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CROSS~AXIS EFFECTS ON THE MEASUREMENT OF
- ANGULAR ACCELERATION USING LINEAR ACCELEROMETERS
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New Mexico State University ' Administration

Department of Transportation

Abstract--An instrument currently used in biomechanical
experiments for the measurement ;f rigid body motion is
the nine-accelercmeter module which prpvides linear and
angular acceleration data in three dimensions. However,
validation results were rest;icéed to planar motion
measurements. This paper discusses the errors induced
in the derivation of angular acceleration by cross-axis
sensitivity and principal-axis misalignment of the
linear accelerometers. The study reveals Some insight
into the limitations of the nine-accelerometer module
and provides the criteria for the selection of linear

.-

accelerometers.




INTRODUCTION

<s biomechanical experiments, a. commouly used instrument for Kinemaclc weasurement
4y the anine-accelierometer instrumentation module {1]. This module utiiizes nine linear
secelerometers arranged in an ingenious 3-2-2-2 configuration, thus, providing three
elegant iinear equations which relate the accelerometer measurements to the angular
accelerations of the module. -

Validation results [1], [2] using both hypothetical and experimental data indicated
that good major axis angular acceleration and velocity data may be obtained for planar
motion if the state-—of-the-art linear piezoresistive accelerometers are used. In

oblique rums, especially in near planar.motion, minor axis angular accelerations generally
contain large errors induced by the cross-axis sensitivity and the principal-axis

misaiignment of the linear accelerometers. These effects may be severe enough to hamper
an experiment where angular velocity data are required to transform the instrumented data

in a body-fixed coordinate system through rigid-body assumption. In near planar motion
where the angular displacement is relatively small, the resultant linear acceleration

after rigid-body transformation may be acceptable [2]. This is because the resultant
iinear acceleration is dominated by a single component in a plane in this special case.

1f other coordinate transformations are used, the angular displacement data may be

severly limited in range and accuracy because of the large errors in the directional
cosines. <

Titlow* has made an analysis of the nine-accelerometer module error due to accelerometer

major axis data resolution and gain errors. He was able to express the angular
acceleration errors in terms of these linear accelerometer errors‘as a function of
the module size. '

Not.éb obvious is that the comménly used piezoresistive linear accelerometers have
significant cross-axis sensitivity (1%) and sensitive-axis misalignment (1 degree}.
The purpose of this paper 1is to expliciteiy express the angular acceleration errors in
terms of these two factors. ‘This will provide some insights into the limitations of the

nine-accelerometer module and will‘provide guidance for the selection of the linear

accelerometers.

ikesolution and Accuracy Estimates for Nine-Axis Accelerometer Configuration"
prepared by J. Titloﬁyunder(56¥:E§E:i65§\_£33££3351"Design and Fabrication of
f{crominature Accelerometer/Transmitter" with Yonigsberg Instruments, Inc., 200 East
Foothill Boulevard, Pasadena, California 91107.
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MATHEMATICAL MODEL

The 3-2-2-2 nine-accelerometer module {1] is configurcd as shown un
Fig. 1 with the bold arrows indicating the nine accelerometcers. The lower
case a;, 8y, .- ag indicate the true acceleration when measured with nine

ideal accelerometers. Note that a 1’ and a,., are not related to any

10’ 21 12

accelerometers but they represent the true accelerations’in axes X, Y, and z
at cluster locations 1, 2, and 3 respectively. The lower case wx, wy, and
W, indicate the true angular velocities about axes x, y, and z respectively.
Each cluster of sensors is located in one of the four positions as shown in

the figure.
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Fig. 1 Nine-accelerometer configuration.

