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ABSTRACT 
 
Up to now quite a few electronic safety functions 
have been developed in order to successfully 
increase the safety of passenger in vehicles. Among 
them are electronic stability control (ESC), brake 
assists (BAS), lane departure warning systems 
(LDW) and so on. There exists a short literature on 
the quantification of the effectiveness of such 
safety systems on injury outcome or crash severity. 
As an example the ESC in several studies 
impressively has been shown to be efficient in 
avoiding a considerable amount of loss of control 
or skidding accidents. Nowadays many recently 
registered vehicles are equipped not only with one 
but instead with a number of safety functions (so-
called safety equipment). The present paper 
proposes sound statistical methodology in order to 
investigate the safety benefit of such composite 
safety equipments (in contrast to a single safety 
function) in passenger vehicles. It seems obvious 
that the effectiveness of a specific safety equipment 
not simply is the additive superposition of the 
effectiveness of the safety functions of which it 
consists. For example one may be interested in the 
additional or incremental effect of an electronic 
stability control when a brake assist is already on 
board. 
 
As well we consider secondary safety functions 
which do not aim at accident avoiding but at injury 
avoiding or mitigating. Therefore, methodology 
will be presented to evaluate injury mitigating 
effectiveness. On this basis it is possible to deal 
simultaneously with any combination of primary 
and secondary safety functions. 
 
The developed methodology will be demonstrated 
on data examples. But the main focus lies on the 
presentation of methodology. 
 

EFFECTIVENESS OF SINGLE SAFETY 
FUNCTIONS 
 
For measuring the effectiveness of a safety function 
it is of critical importance to distinguish between 
different possible types of effects. In general there 
are at least four different types of safety function 
effects existent. These are: 
 

• injury accident avoiding effectiveness 
• injury avoiding effectiveness 
• injury mitigating effectiveness 
• effects of tertiary safety functions 

 
Some safety functions aim at avoiding the accident 
at all, if this still is not possible anymore, it is tried 
to prevent any injuries of the involved persons. If 
this is not possible anymore as well it is tried to 
reduce the injury outcome as far as possible. 
 
A typical primary safety function aims at all of 
these first three types of effectiveness, whereas the 
effectiveness of a typical secondary safety function 
only consists of the types injury avoiding and 
injury mitigating effectiveness. In some sense the 
first three mentioned types of safety function 
effects are hierarchically ordered. A safety function 
which aimed at accident avoiding may have some 
measurable effect on injury avoiding and injury 
mitigating in cases in which the accident could not 
be avoided but for example the crash severity has 
been reduced. A secondary safety function aiming 
for injury avoiding typically will have some 
effectiveness on injury mitigating but not on 
accident avoiding. Thus it becomes clear that a 
combined evaluation of different safety functions 
must be able to evaluate injury avoiding and 
mitigating effectiveness as well as the accident 
avoiding effectiveness separately. 
 
Afterwards, i.e. after the accident has happened and 
the injuries are inflicted tertiary safety functions 
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may come into action by calling the ambulance and 
doing other things to reduce the consequences of 
the injuries. In this paper we will focus on the first 
three types of effectiveness. 
 
Even though, we will focus on the accident 
avoiding effectiveness for the next section. 
 
RELATIVE RISK – ODDS-RATIOS 
 
A reasonable way of measuring the effectiveness of 
a single safety function “SF” within a certain group 
of accidental situations “A” is to compute relative 
risks. For example an easy to interpret relative risk 
is the ratio of the probability that a vehicle with SF 
on board and active has to suffer an accident that 
belongs to A and the probability of suffering an 
accident belonging to A with SF not active. (cf. 
Equation 1). 
 

 (suffering | SF active)
RR

(suffering | SF not active)

P A

P A
=  (1) 

 
As the relative risk is the ratio of two probabilities 
it can take any value in the interval [0, ∞ ). If it 
equals one, the probability of suffering an accident 
of type A is independent of the safety function SF 
being active or not. If it is less than one, the safety 
function has some positive effect, if it is larger than 
one the effectiveness of SF is in the negative. 
 
With simple algebra and Bayes law for conditional 
probabilities the equivalence between this relative 
risk and the following odds-ratio can be shown 
(Equation 2) 
 

 

( )
( )

( )
( )

SF active |

SF not active |
RR OR

SF active |

SF not active |

P A

P A

P N

P N

= =  (2) 

 
where N stands for a category of neutral accidental 
situations or for an internal control group of 
vehicle-related accidental situations. It is necessary 
that the relative risk of suffering an accident 
classified as N depending on SF active or not, must 
be equal or very close to one. This means that SF 
more or less has no influence on the probability of 
suffering an accident within the group N. For more 
detailed information on odds-ratios see Evans 
(1998), Kullgren et al. (1994), Hautzinger (2003), 
Kreiss et al. (2005). 
 
