. Liang and colleagues 
used the NDS paradigm to investigate older drivers’ subjective adaptation to ADAS, including ACC over a 6-week 
period [6]. Weekly phone surveys found little change in the older drivers’ trust of the ADAS features: they generally 
started high and remained at that level. However, focus group discussions conducted after the conclusion of the 
driving portion of the study did reveal attitudinal adaptation to the technologies across several dimensions, including 
perceived safety and functional benefits as well as confidence in the technology.
 

Objective 
The objective of these analyses is to compare middle-aged and older adult driver safety behaviors during initial 
exposure to L2-equipped driving automation (i.e., driving automation to simultaneously control lateral and 
longitudinal motion, but where driver expected to maintain constant supervision of these support features and 
maintain responsibility for driving). This analysis provides a comparison that identifies how older drivers adapt to 
driving automation to discuss potential unique needs of that population.  

 
METHOD 

Two NDS databases were used to compare older adult drivers with a group of middle-aged drivers in the earliest 
phases of L2 technology use. The Older Driver NDS was conducted with 18 older drivers (70–79) [7]. Participants 
drove one of four L2-equipped vehicles for 6 weeks each. Vehicle makes included Audi, Infiniti, Mercedes, and 
Volvo from the 2015 – 2017 model years. Participants were eligible for the study if they met the age group criterion 
and had not driven L2-equipped vehicles. The L2 NDS study provided a database of middle-aged drivers, 25-54, for 
comparison with the older adults in the Older Driver NDS [8]. The same vehicles as were driven in the Older Driver 
NDS were also driven in the L2 NDS; however, the L2 NDS also included a Tesla. L2 NDS participants lived and 
commuted in the Washington, D.C. area. Participants in the Older Driver NDS were residents of the Blacksburg, 
Virginia, and surrounding areas. Data from both datasets were compared over the first 3 hours of driving exposure 
with use of the L2 technologies. While drivers in the L2 NDS database had more exposure to L2 technologies, older 
drivers did not use systems more than 3 hours, so older driver usage limited the amount of L2 exposure that could be 
used in this analysis. 

Data were analyzed from 96 volunteer driver participants. This included 14 drivers from the Older Driver NDS 
and 82 drivers from the L2 NDS. There were 2,437 L2 activations, which included 130 activations from the 
Older Driver NDS and 2,307 activations from the L2 NDS. These observations were collected across 3,891 
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trips, including 370 trips from the Older Driver NDS and 3,521 trips from the L2 NDS. Table 1 provides a 
summary of these observations.  

 
Table 1. Summary of Older Driver NDS and L2 NDS Data Sources  

Data   
Older Driver NDS 

(70+ years old) 
L2 NDS  

(25 to 54 years old)   

Drivers  14 82  

L2 activations  130 2,307  

Trips  370 3,521  

 

The primary independent variable focused on L2 Activation Status, where the driver (i.e., systems were available 
but inactive) or the driving automation (i.e., the systems were both available and active) controlled both lateral and 
longitudinal motions of the vehicle. Additional independent variables include Time of Day, Day, Road Type, and 
Traffic Density. The main dependent measures included: speed selection, glance behaviors, and secondary task 
engagement. While this study intended to examine changes in driver behavior over time, older drivers did not use 
the systems enough (i.e., no more than 3 hours of experience with active L2 systems) to conduct this analysis. 

 
RESULTS 

Across both datasets, the duration of each individual L2 activation event was similar. In the Older Driver NDS, 90 
percent of activations were shorter than ten minutes; in the L2 NDS, 99 percent of activations were shorter than ten 
minutes. This analysis evaluated multiple circumstances that included time of day, weekday versus weekend, and 
road type, but these factors were not found to influence any of the variables in this analysis. 

Speed Selection  
For each L2 system activation, vehicle speed, GPS coordinates, and road type were recorded. Each L2 system 
feature activation analyzed was required to be at least 120 seconds in duration to ensure the driver intentionally 
activated the L2 system features. Then, a random sample of matched controls was identified with the goal of a 1:1 
match based upon driver identification number, Time of Day (± 4 hours), day of week (weekday versus weekend), 
and anytime the vehicle was traveling above 40 mph. The idea of available-but-inactive is important in ensuring 
comparisons are reasonable. That is, if comparisons were made between L2 usage periods and all non-L2 usage 
periods, any observed differences could readily be attributed to the different conditions, scenarios, and driving 
environments in which drivers tend to - or are permitted to - engage L2 systems. Using available-but-inactive 
driving epochs to provide control samples makes usage/non-usage comparisons more meaningful. 

The speed profiles are shown in  

Figure 1 as a histogram of the difference between speed limit and actual speed. Frequencies in each bin are plotted 
as a percentage of total events. Note that in these figures, the middle of the x-axis (zero) is representative of 
adhering to the speed limit (and is marked with blue vertical lines). Histogram bars to the right of zero indicate 
traveling faster than the speed limit, and bars to the left indicate traveling slower. Both L2 status, F(1, 18,010) = 
1,157.35, p < 0.001, and driver groups, F(1, 78) = 14.26, p < 0.001, demonstrated statistical significance in speeding 
behaviors. When L2 systems were active, drivers tended to select speeds which were 4.4 mph faster than the average 
speed driven when the L2 system was available-but-inactive. In addition, middle-aged L2 NDS participants tended 
to drive 5.2 mph on average faster than the Older Driver NDS participants. In addition, the frequency with which 
older adults selected speeds over the speed limit was significantly more common when L2 was active than available-
but-inactive (F(1, 1,230) = 425.71, p < 0.001).  
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Figure 1. Histograms of speed selection profiles relation to speed limit comparison by L2 status and 
participant group (Older Driver vs. L2 NDS Phase 1) – speed limit represented by blue vertical lines.  

Glance Behavior 
Eyes-off-road variables for all eye glances away from the forward roadway are shown in  

Figure . This figure displays four graphs of eye-glance data across both datasets for samples with L2 active and 
samples with L2 available-but-inactive for both the Older Driver NDS and the L2 NDS. There were several samples 
where eye-glances away from the forward roadway did not occur. This resulted in several values of zero in the 
dataset. The zeros were removed before analyzing these data to provide a clearer analysis of what eye-glance 
behavior looks like when it does occur. ANOVA tests were used to analyze all four metrics of eye-glance data.  

Total off-road glance duration is plotted in the top left panel (A). Results showed that participants in the Older 
Driver NDS had shorter total off-road glance duration (i.e., per driver) than L2 NDS participants, both when L2 was 
active and when L2 was available but inactive. This was evidenced by a main effect of driver group, F(1, 609) = 
6.58, p = .01. There was no significant main effect of whether L2 features were active versus available-but-inactive 
on total glance duration (F(1, 609) = 3.02, p = 0.083). Mean off-road glance duration is plotted in the top right panel 
(B), and showed main effects of both L2 active, F(1, 609) = 9.00, p = .003, and driver age group, F(1, 609) = 7.36, p 
= .007. Overall, L2 NDS drivers had longer mean glance durations compared to those in the Older Driver NDS. 
Single longest off-road glance (bottom-left panel, C) showed main effects of both L2 active, F(1, 609) = 8.44, p = 
.003, and driver age group, F(1, 609) = 4.845, p = .028. This indicated that longest glances were longer overall when 
L2 was active for the L2 NDS drivers, but older drivers’ longest glances were shorter than those of the middle-aged 
L2 NDS participants. Finally, number of off-road glances showed a significant main effect of driver group (lower 
right panel, D), F(1, 609) = 4.47, p = .035, such that older drivers had fewer glances away from the forward 
roadway. There was no main effect of L2 active vs. available-but-inactive (F(1, 609) = 0.043, p > 0.05). 



Antin 5 

 

Figure 2. Eye glance metrics for Older Driver NDS vs. L2 NDS participants. 

