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Abstract

Our work is dealing with lane markings detection and the
vehicle location. We will show how computer vision can
improve the accuracy of the determination of the vehicle
position in a map by GPS and proprioceptive sensors. An
efficient method for locating vehicle by cameras, proprio-
ceptive sensors and GPS has been developed and demon-
strated in an outdoor experimental track in real time. The
system is designed to a well structured road with lane
markings. It merges proprioceptive measurement, GPS
location and images analysis information with use of a
non linear dynamic model(Kalman Filter). The perfor-
mance of the system is shown in the experimental track
with a processing frequency of 15 Hertz and the error of
the location is±5cm.

1 Introduction

To locate the vehicle is a key level of every advanced driv-
ing assistant systems that are designed for many purposes:

• provide users with vehicle geographic position,

• help users with adapted driving instruction,

• provide users with a full or partial autoguidance pos-
sibility.

The large amount of sensors or systems that can help
in vehicle location encourages researchers to investigate
more in such a location systems. The widely used Global

Positioning System(GPS) gives location in an absolute
coordinate system(Lambert’s coordinate system). GPS
can be used in several different modes that provide differ-
ent kind of accuracy. The higher accuracy is reached with
Real Time Kinematics mode (RTK). But many conditions
can affect the result.(SA effect, high buildings or trees)
GPS depends strongly on the external condition. Proprio-
ceptive sensors only measure variable that depends on the
vehicle’s engine (speed, acceleration, rotation angle). To
estimate the position of the vehicle (the position (x,y) and
the vehicle courseθ, we must integrate measurement at
each moment. This implies an important accumulation of
error on the result. To estimate locale vehicle position by
using exteroceptive sensors, many algorithms were pre-
sented by using computer vision [2], [3], [4]. Most of
them, are using cameras looking forward. Such a sys-
tem’s performance depends on many kind of perturbations
(light, shadows, occlusions). A serious study must be
done to design a robust algorithm [8]. To robustify the ve-
hicle location system, Fusion methods are used [5]. Here,
we will propose to merge the measurement provided by
these systems. The presented system will be able to take
into account advantages and drawbacks of each kind of
sensor. In the first part, we will describe an algorithm
that uses cameras positioned laterally at each side of the
vehicle for line detection. In the second part, a non lin-
ear Kalman based algorithm that merges information from
different sensors (GPS, INS, GPS and Map-Matching, im-
age processing...) is presented. This allows us in the final
part to compare the different solutions and show how im-
age analysis algorithms can help and improve the vehicle
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location with other sensors.

2 The lateral camera system and
lane-marking detection

The system needs two cameras positioned in each side
of the vehicle looking at the region of the road near the
vehicle.(Figure 1 and 4).

Figure 1: The cameras are placed outside of the vehicle.

Both images analysis and the sensor fusion method are
implemented in an embedded bi-processor computer as
shown in figure 2.

Figure 2: The on board bi-processor computer in the
LIVIC vehicle.

2.1 Cameras position and associated coor-
dinates systems.

To determine the local position of the lane marking, we
need to introduce first some coordinate systems. For the
image description we need an image coordinates system
(u, v).(Fig 3) For each camera, we have a coordinate sys-
tem for the description of the detected lane marking of
each side of the vehicle.(Fig 4)

Figure 3: The image coordinate system.

Figure 4: The coordinates systems associated to lateral
cameras.

3 The lane-marking detection

3.1 algorithm of features extraction

This extractor uses two main characteristics of the lane
marking:

• the high intensity of the pixels belonging to the lane
markings,

• the width of the lane markings which is constant.

The main idea of this algorithm is to take into account
the lane marking’s width. With the perspective, this
lane marking’s width in the image decreases when the
distance between vehicle and the marking increases.
Actually, we can show that the markings width decreases
linearly to zeros when it reaches the horizon line in the
image.(Figure 5)
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Figure 5: For the same kind of lane markings, the width
of their images depend on the distance of the marking to
the camera. In the picture,d1 > d2 andv1 andv2 are the
coordinates of the centers of the two marking.