It is important to point out the difference between 
accidents and vehicle-related accidental situations. 
There may be several vehicles involved in a single 
accident and the different drivers were most 
probably confronted with different situations that 

led to the accident. So safety functions on board of 
vehicles involved in one and the same accident also 
are confronted with different situations. Therefore 
the effectiveness of a safety function on a specific 
accident highly depends on which of the involved 
vehicles is considered for the evaluation. 
 
Thus, from now on when referring to a certain type 
of accident we are always talking about a vehicle-
related classification of accidents. 
 
For computing the term in equation (2) the two 
odds have to be estimated with the equipment-rates 
within the accident type of interest as it is shown in 
(Equation 3). 
 

 

( )
( )

SF active |

SF not active |

No. of cars with SF active within 

No. of cars with SF not active within 

P A

P A

A

A

≈
 (3) 

 
With this transformation we end up with a term that 
easily can be computed and is equivalent to the 
relative risk that easily may be interpreted, so that 
the effectiveness of SF within A can be computed 
as (Equation 4) 
 
 1 OReff = −  (4) 
 
The effectiveness then describes the percentage of 
avoidable accidents within the category A. To 
describe it more precisely:  
 
Given that some vehicles are involved in critical 
accidental situations that in case SF is not active 
would lead to accidents of type A, then in eff·100% 
of the cases the accident could be avoided if SF 
would have been active.  
 
Most safety functions do not have an influence on 
every accidental situation. In order to quantify the 
overall effectiveness of a safety function there are 
two possible approaches. Either the effectiveness 
within the subgroup of accidental situations which 
are sensitive to the safety function of interest has to 
be calculated and extrapolated to the complete set 
of accidents. Choosing A to be the category of “all 
accidents within the data-base” also leads to such 
an overall effectiveness. This second approach has 
the advantage that additional effects of the safety 
function on other than the selected sensitive 
accidents are not ignored. On the other hand it may 
be possible to include unwanted external variables 
in the overall effectiveness calculation. So for 
example if drivers of vehicles equipped with ESC 
typically have a parking assistant on board as well, 
then the calculated overall effectiveness of ESC 
would include some effectiveness on parking 
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accidents due to the correlation between ESC and 
parking assistants. 
 
However the category N of neutral accidents for the 
second proposal will then be a subset of A. This 
does not lead to any problems within the 
calculation. 
 
Classically type A is meant to be the type of 
accident which is influenced most by SF. But as for 
some studies a general effectiveness of a certain 
safety function is of greater interest we would like 
to point out this possibility of calculating the 
overall effectiveness of some safety function SF. 
Even though one has to keep in mind, that this 
effectiveness will be way less significant than some 
effectiveness concerning only a certain single 
accident type. 
 
DATA EXAMPLE (1) 
 
For a better understanding a short data example is 
presented in this section. Let us assume that our 
aim is to evaluate the overall effectiveness of each 
of two safety functions SF1 and SF2. So in both 
cases the accident type of interest A is any accident 
within a fictional data-base, where the information 
of the equipment with the safety function of interest 
is at hand. 
 
As it is explained in the section above the first step 
is to characterize a type of neutral accidental 
situations for each safety function. The group of 
neutral accidental situations concerning safety 
function SF1 is labelled N1 and the other one 
accordingly N2. 
 
Within our fictive data-base we find for 4632 
vehicles the information whether or not they are 
equipped with SF1 and for 3354 vehicles whether 
or not they are equipped with SF2. For the 
calculation of the odds-ratio we simply need to 
count the number of cases within the following 
2x2-contingency-table. 
 

Table 1 
Cross-tabular for calculating the odds-ratio 

type of accident all vehicles where SF1 
equipment is known N1 A 

Yes 56 641 
SF1 

No 328 3991 
Sum 384 4632 

 
With this data the overall effectiveness of SF1 may 
be calculated with the formulas from equation (2), 
(3) and (4) which are combined in (Equation 5): 
 

 
No. of cars with SF1 within 

No. of cars without SF1 within ( ) 1
No. of cars with SF1 within 

No. of cars without SF1 within 

A

Aeff A
N

N

= −  (5) 

 
So we obtain the effectiveness of SF1 within A, that 
is the overall effectiveness by (Equation 6) 
 

 641 56
( ) 1 5.93%

3991 328
eff A = − ≈  (6) 

 
Remember at this point, that we calculated the 
effectiveness of SF1 to any given accident and not 
only within the types of accidents, where SF1 is 
supposed to have the largest effectiveness which 
typically is much higher than this calculated 6%. 
 
Similarly we calculate the effectiveness of SF2 by 
counting the number of cases from the following 
2x2-table. 
 

Table 2 
Cross-tabular for calculating the odds-ratio 

type of accident all vehicles where SF2 
equipment is known N2 A 

Yes 30 300 
SF2 

no 279 3054 
sum 309 3354 

 
Using a similar formula as in equation (5) we 
obtain the overall effectiveness of SF2 in (Equation 
7): 
 

 300 30
( ) 1 8.64%

3054 279
eff A = − ≈  (7) 

 
So far we did not take into account any external 
variables that may have an influence, such as 
driver’s age, surrounding conditions etc. See 
subsection “logistic regression and […]” for more 
information on that. 
 