Secondary Task Engagement 
Analyses for secondary task engagement were completed using the coded data where samples were randomly 
selected based upon whether L2 systems were active or available-but-inactive. Older adult drivers were significantly 
less likely to engage in secondary tasks when L2 was active compared to their middle-aged counterparts in the L2 
NDS drivers, 2 (1, N = 792) = 4.22, p = 0.04. There were five categories of distraction compared between the two 
datasets: visual, manual, visual manual, cognitive, and no distraction. See Figure 3 for the percentage of each type of 
distraction observed in both datasets across L2 active and L2 available-but-inactive samples. 

 

Figure 3. Secondary task distribution percentages comparison by L2 status and participant group (Older 
Driver vs. L2 NDS Phase 1).  
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Discussion 

Speeding behavior results showed that older adults were more likely to speed with the L2 systems active compared 
with when they were available-but-inactive. This could demonstrate risk allostasis, wherein drivers are adjusting 
their behaviors to maintain a preferred level of risk when they perceive that active systems are safe and provide a 
protective effect. This may also represent drivers perceiving greater risk when systems were available but inactive, 
where they attend more to the roadway and drive more slowly or cautiously. Alternately, this could be a related to 
design (e.g., the default settings), where systems let ACC deviate above the posted speed and to set follow distances 
that may not match the driver’s personal driving style. While a separate analysis from the L2 NDS study showed 
that middle-aged drivers selected increasingly higher speeds over time, older drivers did not use L2 ADAS feature 
more than 3 hours, which may reduce changes associated with time and allow for the impact of default settings in 
this demographic. 

The glance analyses paint a clear picture. Older adult drivers demonstrated eyes-off-road glance patterns which were 
shorter in overall, mean, and longest-single glance duration, and the older drivers looked away from the forward 
roadway less frequently. This coincides with past research (prior to the L2 era) which has shown that older drivers 
scan less or have a narrower gaze dispersion in certain driving scenarios (e.g., intersection traversals, [9]). Following 
on this work, researchers examined several underlying conditions which might explain why older drivers 
demonstrate a more focused scan pattern at intersections. These included head movement limitations, memory-
related issues, and distractibility. However, they found that none of these fully explained the observed behavior. 
Instead, they determined that the propensity was, in effect, older drivers’ conscious (or unconscious) attempts to 
adapt to their own perceived functional decrements. The fact that this behavior also had potentially maladaptive 
consequences (i.e., missed emergency cues outside of the direct forward view) was unknown to the older drivers 
[10]. From a transportation safety perspective, these results and conceptualizations present a conundrum. On the one 
hand, we might interpret the glance behaviors observed in this study as older drivers demonstrating generally greater 
caution and less distraction, perhaps based on their greater maturity, experience, and very low risk tolerance. 
However, the research noted above by Romoser and his colleagues paints a different picture, wherein older adults 
demonstrate a glance pattern that may be too focused or narrow to effectively detect important emergency cues that 
may appear in the periphery. However, in the current study, an eyes-off-road glance was defined as one not directed 
to any of the following locations: forward, left window/mirror, left windshield, rearview mirror, right 
window/mirror, right windshield, or the instrument cluster. Thus, the phenomenon noted by Romoser and colleagues 
may be fundamentally different than the findings reported in the current study. 

While the small sample size for older drivers can be problematic, the secondary task analysis from this study also 
indicates that older drivers behave more cautiously than their younger counterparts during L2 activation, 
demonstrating not only a lower percentage of visual and/or manual secondary task time, but also a greater 
percentage of time with no secondary task of any kind. When the secondary tasks were broken out by low versus 
high risk, the pattern was less clear, as the older drivers engaged in low-risk tasks during L2 activation at a lower 
percentage than their younger counterparts; both groups engaged in high-risk tasks at the same percentage. It should 
be noted that the designation of secondary tasks into low and high-risk categories is based on tasks and driving data 
observed or collected in the pre-L2 era. While L2 technology may improve safety, the risk levels of specific 
secondary tasks while L2 is active must be investigated empirically (i.e., considering risk allostasis).  

 
LIMITATIONS 

Participants in the L2 NDS were assumed to have little to no previous experience with L2 features. This is an 
assumption, in that researchers knew that participants had never driven the make/model of the instrumented vehicle 
assigned to them for data collection, and thus the specific L2 features were novel. While the drivers in these two 
studies drove a similar set of vehicle make/models, there were differences in how the various OEMs implemented 
the L2 technologies that were not directly tested or compared in these analyses. 

The two datasets were collected in two different regions and driving environments. The L2 NDS drivers were 
commuters in the Washington, DC area, whereas participants in the Older Driver NDS were residents of a largely 
suburban and rural area of Blacksburg, Virginia. Thus, the driving environments that these two sets of drivers 
negotiated were different, and it is impossible to control for this difference in the analyses. While the vehicles in the 
L2 NDS and Older Driver NDS were similar, the L2 NDS had more variety of vehicles, which may have impacted 
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findings. Another limitation worthy of consideration is that the Older Driver NDS included only a pilot sample of 18 
participants, which was smaller than the 82 participants from the L2NDS dataset. 

 
CONCLUSIONS 

Evidence of driver adaptation to L2 ADAS may be seen most predominantly in the speed selection analysis. When 
L2 systems were active, on average, drivers tended to select speeds which were 4.4 mph faster than the average 
speed driven when the L2 system was available but inactive. In addition, middle-aged drivers (L2 NDS) tended to 
drive 5.2 mph on average faster than older drivers (Older Driver NDS), but older drivers still selected speeds that 
were above the speed limit more when L2 ADAS features were active. Speed-selection is related to only one aspect 
of L2 control, which is often available for independent use as well (such as in the form of Adaptive Cruise Control). 
The analyzed datasets did not have sufficient instances where L2 was available but only ACC was engaged to be 
included in speed-selection analysis. Therefore, it is unknown if or how much of the observed effects in speed-
selection may be due to the ACC feature use versus L2 use. The result may also be confounded by the possibility 
that drivers may be more likely to engage L2 features when conditions are generally supportive of speeds higher 
than the posted limits (e.g., free-flowing controlled-access roads).  Thus, it is unclear whether any driver adaptation 
was observed in these analyses. It is possible that more complete or robust behavioral adaptation to these 
technologies would take several months, rather than weeks, especially as L2 features may be used infrequently (i.e., 
on less frequent, longer trips, as opposed to much shorter daily errands). Still, the results are useful in providing 
insight into how older drivers use L2 systems during the first 3 hours of cumulative use. 
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ABSTRACT 

This project evaluated driver adaptation in the hours, days, and months after the introduction of level 2 (L2) 
advanced driver assistance system features (i.e., the system controls lateral and longitudinal motion) into the driving 
task. Two existing naturalistic driving study databases were analyzed: the L2 Naturalistic Driving Study and the 
Virginia Connected Corridor Elite Naturalistic Driving Study. To best assess driver adaptation, the analysis 
identified three phases of exposure time to L2 features: Phase 1 (immediate, under 3 hours), Phase 2 (short term, 3 to 
8 hours), and Phase 3 (long term, over 8 hours). The results suggested that driver adaptation was present for high-
risk secondary tasks, as significant increases in engagement were observed over the three phases, but only when L2 
features were active. Additionally, drivers set their vehicle speed above the speed limit more frequently between 
Phases 1 and 2, with higher speeds set when L2 features were active as opposed to when they were inactive. While 
these results may be concerning, research efforts at a larger scale are needed to determine if there is increased crash 
risk associated with speeding and high-risk secondary task engagement with L2 features active. We also need to 
better understand the impact of traffic/roadway conditions on speed selection with L2 systems. 

INTRODUCTION 

In the driving domain, the concept of behavioral adaptation refers to how humans respond, either intentionally or 
unintentionally, to the introduction of a new technology that serves a specific driver need [1]. More general theories 
of behavioral adaptation focus on risk-based measures, beginning with a study of changes in galvanic skin response 
during driving [2], which led to further investigations of behavioral adaptation and integration of the theories of risk 
compensation and risk homeostasis [3]. Risk compensation and risk homeostasis theories function under the 
principles of a perception-evaluation process: (1) people have an idea of the level of risk that they are willing to 
tolerate; (2) people also have a “target” level of risk at which they are most comfortable; and (3) people have a 
reasonably good ability to perceive their current level of risk. With the notable exception of the zero-risk theory [4], 
risk compensation theories neglect to explicitly consider learning and time. However, the zero-risk theory posits that 
drivers’ target level of risk can change with learning over time, which is where driver adaptation may occur [5].  