First, the extractor computes intensity gradients of a value
higher thanS0 and then searches for a pair of positive and
negative gradients within a range[S1, S2]. The goal is
to obtain the maximum number of features really on the
lane-markings and at the same time to reduce as much
as possible the number of outliers, knowing that in any
case the problem of outliers is tackled by the robust fit-
ting algorithm of lane-markings. In order to not miss any
feature, even in adverse lighting conditions, we have to
setS0 as small as possible and to analyze the whole im-
age to initialize the detection. It is always possible to
limit the analysis in areas of interest thanks to a dynamic
shape tracking. Fortunately, the proposed extractor is fast
enough to be applied on whole image. For each line im-
age, letuinit be the first position for which a gradient is
greater than the thresholdS0, ucurrent is the position of
the current analyzed pixel. A lane-marking feature is con-
sidered to be detected in the image line ifucurrent - uinit

is within the range[S1, S2] whereS1 = C1(v − vh) and
S2 = C2(v−vh). We can notice thatS1 andS2 vary when
we modify the coordinatev. S1 andS2 are very impor-
tant for removing many of the outliers, and thusC1 and
C2 have to be chosen carefully.C1 andC2 can take into
account different kind of errors such as small variations of
marking width, errors on camera calibration. Here is the
algorithm:

1. Calculate gradientG(pixInit)

2. If G(pixInit) > S0 then

• pixCourant = pixInit + 1;

• I = Intensity(pixInit) + G(pixInit)
2

;

• While Intensity(pixCourant) > I and
pixCourant < sizeXImage
pixCourant = pixCourant + 1;

• If pixCourant ∈ [S1, S2] Then a marker is de-
tected.

• Return the centre of the marker axis:
(pixCourant+pixInit)

2

• pixInit = pixCourant + 1, return to 1,

• else,pixInit = pixInit + 1, return to 1,

3. else,pixInit = pixInit + 1, return to 1.

3.2 Features extraction result

Figure 6: Top left: Original image of a road. Top right:
result of Prewitt’s filter. Bottom left: result of Canny fil-
ter. Bottom right: result with our lane-marking features
extractor. It is only with the proposed extractor that the
high light area is removed.

The classical edge filters detect lane markings but also ev-
ery shadow or high light edges. By taking into account the
marking’s width, only a few outliers due to the high light
area are detected. Moreover the lane-marking is com-
pletely extracted.(Fig 6)
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3.3 The choice of lane-marking model

Many lane markings and road model were proposed.
When the camera is looking forward, the road shape is
very important, 2D curves or 3D curves are then useful.
The drawback of this kind of model is the lack of accuracy
on the distance estimation and the system is very sensitive
to light variation. But in our case, only a very local part
of the lane marking is seen. In this scale, The detected
feature contains less noise and the effect of light variation
is weak. We can assume that, locally, lane marking is a
straight line.
Let us write the equation of a straight line in the moving
road coordinate system (Fig 4):

y = Sx + D (1)

If we setx = 0, D represents the distance between vehicle
and the lane marking. The slopeS represents the tangent
of the angleφ.(Fig 8) To estimate these two values,φ and

Figure 7: Each time, the system analyses two images of
lane marking.phi represents the relative course angle of
the vehicle,P1 andP2 are distances of the lane markings
to the vehicle.

P we can use a hough transform algorithm but we have
developed an iterative reweighted least square algorithm
presented in [8] that can estimate more complex curves.

3.4 The lane markings position estimation
result.

We first, show some results of theφ andP estimation with
a video sequence. The detection is presented by straight
lines.

Figure 8: Examples of a video sequence taken during a
test of the system. Dark lines represent the center of de-
tected lane marking.