EVALUATING MULTIPLE SAFETY 
FUNCTIONS 
 
Of course it is of major interest to be not only able 
to evaluate a single safety function but as well a 
whole package of multiple safety functions. Odds-
ratios offer a well interpretable way of comparing 
any two (or even more) different safety 
equipments. In the above formula (Equation 2) the 
odds-ratio is calculated by somehow comparing the 
probabilities of suffering a certain accident given a 
safety function SF is active or not active. The very 
same approach may be applied if not looking at a 
single active or not active safety function but 
instead at some safety configurations. A safety 
configuration is considered to be a set of different 
safety functions such as “any car that is equipped 
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with anti-lock braking system, airbags and 
emergency brake assistant but does not contain 
ESC”. So in our understanding a safety 
configuration means that certain safety functions 
are always included, certain safety functions may 
be excluded and no information on other safety 
functions are of interest. Let us assume that we 
intend to compare the effectiveness of some safety 
configuration SC I with the effectiveness of some 
safety configuration SC II. 
 
The effectiveness calculated via the odds-ratio then 
describes the additional gain of safety of SC I 
compared to equipment SC II. Described in the 
words as above: Given that some vehicles equipped 
with SC I are involved in critical accidental 
situations that would lead to accidents of type A, 
then the question is, how many of these accidents 
could have been avoided if instead of SC I the 
safety configuration SC II would have been on 
board. 
 
Of course SC I and SC II do not have to be a single 
specific safety configuration but as well may each 
describe classes of safety configurations. For 
example SC II may stand for “any safety-
configuration that includes the safety function SF1 
but excludes SF2” and SC I could be “any safety 
configuration that includes SF1 as well as SF2”. 
For the sake of an easier interpretation of the 
results SC I should always include every single 
safety function that is included in SC II plus some 
additional safety function(s).  
 
Let us come back to the example above. The 
corresponding effectiveness (Equation 8) 
 

 

( )
( )
( )
( )

SC I |

SC II |
1 OR 1

SC I |

SC II |

P A

P A
eff

P N

P N

= − = −  (8) 

 
then describes the additional gain of SF2 within 
accident type A, given that SF1 is already existent. 
 
Crucial at this point is the neutral accident type N. 
This type of accident has to be independent on 
every safety function that distinguishes SC I from 
SC II on its own! 
 
For more detailed information on what we call 
multi-dimensional odds-ratios see Kreiss et al. 
(2006). Especially we want to stress the fact that it 
is not possible in general to calculate confidence 
intervals for odds-ratios of multiple safety 
functions. 
 
 
 

DATA EXAMPLE (2) 
 
Staying at the evaluation of SF1 and SF2 within 
our fictive data sample, we now want to investigate 
the interactions of the two safety functions. Recall 
that the effectiveness of SF1 was 5.93% and the 
effectiveness of SF2 was 8.64%. When analysing 
the interactions of the two safety functions we 
again need a group of neutral types of accidental 
situations. As we already identified some neutral 
types of accidents for each safety function, e.g. we 
obtain one possible group of neutral types of 
accidents concerning both safety functions by using 
the intersection of N1 and N2. Let us assume we 
obtain the following 2x2-table. 
 

Table 3 
Cross-tabular for calculating the odds-ratio 

type of accident all vehicles within data-
base, where SF1 and SF2 

equipment is known N1 ∩ N2 A 

Both 18 176 
SF1 & SF2 

None 239 2612 
Sum 257 2788 

 
This leads to the effectiveness of having both SF1 
and SF2 instead of none of these as it is calculated 
in (Equation 9): 
 

 176 18
( ) 1 10.53%

2612 239
eff A = − ≈  (9) 

 
So the effectiveness of both safety functions is less 
than the sum of the two single safety function’s 
effectiveness. Obviously there exists some 
interaction of the two safety functions. 
 
Now we want to find out more details about these 
interactions. Table (4) helps us to evaluate the 
effectiveness of SF1, given that SF2 is already 
present. As the group of neutral types of accidental 
situations we may take the whole group N1 and not 
only the intersection of N1 and N2 because all 
vehicles of interest are equipped with SF2. 
 

Table 4 
Cross-tabular for calculating the odds-ratio 

type of accident all vehicles, equipped with 
SF2, where SF1 equipment 

is known N1 A 

yes 18 176 
SF1 

no 11 108 
sum 29 284 

 
So the effectiveness of SF1, given that SF2 is 
already on board of the vehicle is: (Equation 10) 
 

 176 18
( ) 1 0.41%

108 11
eff A = − ≈  (10) 
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This result may very well be interpreted as given 
that the vehicle of interest is already equipped with 
SF2, there is more or less no additional gain of 
SF1. 
 