Risk allostasis theory builds on the zero-risk theory to incorporate driver perception and decision-making with the 
constant changes that occur in the environment (i.e., learning over time). Kinnear and Helman [5] utilized risk 
allostasis theory to evaluate and potentially predict behavioral adaptation for drivers using driver assistance 
technologies [6]. Their assessment incorporates the driver’s feelings of risk, task difficulty, and workload. They 
maintain that with sufficient sensitivity to risk, task difficulty, and workload, risk allostasis theory predicts that any 
alteration of the driving task (i.e., introduction of advanced driver assistance systems [ADAS]) will result in driver 
adaptation that will trend toward maintaining task demand within a preferred range. In other words, as the automated 
driving features simplify the driving task, the driver will feel free to increase task demand in a variety of ways that 
could include increased speed, increased secondary task engagement, and decreased following distance. Thus, risk 
allostasis theory predicts that the use of driver assistance technologies would result in increased trust and reliance on 
these technologies. This claim was substantiated by Llaneras et al. [7], who showed that, when given the opportunity 
to relinquish control of lateral and longitudinal operations to a simple but reliable ADAS, most drivers will engage 
in moderate to complex secondary tasks and will also exhibit increased eyes-off-the-forward-road time. 
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While behavioral adaptation and user reliance can occur because of changes to any aspect of the roadway system, 
the present study is concerned specifically with how drivers initially adapt their behaviors to level 2 (L2) ADAS 
features, as defined by SAE International [6]. L2 system features assist the driver through a combination of 
simultaneous adaptive cruise control (ACC) and lane centering assistance (LCA) for longitudinal and lateral control 
of the vehicle, respectively, while driver constantly supports this support feature and maintains responsibility for 
driving. When operated without other traffic in the driver’s travel lane, ACC maintains vehicle speed in a manner 
like that of conventional cruise control. However, if the driver approaches a slower moving or decelerating lead 
vehicle in their travel lane, ACC can attempt to reduce the speed of the driver’s vehicle to that of the lead vehicle. In 
many driving situations, this results in the driver’s vehicle following the lead vehicle at a prescribed following 
distance, or headway. Some ACC systems can also follow the lead vehicle to a complete stop; however, a constant 
headway operates within a speed range and is not typically maintained at very low speeds (i.e., approaching zero). 
Lateral features such as LC provide sustained lateral assistance using cameras to determine the location of lane lines 
on either side of the vehicle and can attempt to keep the driver’s vehicle in the center of the travel lane. Although 
some systems require lane lines on both sides of the driver’s vehicle to remain operational, some newer generation 
systems may be able to use the contrast between the road and an unpaved shoulder to define a lane boundary if a line 
marking is not apparent. 

Both longitudinal and lateral control features are currently available on a wide variety of vehicles, and a growing 
number of these types of features will continue to enter the market in the near future. Figure 1 describes SAE L2 
ADAS features. 

 
Figure 1. Definition of terminologies used to describe active safety and L2 driving system features. 

Adaptation to Driving Automation Features 
Although L2 system features are increasingly available in vehicles sold in the United States [8, 9], based on a 2016 
survey [10], light vehicles driven in the United States were on average 12 years old. Therefore, it will likely take 
another decade before these systems reach substantial levels of market penetration in the United States. Given their 
growing availability, it is imperative that human factors researchers get ahead of this curve and develop a broad 
understanding of how drivers, over a range of ages and levels of driving experience, use and activate these L2 
system features.  

Learning theory suggests that improved performance comes with increased practice as a function of the power law 
of practice [11]. Figure 2 displays the pattern in which acquisition of a new skill occurs as the user gains experience. 
The greatest amount of new learning occurs during the early stages, when the user is initially gaining experience. 
Learning then follows an exponential curve, continuing but at a decreased rate [11].  
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Figure 2. Depiction of immediate, short-term, and long-term phases of behavioral adaptation as plotted on a 
traditional learning curve (adapted from [11]). 

By evaluating driver behavior for varying durations of experience with L2 system features, we can assess the 
moments when driver behavior may change most rapidly (immediate and short-term exposure) compared to when 
driver behavior may change much more slowly or when it is fairly stable after long-term use [12].  

Considering this anticipated pattern of learning, we hypothesized that most behavioral adaptation to L2 system 
features would occur in the initial periods of use. Therefore, to gain insight into driver adaptation to L2 system 
features, it was necessary to observe and measure driver behavior while using these systems over time. The analysis 
defined three phases of exposure time to L2 features: Phase 1 (immediate, under 3 hours of L2 activation), Phase 2 
(short term, 3 to 8 hours of L2 activation), and Phase 3 (long term, over 8 hours of L2 activation). There is an 
absence of NDS research using this approach with exposure to L2 features, so in order to select hours for the three 
phases, this study: (a) examined exposure data within the databases (see Method below) to observe how much 
drivers used L2 features and (b) sampled shorter time periods to test examine how quickly driver behavior might 
change. 

METHOD 

Overview of Naturalistic Driving Study Databases
This study evaluated driver adaptation to L2 systems using data from two naturalistic driving studies (NDSs): (1) the 
Naturalistic Study of L2 Driving Automation Functions (L2 NDS); and (2) the Virginia Connected Corridor 50 Elite 
Vehicle (VCC50 Elite) NDS.  

The L2 NDS database [13] was used to assess driver adaptation to L2 system features over the course of each 
driver’s initial 4 weeks of driving a vehicle with those features present. In the original study [13], 120 participants 
drove study-provided vehicles that were different from those they currently owned. Of the 120 participants, only 82 
had sufficient driving time with L2 systems active (i.e., greater than 3 cumulative hours), so the analyses were based 
upon 82 participants. Observation from this dataset examined three phases of exposure time to L2 features: Phase 1 
(immediate, under 3 hours of L2 activation), Phase 2 (short term, 3 to 8 hours of L2 activation), and Phase 3 (long 
term, over 8 hours of L2 activation). 

The VCC50 Elite NDS database was used as a comparison group of experienced participants. In that study, 50 
participants owned personal vehicles equipped with L2 system features and had driven them for several months to 
over a year. Of the 50 drivers in the VCC50 Elite dataset, only 33 drivers were included for sampling: drivers who 
owned vehicles equipped with both ACC and some form of LCA or lane keep assistance (LKA and for whom data 
to indicate L2 system state was available. Observations from this dataset corresponded to long-term exposure to L2 
features. 

L2 NDS and VCC50 Elite NDS Variables
To assess driver strategies and behaviors to maintain vehicle safety while using L2 system features, speed selection 
at moment of L2 feature engagement and driver engagement in secondary tasks were used for analysis. Speed 
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selection at moment of L2 feature engagement was determined using database coding algorithms. Every time the 
driver engaged L2 features, the speed at which the vehicle was traveling was coded and marked, as was the posted 
speed limit.  

The primary independent variable focused on L2 activation status, where the driving automation (i.e., the systems 
were both available and active) or the driver (i.e., systems were available but inactive) controlled both lateral and 
longitudinal motions of the vehicle. The idea of available-but-inactive is important in ensuring comparisons are 
reasonable. If comparisons were made between L2 usage periods and all non-L2 usage periods, any observed 
differences could readily be attributed to the different conditions, scenarios, and driving environments in which 
drivers tend to - or are permitted to - engage L2 systems. Using available-but-inactive driving epochs to provide 
control samples makes usage/non-usage comparisons more meaningful. 