4 Vehicle location system.

4.1 Kalman based algorithm that merges
sensors measurements.

The dynamic system that handles sensors measurement is
a non linear system. It is used in a extented Kalman filter.
Let us first introduce some notations:

• Xk = (x, y, θ) system’s state vector at the moment
k,

• Xk+1/k is the predicted vector at the momentk + 1
knowing the estimation at the momentk,

• Uk command vector at the momentk,

• Vk system state noise,

• Yk measurement vector at the momentk,

• Wk measurement noise at the momentk,

• f(Xk, Uk) represents the non linear evolution of the
system,

• h(Xk) represents the estimation process,

• Pk+1/k is the covariance matrix on the prediction
step forXk+1/k,
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• Pk/k is the covariance matrix on the estimation step,

• Rk is the covariance matrix on the state,

• Qk is the covariance matrix on the measurement er-
ror.

The Kalman filter is defined by the following equations
system.

{
Xk+1 = f(Xk, Uk) + Vk prediction equation
Yk = h(Xk) + Wk estimation equation

(2)

The prediction equation describes the theoretic system
model. In our case, the system is a vehicle. The esti-
mation equation depends on the sensors used. This can
represent vehicle position or any function depending on
it. In the following section, we will give details about
sensors and the appropriate functionsf andh. Here is the
algorithm:

1. initialisation step: the Kalman filter algorithm is a recur-
sive algorithm that needs initialisation. In our tests, we
will initialise the algorithm with GPS. Assume here that
the initial state isX0/0 and its covariance matrixP0/0.

2. prediction step: the prediction for the momentk + 1
is computed by the prediction equation:Xk+1/k =
f(Xk/k, Uk) The perturbation is taken into account in the
calculation of the covariance matrix. To compute this ma-
trix, we must first calculate thef ’s gradient∇f(Xk/k) =
Fk/k because the model is non linear. The covariance ma-
trix is then defined by

Pk+1/k = Fk/kPk/kF t
k/k + Rk (3)

3. estimation step: this step will compare the measure-
ment Yk from any sensor and the predictionYk+1/k =
h(Xk+1/k). As h may also be non linear, we must com-
pute:∇h(Xk+1/k) = Hk+1/k. The error is then calcu-
latedεk+1 = Yk+1 − Yk+1/k.The correction is then made
through the gain matrix:

Kk+1 = Pk+1/kHk+1/k[Hk+1/kPk+1/kHt
k+1/k+Qk+1]

−1.
(4)

The estimated vector is then

Xk+1/k+1 = Xk+1/k + Kk+1εk+1. (5)

We associate to this estimation the covariance matrix [1]

Pk+1/k+1 = (I−Kk+1Hk+1/k)Pk+1/k(I−Kk+1Hk+1/k)t

+Kk+1Rk+1K
t
k+1 (6)

This algorithm can handle several sensors. The only
requirement is to provide measurement and the covari-
ance matrix that gives the quality of the measurement. In
the estimation step, a measurement from a sensor will be
compared to prediction result, but also, the confidence on
this measurement expressed by the covariance matrix is
taken into account in equations ( 4) and ( 6). Equation
( 4) can be seen as a weight given to the measurement.
When a measurement has a good confidence, the effect of
Kk+1 is important in the update equation ( 5) This confi-
dence can be represented by ellipsoid (figure 9).

Figure 9: The confidence of the measurement is given by
the covariance matrix.

We will see in the following part, how the algorithm han-
dle sensors separately or together. The covariance matri-
ces provided by sensors key

4.2 Using a map as location reference

We need a map of the track as reference of the vehicle
location.

4.2.1 Design of the digital Map of the experimental
track.

The map of the experimental track is built with topo-
graphic measurement. We start with the choice of some
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referential points at the center of the lane. When the track
is locally a straight line, the distance of two consecutive
points is twenty meters. And in the curved portion of
the track, this distance is five meters. The position of
the track’s points are saved on a file. The available posi-
tion the points and lane course are(xtrack, ytrack, θtrack)
(Figure 10).

Figure 10: The map of experimental track in the Lam-
bert’s coordinate system.