Remember again, that we calculated the overall 
effectiveness for all the accidents within the data-
base. So there may exist a small group of accidents, 
where the effectiveness of SF1 given SF2 is much 
larger. But then necessarily this group of accidents 
has to be comparatively small as the overall 
effectiveness is so close to zero. As well we want 
to point out, that the number of cases considerably 
decreased in comparison to Table (1) and (2). This 
is due to the fact we not only need the knowledge 
whether a vehicle is equipped with SF2 or not but 
rather we need cases where the vehicle indeed is 
equipped with SF2. This effect typically occurs 
when working with real world accident data. 
 
The other way around we now want to calculate the 
effectiveness of SF2, given that SF1 is already 
existent. Accordingly to Table (4) as all vehicles of 
interest are equipped with SF1, N2 may be 
considered to be a group of neutral accidental 
situations. Let us assume that we obtain from our 
data-base the following table. 
 

Table 5 
Cross-tabular for calculating the odds-ratio 

type of accident all vehicles, equipped with 
SF1, where SF2 equipment 

is known N2 A 

Yes 18 176 
SF2 

No 29 328 
Sum 47 504 

 
Again the same calculation leads to (Equation 11): 
 

 176 18
( ) 1 13.55%

328 29
eff A = − ≈  (11) 

 
Now the situation is completely different. We 
obtain a rather high overall effectiveness of SF2, 
given that SF1 already is existent. 
 
To sum it up: With an effectiveness of 5.9% and 
8.6% we observe a moderate effectiveness of SF1 
and SF2, considered as single safety functions. The 
combination of both safety functions shows with an 
effectiveness of 10.5% that this effectiveness is less 
than the sum of the single ones, but still larger than 
the effectiveness of only one of them. By 
evaluating the interactions we found out that: SF2 
is even more effective if SF1 is already existent 
(13.6%), whereas if SF2 is already existent it does 
not change much if SF1 is existent as well (0.4%). 
 
Again it is important to point out that for all 
calculations any external influences were ignored. 

We may not exclude the possibility that some of 
the computed results may be explained by some 
external variable(s). See subsection “logistic 
regression and […]” for more information on this. 
 
EVALUATING INJURY MITIGATING AND 
INJURY AVOIDING EFFECTIVENESS 
 
So far odds-ratios have only been used for 
evaluating the accident avoiding effectiveness, but 
as pointed out in the beginning of the paper the 
other types of effectiveness (e.g. injury avoiding 
and in jury mitigating) are of major interest as well. 
Typically these types of effectiveness can be 
quantified on the basis of in-depth accident studies 
and simulations based on accident-reconstructions. 
But as we intended to propose a general approach 
that as far as possible is independent on the type of 
safety function of interest, we will present such an 
approach in the following. This approach will only 
lead to lower and upper bounds of the wanted 
quantities. 
 
As seen in the section above, odds-ratios are able to 
evaluate the accident avoiding effectiveness of 
some safety configurations within a certain type of 
accident situations called A. To evaluate the 
effectiveness of a safety function on different 
severity levels of injuries, A has to be split up in n 
different subgroups, enumerated according to an 
increasing severity of the accident. Thus A1 stands 
for all accidents within category A with material 
damage only, A2 may stand for all accidents within 
category A with slightly injured passengers only, up 
to An which stands for accidents of category A and 
with fatally injured passengers. As the described 
classification of the accidents is vehicle-related, 
only the occupants of the vehicle of interest are 
relevant for the classification Ax, x=1,…,n, and not 
for example the most severely injured person 
involved in an accident. 
 
Assume a crash of type A would lead for a vehicle 
not equipped with a certain safety function to a 
classification of Ax. If the vehicle would have been 
equipped with this safety function the accident 
outcome would only be of type Ay with some y < x. 
This is a typical case of injury mitigation. Thus, 
every injury mitigation will appear somehow as 
accident avoidance within a certain subgroup. 
Therefore the so far developed methodology can be 
applied in principle. 
 
If in the above situation y = 1 it is not only injury 
mitigation but injury avoidance, so injury 
avoidance may be handled similar to injury 
mitigation. As well it may be possible that an 
accident without injured persons involved is not 
reported in the data-base at hand anymore. In this 
case injury avoidance appears as accident 
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avoidance. This means that if we are able to 
properly deal with accident avoiding and injury 
mitigating effectiveness, then we implicitly have 
covered injury avoiding effectiveness. 
 
We would like to point out that injury mitigating in 
general does not change the total number of 
accidents within the data-base. It just leads to a 
different distribution over the considered categories 
of accident severity. Those injury mitigations that 
lead to fact that the accident is not reported to the 
data-base anymore are interpreted as accident 
avoidances for this paper. 
 
It is rather clear that from real world accident data 
one typically cannot decide for a given accident of 
category A to what extend the severity would be 
reduced by the safety function of interest. This 
implies that an accident of category Ax may be 
mitigated with some probability to Ay for any y < 
x. It seems unrealistic to assume that we can obtain 
reliable information on these probabilities. 
 