To better assess the types of behaviors that drivers engage in when using L2 features, trained data coders reviewed 
randomly selected matched cases (when L2 features were active) and controls (when L2 features were available but 
inactive) to determine prevalence of secondary task engagement. Using available data, secondary task types were 
grouped into those types of tasks that are high risk (e.g., texting on cell phone) or low risk (e.g., adjusting radio). 
High-risk tasks were those tasks that were found to be associated with increased crash risk in an analysis using the 
Second Strategic Highway Research Program (SHRP 2) NDS database [14]. The low-risk tasks were not found to be 
associated with an increase in crash risk in the same analysis. Additionally, frame-by-frame eye glance locations 
were recorded by trained data coders, and duration of eyes-off-road time was also calculated when L2 features were 
active versus when they were available but inactive. 

RESULTS 

Speed-Selection Behavior 
Both inexperienced drivers (L2 NDS) and experienced drivers (VCC50 Elite NDS) tended to select speeds above the 
speed limit more frequently when L2 systems were active than when L2 systems were available but inactive. The 
experienced drivers demonstrated more frequent selection of speeds above the speed limit, primarily for the 
categories of 10 to 20 mph over the speed limit and greater than 20 mph over the speed limit compared to the 
inexperienced drivers. On average, drivers tended to travel 4.56 mph higher for inexperienced L2 drivers 
[F(1,42,405) = 2724.83, p < 0.001] and 2.66 mph higher for experienced L2 drivers [F(1,75,208) = 452.12, 
p<0.001], when L2 systems were active than when L2 systems were available but inactive. 

The speed distributions are plotted in Figure 3 and Figure 4, in which the x-axes indicate speed in relation to the 
speed limit. Thus, 0 in the center of the x-axis refers to the vehicle traveling at the same speed as the posted speed 
limit (no difference in GPS speed and the posted speed limit). The y-axis represents the proportion of activations that 
occurred within each speed bin. Data plotted to the left of 0 indicates that the vehicle speed was slower than the 
posted speed limit. Data plotted to the right of 0 indicates that the vehicle speed was faster than the posted speed 
limit.  
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Figure 3. Inexperienced (L2 NDS of 82 drivers) driver speed selection profiles for when L2 systems were active 
(top) compared to when L2 systems were available but inactive (bottom).  

 
Figure 4. Experienced driver (VCC50 Elite of 33 drivers) speed selection profiles for when L2 systems were active 
(top) compared to when L2 systems were available but inactive (bottom).  

Eye-Glance Behavior 

Given that drivers were more likely to look off the forward roadway when L2 systems were active, the rest of the 
analyses will focus on those matched samples where drivers looked away from the forward roadway. An ANOVA 
was conducted to assess whether eyes-off-road glance metrics were significantly longer when L2 systems were 
active versus available but inactive and if eye-glance durations changed over time. Four glance metrics—the total 
eyes-off-road time, the mean duration of glances, the single longest glance, and the number of glances—were 
computed for eyes-off-road (Figure 5).  
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Figure 5. Total eyes-off-road time (top left), mean glance off-road duration (top right), single longest off-road 
glance (bottom left), and number of off-road glances (bottom right), for each exposure phase for the 
inexperienced drivers (L2 NDS).  

Secondary Task Engagement 
This study also examined the prevalence of secondary task engagement and eyes-off-road time. High-risk secondary 
task prevalence increased over time when L2 systems were active. High-risk secondary task prevalence decreased 
when L2 was available but not active. Analysis of the interaction between L2 system status and L2 exposure phase 
showed a statistically significant interaction (z value = -2.806, p = 0.005). As shown in Figure 6, high-risk secondary 
task prevalence increased over time when L2 systems were active. High-risk secondary task prevalence decreased 
when L2 was available but not active. 
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Figure 6. The interaction of L2 status by exposure phase for prevalence of engagement in high-risk secondary 
tasks.  

CONCLUSIONS 

Overall, the results from these analyses indicate that driver selection of higher speeds and high-risk secondary task 
engagement increased with the use of active L2 ADAS features. Eyes-off-road durations increased with use of L2 
systems for both the L2 NDS drivers and VCC50 Elite NDS drivers. Regarding changes across three phases of 
exposure (i.e., less than 3 hours; 3 to 8 hours; 8+ hours), these findings illustrate how driver behavior changes when 
L2 ADAS features are used. 

Regarding limitations, speed-selection is related to only one aspect of L2 control. Specifically, features are often 
available for independent use, such as in the form of ACC without LCA. The analyzed datasets did not have 
sufficient instances where L2 was available but only ACC was engaged to be included in speed-selection analysis. 
Therefore, it is unknown if or how much of the observed effects in speed-selection may be due to the ACC feature 
use versus L2 use. 

This analysis also evaluated time of day, weekday versus weekend, and road type. This analysis was unable to 
identify a specific condition under which drivers were more likely to use L2 systems. A more nuanced, higher-level 
analysis involving additional data coding and/or algorithm development could identify effects of other factors. 
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ABSTRACT 
 
Research Question/Objective: In transportation, mental models are essential to mobility and safety because drivers 
rely on them to understand how to interact properly with their vehicles, the transportation infrastructure, and the 
environment. Poor performance and errors can occur when a driver acts in accordance with inaccurate mental 
models. Mismatches between mental models and actual experiences can also lead to reduced trust when, for 
example, the system with which they interact fails to perform to their expectations. The current study examined 
differing information types regarding Automated Driving System (ADS) capabilities and limitations on development 
of mental models and trust while using simulated Level 3 (L3) systems and a “dual model” use case of Level 4 (L4) 
systems (i.e., the vehicle can be both manually operated and can be controlled by ADS in certain ODDs).  
 
Method and Data Sources: 48 females and males between the ages of 25 and 65 had four exposures to L3 and L4 
systems in a driving simulator. Participants used either a basic human machine interface (HMI) that indicated the 
ADS was active, or they used an enhanced HMI that provided additional information indicating when the system 
was experiencing limitations (e.g., regarding detection of degraded lane lines). Participants used a simulated Level 3 
system for two exposures and a simulated Level 4 system for two exposures. The acquisition and development of 
mental models and trust were assessed with standardized questionnaires.  
 
Results: Regardless of exposure to each system over time, participants’ mental models were more accurate for 
the simulated Level 4 system compared to the simulated Level 3 system and trust was greater for the simulated 
Level 4 system during the second exposure.  
 
Discussion and Limitations: This paper summarizes research an ongoing project, and a final report will be published 
at a later date. Results of the current work suggests that the acquisition and development of mental models and trust 
can be differentially impacted by how well the ADS performs and the level of automation. However, because the 
study relied on simulated Level 3 and Level 4 systems, the results may not represent real world implementations of 
the technology.  
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INTRODUCTION 
 
At their maturity, Automated Driving Systems (ADS) hold the potential to greatly decrease the number of crashes 
and save lives. However, there are many important and unanswered questions regarding Level 3 (L3) and Level 4 
(L4) ADS [6], particularly around mental models. Mental models refer to a user’s knowledge of an automated 
system’s purpose, how it functions, and how it is likely to function in the future [1]. It is therefore important to 
consider the protentional relationship between a user’s mental model of a system and safety. This may be 
particularly important for L3 vehicles that “cannot guarantee automated achievement of minimal risk condition in all 
cases within its ODD” and therefore, relies on a fallback-ready user [6]. As described in Campbell et. al. [2], users 
of L3 vehicles with a functionally accurate mental model are more likely to avoid errors based on incorrect 
assumptions about system operation and to use the automation appropriately. In contrast to L3, SAE discussion of 
L4 vehicles states that the system “must be capable of performing the DDT fallback and achieving a minimal risk 
condition,” but also states that these systems “may allow a user to perform the DDT fallback, when circumstances 
allow this to be done safely” [6], so it may still be important to understand how a user’s mental model and trust 
factors into operation of L4 vehicles. While some drivers may have existing mental models for common automation 
features such as cruise control, they will have vague or non-existent mental models for early implementations of L3 
and L4 ADS [2]. 
 