Forward Equations

From Fig. 1,‘Ehc linecar acceleration along 255 for 1 =1, 2, ... 12, can

be expresscd as follows
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e

4 = ) (1-1)
8, =y (i-2)
8, =y+ u&u&rx + w, T (1-4)
rag = Z+ wxwzrx - wyrx (1-5)
a =X+wwr -0r (1-6)
6 Xyy zZy
a, =i+ wywzry + wxry (1-7)
ag =i + wxwzrz + wyrz (1-8)
ag =y + wywzrz - r (1-9)
. 2 _ , -
a0 = X - wyrx - wzrx - (1-10)
- 2
a;;, =y - xry - wzry (1-11)
2
a, = Z - wxrz - wyrz | . (1-12)

Inverse Equations

Using Equations (1i-1) through (1-9), &x, dy, and éz can be calculated [1]

" obtain:
w = (a7 - a3)/2ry - (a9 - a2)/2rZ (2-1)
wy = (38 - al)/2rz - (aS - a3)/2rx | (2-2)
3 = - " - - 9-
wz (a4 az)/_ljX (a6 al)/2ry (2-3)
Let r = ry = r, =r. Equation (2) is simplified in matrix form
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If the accelerometers were ideal, then the electrical signals are a
) i
(1 =1, 2, ,...9), and the calculated angular accelerations will have no

error.
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EFFECTS OF CROSS-AXIS SENSITIVITY

Definition of Cross—-Axis Sensitivity

For an ideal accelerometer, the output signal (bold line) is a cosine
function of the angle 6 between the accelerometer principal axis and the
acceleration input axis as illustrated in Fig. 2. The output signal should
be zero when the acceleration is applied perpeﬁdicular to the sensitive axis
® = i,90°). But for an actual accelerometer, this output signal is not
zero, as shown in the dashed curve. The ratio of this value to the value
when the applied acceleration is in line with the sensitive axis is defined
as the cross-axis sensitivity coefficient Sij where the first subscript is
the accelerometer number and the second subscript is the acceleration input
axis. Its magnitude may be between 0.01 and 0.05. It is assigned positive
if the cross product of the input acceleration and sensor Rrincipal axis is
positive (right hand rule) and vice versa. For example, if the acceleration
along vector a; (x-axis) creates a'positive voltage reading in the accelerometer

along vector 2y, then the coefficient Sy is positive.

ACCELEROMETER
A PRINCIPAL AXIS
ACCELERATION
INPUT

IDEAL

ACTUAL \
\
' | . ACCELEROMETER
\ CROSS-AX1S
10 ‘/ (1,0) .

CRoifiAxrs
SENYITIVITY

Fig. 2 Illustration of crossaxis sensitivity,
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Designation of Errors '

If the true kinematic acceleratlon is ai and the measured acceleration

A= ha, -

is Aii_then they are related by Equation (4).

A=)+ e e+ a)) =a, +ba @-1)
Az = (ai) -+ (SZxal - s 83) = a, + Aa " (4-2)
AS - (a3) + (- 84,8, + S, a ) = a, + ﬁa3 : (4-3)
by (o) iag > *‘z.za‘s.)'.E 8yt ba, | (4-4)
A5 = (as) 4 (-ssxa10 + SSyaa) = ag + Aas : (4-5)
Aﬁ = (a6) + (_Sﬁyall + 6,27 = ag - &aé (4-6)
A7 = (a?) - (—s7x36 + s?yall) = a, + Aa? (%-7)
Ag = (ag) + (-sg,3g + 85,3,,) = ag + Aag : (4-8)
Ag = (ag) + (sg a5 = 89.3,,) = ag + bag | (%-9)

Note that Ai can be divided into two parts: The first part is the true
kinematic acceleration and the second part is the error acceleration caused

by the non-zero cross-axis sensitivity coefficients.

Calculated Angular Accelerations

Since an investigator does not know the true kinematic acceleration ai,

he, therefore, uses the measured value of A Equation (3) becomes Equation

gt
é).
-Qx-——(A7—A-A +4,) - (5-1)
. 1 } &
R =5z (Ag = A5 = &g+ 4y) 4 (5-2)
: 1 .
R, =57 (A, = Ay - A +A) (5-3)
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where (3 = x, y, z) is the calculated angular acceleration.