The described mitigating effectiveness of a safety 
function leads to the following situation. For all 
accidents with a certain severity that belong to 
group Ay we have on one hand a reduction of the 
number of cases because of injury mitigation (due 
to the safety function) to accident categories with 
lower severity. On the other hand we have, again 
due to the injury mitigating effectiveness of the 
safety function, that accidents from category Ax 
with x > y are mitigated to category Ay. This leads 
to an increase of the number of accidents within 
category Ay. The reduction on one hand and the 
increase on the other hand are only observable as a 
superposition and this makes the quantification of 
the injury mitigating effectiveness of a safety 
function rather delicate. Just for the most severe 
accidents which belong to category An we observe 
a possible reduction of the number of cases, only. 
This is because we assume that the safety function 
of interest does never increase the severity of an 
accident. So when looking at the effectiveness 
within a certain group Ax one always has to keep 
this in mind. Ignoring these facts may lead to 
completely misleading results. 
 
Let us discuss the following two ways to handle 
this dilemma of quantification of injury mitigating 
effectiveness. 
 
One idea could be not to calculate the effectiveness 
within each group Ax but instead within the 
aggregated groups Ax+ which are defined as 

+ :Ax Ax An= ∪ ∪K . I.e. Ax+ contains all 
accidents of type A and with accident severity 
larger or equal to x. Then every injury mitigation 
from a group Ax to a group Ay will be observed 
within each effectiveness of the groups Ax+ to 

A(y+1)+. The idea would be to look at the 
distribution of the observed crude effectiveness 
over the different groups Ax+ for x=1,…n. The 
effectiveness within such an Ax+ can be computed 
from equation (8) with A replaced by Ax+. For 
every calculation of an effectiveness for a subgroup 
of A such as Ax or Ax+ also the type of neutral 
accident has to be classified accordingly and is 
denoted by Nx or Nx+. 
 
Using this approach we are able to circumvent the 
dilemma of quantification of injury mitigating 
effectiveness by only considering the groups Ax+ 
for some x. Recall that it then is not possible to 
have downshifts to this group from more severe 
accidents by injury mitigating. Even though 
following this proposal we are not able to calculate 
the effectiveness within a group Ax instead of Ax+. 
 
The other approach to be described quantifies 
lower and upper bounds for the effectiveness 
within the group of interest, taking into account 
possible shiftings from groups of more severe 
accidents to the accident group of interest. Let us 
assume that we are interested in comparing the 
effectiveness of two safety functions SC I and SC 
II on accidents of type A with a specific severity 
Ax.  
 
In doing so at first completely ignore possible 
injury mitigation from more severe accident 
categories and compute the effectiveness within the 
group Ax just using the observed number of cases. 
We have argued above that one has to subtract 
from the observed number of accidents within 
category Ax the number of mitigated accidents 
from more severe accidents to that category in 
order to obtain the pure effectiveness of the safety 
configuration on accidents of severity Ax. Ignoring 
this subtraction would lead to an underestimation 
of the effectiveness of the safety configuration on 
Ax and therefore yields a lower bound effmin(Ax) of 
the effectiveness on Ax. In a second step we will 
obtain an upper bound effmax(Ax) for this 
effectiveness. The exact procedure will be 
described below. Having done this we end up with 
an interval [effmin(Ax) , effmax(Ax)] which contains 
the true but unknown effectiveness of the safety 
configuration on Ax. 
 
The main idea is to estimate how many accidents at 
most may have been downshifted from more severe 
accidents to the category Ax, then to subtract this 
number from the observed number of cases within 
category Ax and finally calculate on this basis the 
upper bound effmax(Ax). For the estimation of the 
number of accidents which at most may have been 
downshifted, we first need the following 
abbreviations (Equations 12): 
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Then the corrected amount of vehicles equipped 
with SC I in Ax which is needed to calculate the 
upper bound of the effectiveness reads as follows. 
(Equation 13) 
 

 

+
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1 1
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:
1
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Az z

z

z
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 (13) 

 
If now calculating effmax(Ax) using the value |AxI,corr| 
instead of |AxI| then one assumes that all accidents 
that have been avoided due to SC I out of A(x+1)+ 
have been downshifted to group Ax.  
 
It is worth mentioning that the interval 
[effmin(Ax),effmax(Ax)], which contains the wanted 
effectiveness of the safety function is by no means 
a statistical confidence interval which contains the 
wanted value only up to some probability. 
 
DATA EXAMPLE (3) 
 
To explain the described procedure let us assume 
we want to evaluate a secondary safety function 
SF3 within our fictive data-base. We suppose SF3 
to be only relevant to frontal impacts. There have 
been 4940 vehicles identified, where the equipment 
with SF3 is known. For an evaluation of the 
effectiveness of this safety function, a class of 
neutral accidental situation is needed. We chose 
those vehicles that were hit from behind since our 
safety function of interest addresses frontal impacts 
only. 
 
We again want to evaluate the overall 
effectiveness, so the accident type of interest A is 
interpreted as any accident within the database. 
 