The link between mental models and safety is mediated by trust. Specifically, a person’s mental model of an ADS 
includes their understanding of what a system can and cannot do and it will influence their trust in what the system 
will do under specific conditions. Research in a variety of domains has identified that a functionally accurate 
understanding of automated systems is a central aspect to improving users’ level of trust of the system [3, 4], where 
better understanding of the ADS should increase the likelihood that users will have the appropriate level of trust. 
Inaccurate mental models can lead to both under trust and over trust in an ADS. Research on trust in automation has 
shown that if a system is unreliable or causes a user to lose trust it will be underutilized and thus, not able to be 
effective [5]. While L3 and L4 ADS are not currently on the road, it is important to provide an early consideration of 
trust and its relationship with mental models. 
 
Establishing appropriate levels of trust through functionally accurate mental models is a primary topic of concern in 
the development and deployment of ADS. When users do not fully understand the system, a mismatch between user 
expectations and vehicle actions may have a detrimental impact on trust, so it is important to consider how 
functionally accurate mental models are supported and shaped by an ADS’s Human-Machine Interface (HMI). 
However, despite these established notions, there remain two critical areas in need of examination relative to the 
relationship between mental models and trust that can inform the HMI design of ADSs. The first area relates to the 
development of mental models and trust over time when using L3 and L4 ADSs. It is expected that people will begin 
using L3 and L4 ADSs with mental models and levels of trust based on prior knowledge, likely partly informed 
through media advertising, news reports, and discussions with peers. However, the continued development of mental 
models and trust would likely occur through direct interactions with ADSs. This study examines how HMIs can 
impact mental model and trust development over time. 
 
The second area relates to the HMI implementation of L3 and L4 ADS features. Currently available 
implementations of HMI provide simple status information to users, typically using very simple binary information 
(e.g., telltales), such as system ready for activation yes/no and system activated yes/no. However, a relatively simple 
HMI for ADS may bely the complex nature of its operation and capabilities. It is easy to appreciate that in this case, 
mental models and subsequent trust in the ADS will be developed based on a limited perspective of the ADS which 
may not accurately reflect the true nature of the technology. A critical area to examine is how mental models and 
trust in ADS may be developed through the provision of richer system information that reflects a deeper 
understanding of the ADS. Specifically, will richer information result in improved/appropriate mental models and 
levels of trust or will this simply serve to overwhelm or distract users, thus having a negative impact on mental 
models and trust development. To address this issue, the second goal of the study was to explore the possible 
benefits of providing information to users about ADS limitations in addition to providing basic status information. In 
light of these two critical areas, the goals of the study were 1) to assess the impact of varied simulated HMIs on a 
user’s ability to update mental models and appropriately trust L3 and L4 systems over time and 2) assess the 
possible benefits of providing information to users about the capabilities and limitations on an ADS in addition to 
providing basic status information. 
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METHOD 
 
Participants   
There were 48 participants in this study. 24 participants were females between 25 and 65 years of age (M = 47.8 
years, SD = 12.6 years) and 24 were males between 25 and 65 years of age (M = 43.7 years, SD = 12.7 years). To 
control for potential differences due to demographics, for each HMI treatment level (i.e., Basic versus Information) 
our goals were to recruit participants so that the group means for age and years of driving experience for females 
and males would be approximately equal (Basic HMI: females M = 44.3 years, SD = 14.7 years, males M = 46.4 
years, SD = 11.4 years; Informational HMI: females M = 51.3 years, SD = 9.4 years, males M = 40.9 years, SD = 
13.9 years; Basic HMI: females mean driving experience of 27.5 years, SD = 15.8 years, males mean driving 
experience of 29.8 years, SD =12.2 years; Informational HMI: females mean driving experience of 35.3 years, SD = 
9.44, males mean driving experience of 24.1 years, SD = 14.3 years). The actual mean differences in age and years 
of driving experience for females versus males were greater than we had hoped and could have affected the results. 
All participants possessed a valid United States (State of Texas) driver’s license, self-reported normal (20/40) or 
corrected to normal visual acuity, and no color vision deficiencies which may have affected recognition of vehicle-
based system icons or human-machine interface elements. To avoid possible experience bias, participants did not 
have any prior experience with L2 advanced driver assistance systems (ADAS) or L3 ADS technologies.  
 
Apparatus 
     ADS The ADS was designed to be consistent with SAE J3016 representation of features and operational 
characteristics of specific implementations of highway automation systems that could be either L3 or L4 ADS [6]. 
Both the simulated L3 and L4 systems could operate on a four-lane highway with a median in good to moderate 
weather and could be activated when the vehicle was in “drive” and traveling at least 40 mph. Each simulated L3 
and L4 system employed the functional equivalent of: (1) an adaptive cruise control system that would default to 45 
mph or a 2s time-headway when a lead vehicle was present and (2) a lane centering system, while also performing 
the complete object and event detection and response (OEDR) [6]. It is important to note that this study used a short 
form term L4 to specially mean “dual-mode L4,” where the vehicle could be both manually operated and controlled 
by ADS in certain ODDs. The systems were engaged by pressing a single button on the steering wheel while 
disengagement could occur when the same button was pressed, the brake or accelerator pedal was pressed, or the 
steering wheel was turned left or right more than five degrees. The visual HMI icon was positioned between the 
speedometer and tachometer and depicted a lead vehicle, lane lines, and the distance headway setting to a lead 
vehicle (see Figure 1).  
 

 
 

Figure 1. Instrument panel with ADS information available 
in the center. 

Within the Basic HMI condition, when the system became available, the system visual HMI icon appeared white to 
indicate the system was in standby mode and then, after activation, became green. The icon appeared continuously 
to inform users of the system status. Within the Informational HMI condition, the system presented the same 
information as the Basic HMI with the exception that the icon would change from green to yellow, flash at a 2 hz 
rate, and be accompanied by a two-beep tone when the roadway elements did not provide complete or clear 
information for the ADS to detect and use. This “limitation” message was triggered due to limitation scenarios (e.g., 
faded or degraded lane lines, a motorcycle as a lead vehicle, as examples) and the icon would remain yellow once 
the message was dismissed until the condition that triggered it ended.  There was no response or action required 
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from the participants when the limitation message was presented; a key research question was whether or not such 
information affected their understanding (mental model) or trust in the simulated ADS.  In all of the drive segments 
that included a limitation condition and message, vehicle behaviors in response to the limitation conditions varied 
depending on whether the L3 or L4 feature was active.  Essentially, with the L3 feature active, the vehicle behavior 
was slightly and temporarily unstable; however, with the L4 feature active, there was no changes in vehicle 
behavior.  For example, in the Degraded Lane markings in right curve segment, the L3 ADS exhibited lateral 
instability in the lane until the lane markings returned to normal, at which time the vehicle returned to stable and 
accurate lateral lane tracking. For the L4 ADS condition, the vehicle steered to stay in the curve and on the roadway 
throughout the duration of the limitation condition. 
 
    Driving Simulator and Driving World Data collection was conducted in the Texas A&M Transportation 
Institute’s driving environment simulator (manufactured by Realtime Technologies, Inc.) which featured an original 
equipment manufacturers driver’s seat, steering wheel, and accelerator and brake pedals. The visual display 
consisted of three high resolution monitors providing approximately 160º horizontal and 40º vertical fields of view. 
Road and ambient noises were provided through a multi-speaker audio system. The driving world simulated a 
typical highway environment that consisted of a four-lane divided highway with a grass median, Manual on Uniform 
Traffic Control Devices (MUTCD) compliant roadway markings, and 12 to 15 buildings placed to the right side of 
each road per mile. Vehicles traveled along each road to mimic light traffic conditions. The roadway environment 
and traffic were selected to mimic a real-life driving experience in rural areas in which vehicles with L3 or L4 
highway automation features would be expected to operate. The driving world was approximately 11 miles in length 
and required approximately 15 minutes to drive at the posted speed limit of 45 mph. 
 