Locally, the track is then approximate by straight seg-
ments. Each segment is described by the couple
(ρseg, θseg) in the straight line equation:

xcos(θseg) + ysin(θseg)− ρseg = 0 (7)

5 Location by proprioceptive sen-
sors in the Kalman prediction
step.

Proprioceptive sensors measure the state of the vehicle.
This is the reason why the measurement is never affect by
external conditions. For that reason, these measurements
are used in command vector of the Kalman systemUk. In

Figure 11: The lane marking is composed of a set of
straight segments described by de equation (7).

our vehicle two kind of sensors are available: topometer
and inertial sensor (INS). They provide the distance and
the rotation speed of the vehicle.

Uk =
(

∆dk = dtopo,k − dtopo,k−1

∆ωk = rINS,k(tk − tk−1)

)

We are going to present briefly, the vehicle model used
in the system, but this is not our topic. The vehicle is rep-
resented by its inertial center. The evolution of the vehicle
is described by the equation:

Xk+1 = f(Xk, Uk) =




xk + ∆dk cos(θk + ∆ωk

2 )
yk + ∆dk sin(θk + δωk

2 )
θk + ∆ωk




(8)
Topometer gives distance every 0.19 meter. We define

then the measurement variance asV arTopo = 0.192. The
gyro of the INS measure the rotation speedr with an off-
set of10−3 and a variancevar = 8.10−6, angle variation
varianceV arangle = var∗∆t2 is then the variance of ve-
hicle angle variation measurement. The covariance matrix
of the command is

Rcommand =
(

varTopo 0
0 varangle

)

(Bruit de l’etat pas d’explication)

Rsystem =




0.12 0 0
0 0.12 0
0 0 0.13 ∗ π

180



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As the system is non linear, we must calculateFk =
∆xf(Xk, Uk) andBk = ∆Uf(Xk, Uk) The prediction
covariance matrix is then given by

Pk+1/k = FkPF t
k + BkRcommandB

t
k + Rsystem

The kalman filtering can be used without estimation step,
but the bias is growing with the distance. The test on the
track is presented in the experimentation part.

6 Location by GPS in Kalman esti-
mation step

6.1 On the measurements provided by GPS

The measurement is the absolute position of the vehicle
(x, y). The precision depends on the mode of the GPS.
The receiver switches automatically to the best one when
this is available.

• In the RTK mode, the precision reaches several cen-
timeters when the received signal is perfect. But this
mode needs another fixed receiver to provide any
measurement.

• The DGPS mode provides a less accurate measure-
ment. But it doesn’t need a fixed receiver. Only 3
satellites are needed during the initialisation.

The vehicle orientationθ must be calculated by using the
previous value or given by proprioceptive sensors. The
error of theθ estimation grows during the calculation. We
must to take into account this error with this kind of sen-
sors. We must also keep in mind that the GPS measure-
ment is provided with a little delay (near300ms).

6.2 GPS measurement integration in the
Kalman estimation step.

Before using GPS measurement in our system, we must
define the covariance matrices for different modes of
GPS.

GPS precision mode Covariance MatrixQGPS

31 centimetric

(
0.042 0

0 0.042

)

32 submetric

(
52 0
0 52

)

9 metric

(
52 0
0 52

)

0 decametric

(
102 0
0 102

)

As GPS doesn’t provide the vehicle courseθ, only (x, y)
is measured here. Then

Yk =
(

1 0 0
0 1 0

)
Xk

Let us note

Hk =
(

1 0 0
0 1 0

)

We must replacehXk+1/k
by Hk+1k

in the step of estima-
tion of the Kalman filter.

7 Location by Cameras in Kalman
estimation step.

7.1 absolute location with cameras and
Map.

Image analysis provide only local measurement. To ob-
tain an absolute vehicle location, we use a simple map-
matching technique [6]. The distanceD measured by im-
age analysis algorithm is defined in the equation 1. We
must calculate the distance of the lane marking to the ve-
hicle gravity centerG, DG thanks toD. First, we can
expressed the lane marking’s position withD in the sys-
tem coordinateR presented in :L = (0, D, 0)t Let us
note:

• xc the position of the camera on the longitudinal axis
of the vehicle,

• yc the position of the camera on the lateral position
of the vehicle,

• θc the orientation of the camera with respect to the
vehicle longitudinal axis.
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• Xc = (xc, yc)t

(see figure 12)

Figure 12: The camera’s position is very important in
measuring the distance of the vehicle to the lane marking.