As the safety function of interest is a secondary 
one, we need to evaluate the injury mitigation 
effectiveness and the injury avoiding effectiveness. 
According to the section above a more detailed 
classification of A has to be created. 
 
The existing data (that is accident type A) is 
divided in only two subgroups. A2 contains every 
vehicle, where at least one occupant is fatally or 

severely injured, A1 contains the remaining 
accident-involved vehicles. 
 

Table 6. 
Cross-tabulars for calculating odds-ratios 

type of accident all vehicles within data-
base  N A 

no 178 1384 
SF3 

yes 449 3383 
sum 627 4767 

 
type of accident vehicles without any 

severely injured occupant N1 A1 
no 162 1097 

SF3 
yes 408 2796 

sum 570 3893 
 

type of accident vehicles with at least one 
severely injured occupant N2 A2 

no 16 287 
SF3 

yes 41 587 
sum 57 874 

 
With this data the effectiveness of each group may 
be calculated similar to equation (5) as it is shown 
in (Equation 14): 
 

 
No. of cars with SF1 within 

No. of cars without SF1 within ( ) 1 ,
No. of cars with SF1 within 

No. of cars without SF1 within 

Ax

Axeff Ax
Nx

Nx

= − (14) 

 
for x equal to 1 or 2. 
 
So we obtain the effectiveness within each group as 
follows (Equation 15). 
 

 
min

3383 449
( ) 1 3.10%

1384 178
2796 408

( 1) 1 1.20%
1097 162

587 41
( 2) 1 20.18%

287 16

eff A

eff A

eff A

= − ≈

= − ≈ −

= − ≈

 (15) 

 
As it is explained in the previous section we so far 
only obtain a lower bound of the effectiveness 
within group A1. 
 
For calculating the upper bound of the 
effectiveness within group A1 we need to apply 
formula (14) and we get (Equation 16) 
 

 

1, 1 1

( 2 )
1 1 2

1 ( 2 )

20.18%
2796 587

1 20.18%
2647.6 ,

new

eff A
A A A

eff A

+
+

+= − ⋅
−

= − ⋅
−

≈

 (16) 
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which leads to the upper bound of the effectiveness 
within group A1 of (Equation 17) 
 

 ( )max

2647.6 408
1 1 4.17% .

1097 162
eff A = − ≈  (17) 

 
We end up with (Equations 18) 
 

 [ ]
( ) 3.10%

( 1) 1.20% ;  4.17%

( 2) 20.18%

eff A

eff A

eff A

≈
∈ −

≈

 (18) 

 
How can these results be interpreted? 
 
At the first glance a non-zero overall effectiveness 
seems strange as we are investigating a secondary 
safety functions which is supposed not to have an 
accident avoiding effectiveness. On the other hand 
it is likely that some cases where injuries were 
avoided entirely due to the safety function have not 
been reported in the data base. This is equivalent to 
an accident avoiding effectiveness. 
 
The effectiveness within the group of vehicles with 
slightly or not injured occupants (A1) lies within 
the interval [-1.20% ; 4.17%] (cf. equation (19)). 
We therefore can not exclude a zero-effectiveness 
within this group. This would mean a similar 
behaviour of SC I compared to SC II on vehicles 
involved in accidents with slightly or not injured 
occupants. 
 
The effectiveness of SC I compared to SC II within 
the group of accident-involved vehicles with at 
least severely injured occupants is rather high. Just 
recall that the calculated effectiveness is the 
effectiveness within the entire group A2 and not 
only within a subpopulation of “sensitive” cases. 
 
To put it all into a nutshell we can state that the 
main difference of these two safety equipments 
seems to be an injury mitigating effectiveness that 
is by far most effective for avoiding severe 
accidents. So obviously odds-ratios may be used to 
estimate the injury mitigating effectiveness of a 
safety equipment. 
 
A last word of caution: It is advisable to compare 
the different equipment-rates within the various 
types of neutral accidental situations. It may occur 
that the calculated effectiveness within some 
groups of accidental situations results from an 
increased equipment-rate within the neutral 
subgroup of accidents instead of a reduction of the 
equipment-rate within the entire group only. In this 
case the selection of neutral accidental situations 
needs to be crosschecked or at least explained. 
 

In our example the equipment-rates within the 
group of neutral accidental situations differ only 
slightly (Equation 19) 
 

 
1

2

449 178 2.522

408 162 2.519

41 16 2.563 ,

N

N

N

eqr

eqr

eqr

= ≈
= ≈
= ≈

 (19) 

 
which seems to be quite reasonable. 
 
If we just do a small modification of Table 6 in 
order to obtain the following Table 7, 
 

Table 7. 
Cross-tabulars for calculating odds-ratios 

Type of accident vehicles with at least one 
severely injured occupant N2 A2 

no 20 287 
SF3 

yes 41 587 
sum 57 874 

 
we end up with a more or less vanishing 
effectiveness of eff(A2) ≈ 0.23%. But this is only 
due to the change of the equipment-rate within the 
group N2, which is eqrN2 ≈ 2.050 and significantly 
less than the rates eqrN and eqrN1. 
 