 Drives, Segments, and Scenarios Participants performed four counterbalanced drives (i.e., Drives A1, A2, B1, 
B2). Each drive consisted of eleven segments with each segment being approximately 1.1 mile long. The first 
segment, Start, allowed participants to accelerate to the posted speed limit and transition from manual to ADS 
control after being prompted. The final segment, End, allowed participants to transition from ADS control to manual 
driving to exit the highway as the vehicle left its operational design domain. There were four ADS “Normal 
Driving” segments that contained one scenario each and four ADS “Limitation Message” segments that contained 
one limitation scenario each. The penultimate segment contained no scenarios for L3 and for L4 drives with the 
exception that it contained a system automation failure scenario for Drive 2 of L3 only. The penultimate segment 
allowed for an examination of user responses to an L3 ADS failure. This approach was chosen to demonstrate higher 
functionality of L4 vehicles. The results of this examination will be presented in future publications. The 
segment/scenario order for each of the four drives is presented in Table 1, while general segment descriptions are 
provided in Table 2. It is noted the segments that provided participants with a limitation scenario and resulting 
limitation message are italicized and underlined, while all other segments were considered “normal driving” in 
which the ADS did not encounter any limitations within that scenario.  The scenario descriptions in Table 2 also 
summarize the vehicle behaviors that distinguished L3 versus L4 functionality during a limitation condition. 
 

Table 1: Order of Segments/Scenarios within each Drive. 

A1 Segment Order A2 Segment Order B1 Segment Order B2 Segment Order 
1. Start 
2. LVLC  
3. DMLC 
4. RC 
5. LVMC  
6. LVPV  
7. GL  
8. LC  
9. LVI 
10. ND or RORC  
11. End  

1. Start 
2. RC 
3. GL  
4. LVPV  
5. LVI  
6. LC  
7. DMRC  
8. LVLC  
9. LVSV  
10. ND or RORC  
11. End 

1. Start 
2. LC  
3. LVI  
4. LVLC  
5. GL  
6. RC 
7. LVSV  
8. LVPV  
9. DMLC 
10. ND or RORC  
11. End  

1. Start 
2. LVPV  
3. LVMC  
4. LC 
5. DMRC 
6. LVLC 
7. LVI  
8. RC 
9. GL  
10. ND or RORC  
11. End 

 
 

Table 2: Segment Descriptions. 



 Manser 5 
 

Abbreviation Name Description 

 Start Allowed participants to accelerate to the posted speed limit and 
transition from manual to ADS control. 

ND Normal Driving Normal driving operation with no scenarios once ADS activated 
DMLC Degraded Lane 

Markings in 
Left Curve 

A 90-degree sweeping left curve where the centerline and side lane 
markings were partially masked due to simulated dirt. In the Basic HMI 
condition, the HMI remained green with no audible warning. In the 
Informational HMI condition, an ADS limitation message was 
presented as the participant traveled next to the degraded markings. In 
both HMI conditions, L3 ADS exhibited lateral instability in the lane 
until the lane markings returned to normal. For the L4 ADS condition 
only, the vehicle was not unstable, and steered to stay in the curve and 
on the roadway.  

DMRC Degraded Lane 
Markings in 
Right Curve 

Identical to DMLC with the exception that the curve swept right. 

GL “Ghost” lanes A section of roadway where one set of faded lane lines appeared offset 
from brighter lane markings by approximately six to 12 inches to the 
right (e.g., new lane markings were applied while old lane markings are 
still visible). In the Basic HMI condition, the HMI remained green with 
no audible warning. In the Informational HMI condition, an ADS 
limitation message was presented when the participants’ vehicle 
traveled next to degraded lane markings. In both HMI conditions, the 
L3 ADS exhibited lateral instability until the lane markings returned to 
normal, at which time the vehicle returned to stable and accurate lateral 
lane tracking. For the L4 ADS condition only, the vehicle followed the 
brighter set of lane lines and did not exhibit any lateral instability 
throughout. 

LC Left Curve A 90-degree sweeping left curve where the centerline and side lane 
markings were fully visible. 

RC Right Curve A 90-degree sweeping right curve where the centerline and side lane 
markings were fully visible. 

LVLC Lead Vehicle 
Lane Change 

Participant traveled along road with surrounding traffic changing lanes 
ahead of the participant’s vehicle and ADS engaged. No ADS 
limitations encountered. 

LVMC Lead vehicle: 
Motorcycle 

Depicted a motorcycle in the left lane moving to the right lane in front 
of the participant’s vehicle. The Basic HMI remained green with no 
audible warning. In the Informational HMI condition, an ADS 
limitation message was presented when the motorcycle’s wheels 
crossed the center line. In both HMI conditions, the L3 ADS began to 
“tailgate” the motorcycle and continued to drive very closely to the 
motorcycle while remaining near, though below, the set maximum 
speed of 45 mph. For the L4 ADS condition, the participant’s vehicle 
adjusted its speed to travel two car lengths behind the motorcycle. 

LVSV Lead vehicle: 
Small vehicle 

Identical to LVMC with the exception that a small vehicle moved in 
front of the participants vehicle. 

LVI Lead Vehicle: 
Incursion 

Scenario entailed a vehicle that pulled into a driver’s travel lane and 
suddenly slowed. The Basic HMI remained green with no audible 
warning. In the Informational HMI only, an ADS limitation message 
was presented when the lead vehicle’s passenger side wheels crossed 
the driving line. In both conditions, the L3 ADS decelerated the 
participant’s vehicle in response to the slower lead vehicle. If a driver 
did not take over within five seconds, the participant’s vehicle 
continued at 40 mph behind the lead vehicle. For the L4 ADS condition 
only, the vehicle adjusted speed to travel two car lengths behind the lead 
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vehicle. 

LVPV Lead Vehicle: 
Passenger 
Vehicle 

Participant traveled behind a lead vehicle with ADS engaged. No ADS 
limitations encountered. 
 

RORC Run Off Road 
in Curve 

The RORC scenario used the DMLC and DMRC scenario. In the Basic 
HMI, the HMI remained green with no audible warning. In the Basic 
HMI, the HMI remained green with no audible warning. In the 
Informational HMI, an ADS takeover request was presented as the 
participant passed the first degraded markings and continued for 5 
seconds. For the L3 ADS Drive 2 only, the vehicle continued to drive 
straight as the roadway curved until the driver took over. For all the L4 
ADS condition exposures, the vehicle steered to stay in the curve and on 
the roadway.  

 End On-screen message indicates need to resume driving and bring the 
vehicle to a stop. 

 
     Sign Detection Task Participants were asked to engage in a sign detection task to assess attention allocation 
between the HMI and external roadway. Services road signs were placed on the right and left-hand sides of the 
roadway at approximately 30s intervals. Each sign presented logos for gas, food, and beverage, lodging, or 
attractions (see Figure 2) and were different across the four exposures. Participants were given a specific “target” 
logo to search for at the beginning of each exposure and they then indicated when they detected the target logo by 
pressing a button on the steering wheel that corresponded to the side of the roadway that the logo was seen (i.e., 
right or left). There were 24 signs per exposure with approximately one sign with the target logo and two signs 
without the target logo per segment. Results of the sign detection task will be reported in future publications. 
 

 
©Texas A&M Transportation Institute 

Figure 2. Example of sign detection task road sign. 

Questionnaires 
     A Mental Model and Trust Questionnaire (MMTQ) was developed to understand changes in different 
components of mental models and trust over time and in response to the two different HMIs. The mental model 
items included questions about system operation (e.g., how to turn system on and off), participants’ understanding of 
the limitations of the automation features and operator commands (e.g., “what would be your first command in an 
automated vehicle, such as that used in this study, in the following situation”) with multiple choice answers (e.g., 
brake, stop, change lanes, no response needed, etc.), and questions about participants’ understanding of system 
behavior and operation (e.g., “how would you expect the vehicle used in the study to respond to the following 
driving situation”) with multiple choice answers corresponding to appropriate vehicle behavior (e.g., with L1, L2, 
L3, or L4/L5 automation).  To measure trust, participants were presented with a series of statements (e.g., “Highly 
automated vehicles can handle unexpected roadway situations” or “Highly automated vehicles are generally safer 
than human-operated vehicles”) and asked to indicate their level of agreement with each statement using a 7-point 
Likert-scale.) All surveys were administered via SurveyMonkey. 
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Procedures 
     Human Subjects Consent, Instructions, Practice Participants read and then signed the human subjects consent 
form and answered preliminary questions. Participants then completed the MMTQ to collect baseline measures and 
a simulator sickness questionnaire to screen participants who had a greater propensity to get ill when exposed to the 
simulator scene. All participants receive the same training and instruction prior to entering the driving simulator. A 
training video reviewed the interface and operation of the simulated L3 and L4 ADS. Participants then experienced 
a practice exposure (no ADS and no sign detection task) to become familiar with the operational characteristics of 
the driving simulator, the task of driving, and to identify participants who exhibited signs of simulator sickness. 
Participants completed the sign detection task for three minutes while seated in the driving environment simulator 
(but not driving) to become familiar with the task, completed the second presentation of the MMTQ to assess 
changes in mental models and trust after instruction, and completed the first administration of the HMI 
questionnaire. 
 