3

Using Eqs. (1), (4), and (5), the calculated angular acceleration

in matrix form becomes

R=w+ M
where
mx R (e C N Sl
wala! =3 o 09"y 0 =
y 2t
bmz- . ey B0l 0
and ~ - =
b (SZx T Sax S7x s9x) __(3
- 8 i T o 3
b A')Y 2y (83:( sSx) (sly +
_Amz_ ‘(SZx 3 s4x) _(sly
X -(s?y e sgz) ~S9,
1 -
1 ¥ e ; "%82 =(8g, + 8g,)
2] L by “Sux
“S7x e “S9x Wy Wy
3 Uz &
+'§- 85)' SSy 0 = mymz
-0 -56 * —sﬁz ] L mzwx_

(2 Pl TRt | S
0 0 1 0
& =87 Q%8
3y s?y)
s3y SSy - 883)

86y)

-SSx

~(Bn T 86y)

©)

~ -
1
83
*3
a
4
a (7)
a6
*3
ag
| %9 |
-(322
-(slz
(slz % 322
~ 2‘-|
W
6 2
Wy
2
We
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r 0 -B9x s7x l F ax
1 ; > 2
+ 2 . ssy 0 -’Sy - .b.ly :
L ‘362 84z 0 ) L Iﬁz g

Equation (7) is identical to Equation (3 ), which is the .true angular
acceleration. Equation (8) is the angular acceleration errors due to
the non-zero cross-axis sensitivity of the actual accelerometers. These
errors are functions of linear accelerations, squares of angular velocities,

€ross products of angular velocities, and angular accelerations. The

cross coupling effect is obvious,

Planar Motion

Assume that the nine-accelerometer module undergoes a planar motion
in the x-z plane. This implies the following:

¥ =0
W = =0
x z

W, = mz =0

The true and the error angular accelerations are expressed in

Equations (10) and (11D respectlvely.

w_ =0
X

1
wy ok ™ (-al + aj - ag + as) "

w =0 *
Z

-

- (8)

(.9-1)
((9:-2)
(:9.-3)

(1p-1)
(10-2)

(10-3)
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. 1 z & g o 9 4
B, _ 57 [(Syp * Sgp = Sgy = Sgp) ¥ = (8, = §g.) %]

due to linear acceleration

1 2
+'2- [- ng wy

- due to a;zgular velocity squared

1 i _
+ 7 [- _ng wy] : ¢ ! Q1)
due to angular acceleration

: 1 & g
MY T 2_::.[-Fs3x £ sSx) oty (Slz i sSz) z]

i 2 - ' , (11-2)
+5 [(ss, + 5 my] i

& 1_ L _. .o i N i -
Mz 2r [ (SZx sl}x) 5+ (slz ¥ sZz slnz s&z) *

+-2]; [ Six mi]

+5 (84, 9] . Lot} s i)

Although wa and ﬁmz are not consi&ered under the planar motion assumption,
they are never zero. This has been demomstrated by Padgoadnkar [1] in his

planar motion examples.
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Pure Rotional Planar Motion

An investigator may igmor Q_ (@ = éx + ﬁéx) and 2 (2, = &z + a&z), and consider

5 (ﬁy = éy - Aéy) as his only measurement. Thus, his experiment has an error

e

. ta i
of me = —-% (sSx - saz)wi under pure rg&}onal planar motion cond?tions.

Let the angulﬁr velocity be wy(t) = wy ma*gin(wt), where w is the oscillating
frequency, then &Y(t) = wmy maxcos(wt). Equation (11-2) becomes

. L 2 2.
&my(t) 2 (sSx + ssz) wy e sin”(wt)
2 N 2 ;
-(8.. + s, )W (s.. +8, ) w
= 5x 22 y max 5% 8z’ "y max cos (20t) (12)
N— ~ — S— " s
constant error second-harmonic error 5

The constant error term in &y will create errors proportional to time-
squared in angular displacement. For example, if Ss. = Sg, = 0.01, and

my S 100 rad/sec, then this constant error is 50 rad/secz. This error
will, in turn, accumulate an angular velocity error of 5 rad/sec and an angular

displacement error of 0.25 radians after 0.1 second of an experiment.

The second-harmonic distortion is illustrated in Fig. 3. Maximum errors
occur when &y passes through its zeros and peaks but does not affect the peak-
to-peak value of &y. This often misleads the investigator to believe-that
his experiment has very little error. This harmonic distortion can also be
observed in Padgoankar's validation data [1] whe;e the positive half
cycles of the gngular acceleration had longer zero-crossing time than those

of the corresponding negative half cycles.
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Fig. 3 Second-harmonic distortion.