We must first calculate the lane marking position on the
absolute coordinate system. The position of the camera
is then very important (figure 12). The position of the
lane marking detected by the camera is calculated by the
following formula:

Xlane = RvehicleRcameraL (9)

WhereRvehicle is the rotation matrix with the angleθ,
Rcamera is the rotation matrix with the anglethetac.
To compare predicted vehicle position and the vehicle po-
sition derived from cameras detection, we measure the al-
gebraic distance ofXlane to the straight line given by the
equation (7). The functionh defined in the kalman sys-
tem is then:h(Xk) = xkcos(θseg) + yksin(θseg)− ρseg

By linearizingh(Xk) we obtain the matrixHk. The gain
matrixKk is defined by

Kk = PHt
k(HkPHt

k + Rk)−1

Rk corresponds to the covariance matrix provided by the
lane marking position estimation by the image analysis
algorithm [8].

8 On merging Sensors measure-
ment and experimentation.

In this section, we are going to compare several combi-
nations of different sensors. We will show through this
comparison, how efficient result we can obtain when we
merge different kind of sensors together. We propose to
combine:

• topometer and inertial sensor. The Kalman filter is
only using its prediction mode in this case,

• topometer, inertial sensor and GPS. The prediction
will be done thanks to topometer and inertial mea-
surement and the GPS information is used in estima-
tion step,

• finally, we add to this last system, our lane marking
detection by image analysis.

The experimentation is done on the track we have pre-
sented. We have tested on line our system. The measure-
ments are saved at the same time.

8.1 topometer and inertial sensor.

The accuracy of the vehicle position is calculated during
the test on the track, it is shown in the table below.

error of the vehicle position distance
0.5m 31m
1.0m 97m
2.m 183m

Figure 13: The accuracy of the prediction decreases with
the distance. The vehicle’s path does not match the exper-
imental track.

We can plot the vehicle position estimated by the kalman
prediction without any estimation step. This result show
proprioceptive sensors can not be used alone (figure 13).

8.2 combination of topometer, inertial and
GPS

The fusion of sensors allows us to use prediction and es-
timation steps of Kalman filter. The result depends on the
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GPS mode. The drawback is the very frequent change
of the GPS mode due to the loss of the GPS signal qual-
ity when the vehicle is near an obstacle. The figure (14)

Figure 14: The vehicle’s path seems now to be accurate.
But if we zoom the image, we notice some estimation er-
ror. The vehicle’s position is not on the track.

shows a better result when we use GPS with propriocep-
tive sensors. But this accuracy is not enough if we want
to get a very accuracy vehicle position estimation.

8.3 combination of topometer, inertial, GPS
and cameras.

Figure 15: By using cameras information, the vehicle po-
sition estimation has a higher accuracy. The vehicle’s path
fits the track. In the second image, we notice that the iner-
tial center of th vehicle are positioned nearly at the center
of the road.

We can obtain an accurate vehicle’s position estimation, if
the vehicle lateral distances to the lane markings of both
side of the vehicle are available. This information is only

provided by cameras. By comparing figures 14 and 15,
we notice the vehicle is positioned at the center of the
lane when cameras detection is available. Without cam-
eras, the vehicle seems to be out of the lane. When the
GPS mode is RTK, the location is very accurate (error of
±0.05m), this accuracy allows us to detect some manoeu-
ver of the driver (figure16).

Figure 16: Thanks to the lateral position of the vehicle on
the road, driver’s manoeuver is detected.

9 Conclusion

The algorithm presented in this paper provides us with a
very accurate vehicle location on the road. This allows us
to show how powerful is a system that uses different sen-
sors. Here, proprioceptive sensors, GPS,and cameras are
used. The results obtained by our experimentation proves
that computer vision has a key part in such a system. The
main result is certainly the importance of the fusion algo-
rithm that allows us to merge different kind of measure-
ments.
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