     Drives and Debriefing Participants then completed Exposures 1 through 4 and took, after each drive, the 
MMTQ and then the HMI questionnaires. The MMTQ administrations after each experimental drive provided an 
indication of how mental models and trust further matured due to experience with the ADS. The HMI questionnaire 
administrations after each experimental drive provided the opportunity to assess each interface’s usability and 
effectiveness on the general utility of the ADS information. The order of HMI condition levels (i.e., Basic, 
Informational) and automation levels (i.e., L3 ADS, L4 ADS) were counterbalanced across exposures (see Table 3). 
Participants completed an exit questionnaire and received a debrief of the study The study lasted 
approximately two hours for each participant. 
 
 
 

Table 3: HMI and Exposure Counterbalancing by Participant. 

Participant 
Numbers 

HMI Group Order of ADS 
Levels 

Order of Driving Segments 

1-3 1 (Basic) L3, L4 A1, A2 with ROR, B1, B2 
4-6 1 (Basic) L3, L4 B1, B2 with ROR, A1, A2 
7-9 1 (Basic) L3, L4 A2, A1 with ROR, B2, B1 

11-12 1 (Basic) L3, L4 B2, B1 with ROR, A2, A1 
13-15 1 (Basic) L4, L3 A1, A2, B1, B2 with ROR 
16-18 1 (Basic) L4, L3 B1, B2, A1, A2 with ROR 
19-21 1 (Basic) L4, L3 A2, A1, B2, B1 with ROR 
22-24 1 (Basic) L4, L3 B2, B1, A2, A1 with ROR 
25-27 2 (Informational) L3, L4 A1, A2 with ROR, B1, B2 
28-30 2 (Informational) L3, L4 B1, B2 with ROR, A1, A2 
31-33 2 (Informational) L3, L4 A2, A1 with ROR, B2, B1 
34-36 2 (Informational) L3, L4 B2, B1 with ROR, A2, A1 
37-39 2 (Informational) L4, L3 A1, A2, B1, B2 with ROR 
40-42 2 (Informational) L4, L3 B1, B2, A1, A2 with ROR 
43-45 2 (Informational) L4, L3 A2, A1, B2, B1 with ROR 
46-48 2 (Informational) L4, L3 B2, B1, A2, A1 with ROR 

 
Independent Variables  
Two types of an HMI were tested that included a “Basic” HMI focusing on on/off status and an “Information” HMI 
that provided a limitation message, reflecting situations where the system was uncertain about some aspect of lateral 
or longitudinal control. Two levels of automation were tested, a simulated L3 system and a more capable and better 
performing simulated L4 system, referred hereafter as “ADS Level”. The HMI message served as a limitation 
message (i.e., for L3 only, this corresponds to a request to intervene) for the conditional driving automation 
associated with L3 ADS (see page 31 of J3016 [6] for a more detailed description of the conditional nature of L3 
ADS) and leaving the decision to respond up to the user. Under L4 operation, there was a limitation message that 
served as a notification only, not as a request to intervene or a need for fallback performance.  
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Statistical Approach 
The experimenters scored answers to the target questions for each part of the MMTQ separately (i.e., questions 
about: System Knowledge, System Capabilities/Limitations, and perceived Automation level). The experimenters 
also created a composite mental models accuracy score (out of 100%) to evaluate overall effects. The composite 
mental model’s accuracy score was derived from 11 questions: 3 system use questions, 2 vehicle behavior questions, 
and 6 operator command questions. 
 
To test the differences between HMI evaluations and trust ratings (MMTQ) between conditions, the participant’s 
mean ratings for each survey were used as a response variable. The HMI evaluation survey had 5 items and the trust 
survey had 13 items. In the initial models, these scores were treated as interval data, since the scales were made up 
of over four Likert-type items that are combined into a composite score [7]. It is important to acknowledge that the 
Likert scale results are limited: they do not allow for further inferences about the differences in the underlying 
characteristics reflected in these values (e.g., the meaning of a 0.37 difference in the Trust score). 
 
The data were subjected to linear mixed models. The independent variables used in the models that included all 
survey administrations were HMI (Basic vs. Information) and Survey Administration (Baseline, Post-Instruction, 
After Exposure 1, After Exposure 2, After Exposure 3, After Exposure 4). The independent variables used in the 
models that only included post-exposure survey administrations were HMI, ADS Level (L3 vs. L4), and ADS 
Exposure (First vs. Second), that is whether the exposure was the first or second time the participant had 
encountered that ADS level. Participant was treated as a random factor in all models. Non-significant interactions 
were removed from the final models. The data were analyzed using linear mixed models, built using the lme4 
package in R version 4.1.3 (2022-03-10). If the data in a particular model failed to meet all normality assumptions, 
an alternative model was used. Significant interaction effects were examined with planned post-hoc contrasts using 
R’s multcomp package. Significance levels were set at p < .05 where statistical analyses were performed. 
 
 
RESULTS 
 
Stage 1 Analysis 
The results are presented according to the two stages of model testing. The first stage entailed examining what 
response variables were best predicted by either HMI or Survey Administration (i.e., Baseline, Post-Instruction, 
After Exposure 1, After Exposure 2, After Exposure 3, After Exposure 4). Results are summarized in Table 4 and 
indicated that accuracy of mental models questions (i.e., percent questions correct) average trust rating (i.e., average 
“agreement” scores on the 7-point Likert scale) were each predicted by Survey Administration and that HMI was not 
a predictor of any response variables. The mental model accuracy analysis significant effect for Survey 
Administration (95% CI: 11.8, 22.7) indicated that participants scored 17.2% higher on post-training (M = 60.7, SD 
= 20.3) compared to baseline (M = 43.5, SD = 14.2). The mental model accuracy for system use significant effect 
for Survey Administration (95% CI: 27.4, 40.7) indicated that participants scored 34.0% higher on post-training (M 
= 64.9 , SD = 30.4) compared to baseline (M = 30.4, SD = 25.3). The trust analysis significant effect for Survey 
Administration indicated that trust ratings (-0.32; 95% CI: -0.47, -0.17) decreased between the first (baseline) 
administration (M = 3.73 , SD = 0.74 ) and last (exposure 4) administration (M = 3.41 , SD = 0.71). 
 

Table 4: F-Statistics for Final Models Using All MMTQ Survey Administrations 

Response Variables HMI Condition 
F-value; p 

Survey Administration 
F-value; p 

Mental Model Accuracy F(1, 46) = 0.007; p = .93 F(5, 235) = 21.4; p < .0001 
(17.2; 95%  = 11.8, 22.7)  

Mental Model Accuracy: System Use F(1, 46) = 0.07; p = .79 F(5, 235) = 46.3; p < .0001 
(34.0; 95% CI: 27.4, 40.7)

Average Trust Rating F(1, 46) = 0.10; p = .75 F(5, 235) = 6.42; p < .0001 
(-0.32; 95% CI: -0.47, -0.17) 

 
Stage 2 Analysis 
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The purpose of the second stage was to conduct follow-up linear mixed models contrast analyses to better identify 
what response variables are best predicted by HMI, ADS Level, and ADS Experience or an interaction between 
ADS Level and ADS Experience. Table 5 summarizes the results of the contrast analyses. Results indicated that 
mental model accuracy, mental model accuracy-operator commands, and average trust were each predicted by ADS 
Level. Results further indicated that each of the response variables were also predicted by the interaction between 
ADS Level and ADS Experience. Due to the accepted practice that interactions take priority over main effects, the 
remainder of this discussion will focus on the significant interactions. 
 