The other way around is possible as well: A not 
reliable classification of the group of neutral 
accidents may also lead to an observed 
effectiveness even though only the equipment-rates 
within the group of neutral accidents differ (so-
called pseudo effectiveness). As an example, 
consider Table 8 which again is obtained by 
applying only slight modifications compared to 
Table 6. 
 

Table 8. 
Cross-tabulars for calculating odds-ratios 

type of accident all vehicles within data-
base  N A 

no 178 1384 
SF3 

yes 459 3527 
sum 637 4911 

 
type of accident vehicles without any 

severely injured occupant N1 A1 
no 162 1097 

SF3 
yes 408 2796 

sum 570 3893 
 

type of accident vehicles with at least one 
severely injured occupant N2 A2 

no 16 287 
SF3 

yes 51 731 
sum 67 1018 
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In this case we end up with the effectiveness within 
each group as it is shown in (Equation 20) 
 

 [ ]
( ) 1.17%

( 1) 1.20% ;  5.45%

( 2) 20.09%

eff A

eff A

eff A

≈
∈ −
≈

 (20) 

 
So the results seem to be comparable to the results 
obtained from the original example shown in Table 
(6). But a closer look on the equipment-rates within 
the group of neutral accidental situations shows 
clearly a problem concerning the classification of 
this group (Equation 21): 
 

 
1

2

459 178 2.579

408 162 2.519

51 16 3.188

N

N

N

eqr

eqr

eqr

= ≈
= ≈
= ≈

 (21) 

 
So the observed effectiveness may be due to the 
high equipment-rate within the group of neutral 
accidents. When looking at the equipment-rates 
within the groups A, A1 and A2 we get (Equation 
22) 
 

 1

2

3527 1384 2.548

2796 1097 2.549

731 287 2.547

A

A

A

eqr

eqr

eqr

= ≈
= ≈
= ≈

 (22) 

 
Summarizing, it seems to be clear that the observed 
effectiveness of 20% within the group A2 is due to 
the high equipment-rate within the group N2 and 
nothing else. As a result we may state that if and 
only if this high equipment-rate is reliable the 
observed effectiveness is reliable as well. 
 
LOGISTIC REGRESSION AND THE 
QUANTIFICATION OF THE INFLUENCE OF 
ADDITIONAL EXTERNAL FACTORS 
 
In drawing conclusions from a statistical analysis 
one always has to be careful. A causal relationship 
between two variables always leads to some kind of 
statistical dependence between these two quantities. 
The opposite assertion, namely that an existing 
statistical dependence between two quantities leads 
to a causal relationship between the corresponding 
variables, not necessarily is true. The easiest 
example one may think of is as follows. Assume 
that one variable Z has a causal relationship to the 
variables X and Y which are of interest to the 
investigator. If one consider or observe the 
variables X and Y only, then there typically will 
show up some kind of dependence between them. 
But the true story is that both variables depend on 
the third one Z. In the context of this paper this 
could mean that if the driver populations of 

vehicles equipped and not-equipped with a specific 
safety equipment are completely different or even 
disjoint then the observed effectiveness of this 
safety equipment completely may be due to the 
difference in the driver population. One easily can 
think of other examples which in some and even in 
relevant cases may lead to a significant 
misinterpretation of the results. In pure statistical 
theory one therefore usually assumes that the test 
conditions of the two experiments are completely 
equal except for the variable of interest. In our 
context this means that we e.g. assume that all loss 
of control accidents are almost similar except the 
equipment with an electronic stability program. 
Having such an ideal situation at hand, all observed 
differences in accident outcome between equipped 
and non-equipped vehicles is due to the electronic 
stability program for sure. But the above mentioned 
theoretical assumption is far from being realistic 
when investigating real world accident data. In 
reality the equipment of vehicles not only differs up 
to a single safety function and the driver population 
rarely is the same for different vehicles. Therefore 
methodology is needed to deal with this situation.  
 
One simple idea is to create different categories of 
accidents in which all relevant external variables 
like driver’s age and gender, size of the vehicle, 
weather conditions at the accident spot, accidental 
situation etc are as similar as possible. Within 
every group of such categorized accidents one may 
compute an odds-ratio as described above for 
example. The variation of the odds-ratio over the 
different categories easily may be interpreted as a 
quantification of the influence of the accident 
characteristics within a single category. This 
approach perfectly works if one has sufficient 
accident data at hand and not too many external 
variables in mind. If only one of these two 
hypotheses is not true one ends up with very few 
cases in each category which leads to non reliable 
statistical quantities within each category. Even if 
we only have five external variables in mind for 
which each of them may take five different values 
we at least need hundred thousand and more 
accidents in order to obtain reliable and 
interpretable results. Thus, even for a rather low 
number of external variables we are confronted 
with the so-called curse of dimensionality.   
 