Table 5: Results of the Final Models Using All Post-Exposure Survey Administrations. 

Response Variable HMI Condition 
F-value; p 

ADS Level 
F-value; p 

ADS Experience 
F-value; p 

ADS Level by 
ADS Experience 

Interaction 
F-value; p 

Mental Model Accuracy F(1, 46) = 0.003; 
p = .96 

F(1, 141) = 47.5; 
p < .0001  

F(1, 141) = 0.03; 
p = .86 

F(1, 141) = 8.83; p 
< .01  

Mental Model Accuracy – 
Operator Command  

F(1, 46) = 0.06 ; 
p = .81 

F(1, 141) = 29.6 ; 
p < .0001 

F(1, 141) = 0.01; 
p = .94 

F(1, 141) = 8.93; p 
< .01 

Average Trust  F(1, 46) = 0.002; 
p = .97 

F(1, 141) = 23.2; 
p < .0001 

F(1, 141) = 2.36; 
p = .13 

F(1, 141) = 10.8; p 
<.01 

 
The interaction between ADS Level and ADS Experience for mental model accuracy indicated that the average 
mental model accuracy scores for L3 and L4 diverged from the first to the second exposure (see Figure 3). There 
were no significant differences between mental model accuracy between the first and second L3 exposures and 
between the first and second L4 exposures. However, it is noted that participants exhibited more accurate mental 
models in the L4 exposures than in the L3 exposures for both the first (L4: M = 69.3, SD = 21.5; L3: M = 63.1, SD 
= 18.9) (6.25% higher for L4; 95% CI: 0.72, 11.8; p < .05) and second (L4: M = 73.8, SD = 20.2; L3: M = 58.0, SD 
= 19.4) (15.7% higher for L4; 95% CI: 10.2, 21.2; p < .001) survey administrations. 
 

 

Figure 3. Depiction of the interaction between ADS Level 
and ADS Exposure on mental model accuracy. The error 
bars represent standard error. 

Results indicated a significant interaction between ADS Level and ADS Exposure for the mental model accuracy – 
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operator command questions. The interaction was due to more accurate mental models for operator command in the 
second L4 exposure (M = 72.2, SD = 25.3) compared to the second L3 exposure (M = 53.1, SD = 25.6). 
Participants’ accuracy was 19.1% greater (95% CI: 11.2, 27.0; p < .001) after the second exposure to L4 automation 
than after the second exposure to L3 automation (see Figure 4). There were no significant differences between the 
first and second L3 exposures, between the first and second L4 exposures, and between the first L4 exposure and 
first L3 exposure.  
 

 

Figure 4. Depiction of the interaction between ADS 
Level and Survey Administration for mental model 
accuracy for the operator command questions. The 
error bars represent standard error.  

The analysis indicated that average trust was best predicted by an interaction between ADS Level and ADS 
Exposure. Trust scores decreased significantly between the first and second L3 exposures (-0.22; 95% CI: -0.38, -
0.06; p <.01) but not between the first and second L4 exposures. Trust scores were significantly higher after the 
second L4 exposure (M = 3.65, SD = 0.68) compared to the second L3 exposure (M = 3.28, SD = 0.74) (0.37; 95% 
CI: 0.21, 0.53; p < .001). There was no significant difference between the initial L3 and L4 exposure trust scores. 
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Figure 5. Depiction of the interaction between ADS 
Level and Survey Administration for trust. The error 
bars represent standard error. 

 
 
DISCUSSION/CONCLUSIONS 
 
Mental Models 
Previous research indicated that an occupant’s mental model of an ADS includes their understanding of what an 
ADS can and cannot do and will influence their trust in what the system will do under specific conditions. This 
notion places a critical emphasis on the importance of mental models because they can have a significant impact on 
not only occupant understanding of ADS but also on the establishment and management of trust over time. The 
current study sought to assess the impact of HMIs on an occupant’s ability to update mental models for both L3 and 
L4 ADS over time and sought to assess the possible benefits of providing information about the limitations on an 
ADS in addition to providing basic status information on mental models.  
 
Results of the current study indicated that, in general, mental model accuracy can be impacted by ADS competency 
and by continued ADS exposure. Specifically, mental model accuracy was generally higher for a better performing 
simulated L4 system compared to a more limited simulated L3 ADS and that there was a trend for mental model 
accuracy to increase with greater exposure to the L4 system and to decrease with greater exposure to the L3 system. 
This same pattern of findings was observed when mental model accuracy relative to operator commands was 
examined. This pattern of findings suggests that improved ADS understanding was associated with more exposure 
and with better stability and performance in the L4 compared to the L3 ADS.  
 
It is noteworthy that overall mental model accuracy and mental model accuracy relative to operator commands were 
not predicted by HMI. Specifically, no differences were found regardless of whether the HMI provided basic 
“on/off” information or whether the HMI provided information relative to its uncertainty in detecting a potentially 
hazardous scenario. There were some advantages to the HMI providing limitation information relative at least one 
scenario (i.e., motorcycle scenario) but the findings were not pervasive across all scenarios. This finding may 
suggest that additional information about ADS operation may not positively or negatively impact mental model 
development. 
 
Trust 
In light of the notion that trust is mitigated by mental models, it was expected that if there were changes in mental 
models due to HMI, ADS Level, or ADS exposure, that there would also be changes in trust. Results of the current 
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work indicated that trust indeed changed based on ADS Level and ADS exposure. Specifically, ratings of trust at the 
first exposure to the simulated L3 or L4 were very similar, but trust in the L3 ADS decreased significantly by the 
second exposure. In contrast, although not significant, when users were exposure to L4 ADS their trust ratings 
increased from the first to the second exposure. Overall, the results suggest users’ lower understanding of L3 ADS 
translated into lower levels of trust over time while the better-performing L4 ADS led to slight increases in trust 
over time.  
 
Limitations 
 
This paper presents an early overview of a study from an ongoing project. Due to the nature of conducting research 
with ADS vehicles that are not currently on the road, this research effort represents a projection of how these 
vehicles may operate, and these projections may differ from future implementations of ADS vehicles. For example, 
future implementations of L3 vehicles may have higher functionality than what appears in this study, and that may 
impact the development of trust and mental models. Therefore, there may be limitations regarding the degree to 
which these findings generalize to future research.  
 
The study was presented with several situations that may have served as limitations. First, the study was conducted 
during the COVID-19 peak which may have impacted the type of people that were willing to participate. The 
particular concern is that participants willing to engage in socially interactive studies during a pandemic may have 
inherently different perceptions of trust than participants not willing to engage in studies. The potentially biased 
participant sample may not accurately reflect responses of the larger population. Second, this study used a group of 
participants that had limited exposure to ADAS. While this lower level of exposure allowed for the assessment of 
changes over time, future users may have more relevant exposure to capabilities that provide a better understanding 
of ADS-equipped vehicles. Third, there were no production-level vehicles available on the market for L3 or L4 
features when this study was developed. While the descriptions, characteristics, and behaviors of the L3 and L4 
features were consistent with specific implementations discussed in the SAE literature and with the discussions 
conducted by the research team with industry representatives in a different phase of the overall project, it is certainly 
the case that real-world implementations of L3 and L4 ADS-equipped vehicle may be different from those 
implemented or described in this research. For example, L3 vehicles may have better functionality that improves 
system performance, and these differences may impact the development of mental models and trust. Fourth, mental 
models and trust are inherently dynamic constructs that can remain stable or change over time and may do so due to 
a variety of factors. The relatively short study duration may not adequately capture changes in mental models and 
trust over time. The existence of these limitations suggests the need for future research and caution when 
extrapolating the results to real world applications. 
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