Another possibility in order to quantify the 
influence of external variables to the accident 
outcome is given by the statistical concept of 
logistic regression. A detailed explanation of the 
concept of logistic regression models may be found 
in any textbook of categorical data (cf. for example 
Agresti (1996)). A condensed explanation of the 
logistic regression approach in the context of 
accident research can be found for example in 
Kreiss et al. (2006). Before we start explaining a 
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brief word of caution is in order. Logistic 
regression is not able to circumvent the above 
mentioned curse of dimensionality. The truth is that 
logistic regression is a statistical tool which is able 
to deal with a moderate and sometimes even high 
number of external variables by the price of 
assuming that the influence of the external 
variables is to some extend easily structured. From 
a principle point of view logistic regression 
assumes that the influence of the external variables 
to a slightly transformed output quantity is just as 
simple as a linear influence.  
 
Let us describe the essentials of logistic modelling 
and assume that we have external variables 

1 2, ,..., dx x x  which could take values 0 or 1, in case 
of gender as an example, or could take numbers 
(like the age of the driver of the vehicle) and so on. 
One or more of the variables denotes the coding 
whether a specific safety function in the vehicle is 
on or off. Then logistic modelling for the 
probability 1 2( | , ,..., )dP A x x x  of having an accident 
of type A given that the external variables take the 
specific values 1 2, ,..., dx x x  reads as follows 
(Equation 23) 
 

 0 1 1
1

0 1 1

exp( ... )
( ,..., ) .

1 exp( ... )
d d

d
d d

x x
P A x x

x x

β β β
β β β

+ + +
=

+ + + +
 (23) 

 
For the so-called odds this means (Equation 24) 
 

 
1

1
1

0 1 1

( ,..., )
logit ( ,..., ) ln

1 ( ,..., )

... ,

d
d

d

d d

P A x x
P A x x

P A x x

x xβ β β

=
−

= + + +

 (24) 

 
which just indicates the above mentioned linearity 
assumption of logistic modelling. Routine 
statistical theory immediately leads us to estimates 
of the parameters 1 2, ,..., dβ β β . The value kβ  or 

equivalently exp( )kβ , which is nothing else but an 
odds-ratio, represents the influence of the external 
variable number k having all other variables 

, ,ix i k≠  under control, i.e. having them similar for 
all accidents. It should be stressed again that a 
specific linear model for the influence of the 
external variables on the odds is assumed. In 
various situations this in fact may occur as a strong 
restriction. For example the logistic approach is not 
able to describe the behaviour of an external 
variable for which we have for low and high values 
a strong influence to the accident outcome and only 
a moderate influence for moderately large values of 
the external variable. One external variable for 
which this in fact is true is belt usage and height of 
the driver. The safety belt is designed for medium 
sized people and we indeed observe that rather 
small and rather tall drivers are less well protected 
by the safety belt than medium sized drivers. 

Moreover it should be mentioned again that we 
really need a class of accidents neutral to the 
specific external variable we have in mind in order 
to be able to compute the above mentioned odds-
ratio, namely the quantity exp( )kβ , since we only 
observe specific realizations of the external 
variables only given that an accident what type ever 
has happened. In case that A stands for an arbitrary 
accident then the mentioned odds-ratio just 
quantifies the influence of the specific external 
variable to the overall accident outcome (overall 
influence of the specific variable). In case that A 
stands for a specific type of accidents (e.g. loss of 
control accidents or rear-end accidents) then the 
above described odds-ratio measures the influence 
of the specific external variable to accidents of the 
prescribed type only. Of course such an accident 
type specific influence can be extrapolated to an 
overall influence just by renormalizing, i.e. 
multiplying, the accident specific influence 
coefficient, i.e. the odds-ratio, by the percentage of 
accidents of type A. To be specific: 
 
If the overall effectiveness of a safety equipment 
SF1 compared to safety equipment SF2 is wanted, 
specify a neutral type of accident N first. Define A 
as “not N” and then apply a logistic regression to 
gain the effectiveness of the safety function within 
A. It has to be kept in mind that cases that do not 
have either SF1 or SF2 equipment are not to be 
involved in the calculation for the logistic 
regression. The overall effectiveness then is 
(Equation 25) 
 

 No. of cases within 
( )

No. of cases within  or 

A
OR OR A

A N
= ⋅ (25) 

 
If instead of the odds-ratio one minus the odds-ratio 
(this is called the effectiveness of the specific 
external variable) is considered all stated arguments 
remain valid. 
 
CONCLUSIONS 
 
This paper shows, that the well researched and 
statistically sound method of odds-ratios is not only 
able to evaluate the accident avoiding effectiveness 
of a single safety function but as well may be used 
to evaluate the interactions of multiple safety 
functions as well. It even enables us to evaluate the 
injury avoiding and injury mitigating effectiveness 
with some limitations. 
 
The crucial point within this kind of evaluation is 
the classification of a group of neutral types of 
accidental situations. The whole algorithm stands 
and falls with the reliability of this group! 
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