Pur§ Translational Planar Motion

\

Again, Equation (11) can be simplified by restricting the planar motion to
a pure translational motion in the x-z plane. In this case, the measured angular

acceleration has an error of

=1 v ok
2r [(an = 8Sx,) Bl (Blz il BSz)z] :

. 262 cm )
For example, if r =(3 inches) X = Z = 50g, and the magnitude of the cross-axis

sensitivity is 0.01, then the worst case is A&Y = 128 rad/secz.

Near Planar Motion

L

If this module undergoes an oblique motion but is dominated by the x-z plane
.motion, then Equation (11) is also valid for the near planar motion where the
cross product terms are much less than the squared angular velocity terms. The
error analysis of A&y is identical to that in the planar motion but the
values of Ab_ and ﬁ&z can no longer be ignored. The following discusses the
nature of ﬁ&x. Similar discussion applies for &éz.

The error ﬂﬁx for a pure rotational motion is derived from Eq. (11-1).

A = —

. 2 2
g 2 (893u§ % BQZmy ) i
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where the term (a m ) consists of a constant error and a second—harmonic

error similar to those of Equation (12). The additional term

(s
99Xy
significant when compared with m since this is a near planar motion. For

@ ) may appear to be insignificant when compared with my but it is

example, Padgoankar's [1] near planar motion (+15 degrees in' pitch, +2

degrees yaw and roll, all oscillated at the same frequency) hypothetical data
indicated that Ad_was 20% of _L'OY and 200% of & for a cross-axis

sensitivity of 0.05. The phasing relationship between éy and béx was also in

agreement with sgxéy for a negative Sox*

The error Aﬁx for a pure translational motion is shown in Equation (14).
% . s?x 3 B9x) 1 "(322 = 892) . )

Again, this error may be insignificant when compared with éy, but it is sig-
nifiﬁﬁﬁfaghen compared with &x since this is a near planar motion. For example,
if r;e inches), X = z = 50g, and the magnitude of the cross-axis semsitivity is
0.01, the worst case is é&x = 192 rad/secz.

A recent paper [2] appears to indicate that the nine-accelerometer module is
suitable for 3-D near planar motion application. However; thiswas a special case
in which: (1) The angular acceleration and velocity were compared to film data in
planar motion only. This was a 2-D application. The large errors in minor axes
were clearly demonstrated but were not used in the comparison. These errors did
not appear to be large as compared to the major axis data. The maximum agéziﬁaetubfu:uyes
acceleration error was 40% and the maximum angular velocity error was 304A§t the
head center of gravity. (2) The angular displacement was small where the
resultant linear acceleration could be closely approximated by the PA-axis component

alone. This was a 1-D application. In fact, in his key example, the resultant

acceleration could be approximated by the PA-axis component with only 8% error.
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EFFECTS OF MISALIGNMENT

Definition of Misalignment ' e

The sensitive (principal) axis of an actual accelerometer can not be
defined precisely by the manufacturer. In a&dition, the module block can
not be machined and maintained precisely in the intended coordinate system.
Figure 4 shows the output electrical signal when an accelerometer principal
axis is misaligned. Typical one-sigma value of the misalignment [3] is
generally larger than one degree, see Figure 5. In subsequent derivations,
a, B, and Y are used to define the directional cosines from the accelerometer

principal axis to the X, Y, and z axils respectively.

" INTENDED
ACCELEROMETER
PRINCIPAL ACTUAL

AXiS ACCELEROMETER
PRINCIPAL
AXIS

=N

MISALIGNMENT

CROSS-AXIS
—

Vv

INTENDED ACCELEROMETER J?/

QS
0@'\%\0’%’ A
L) ‘;*"
ACCELEROMETER
CROSS-AXIS )
. 2
¥ _ o
(a) Planar misalignment (b) Oblique misalignment

-

-

Fig. 4 TIllustration of accelerometer misalignment.
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. Fig. 5. Accelerometer principalhaxis misalignment.

Designation of Errors

Using Eq. (1) and considering all the misalignment angles, the
measured linear accelerations are listed in Eq. (I5). Note the small
angle approximation cosd =~ 1 - % sinzgi where ¢ represents ¢, 8, oOryY,
whichever is the smallest, '

The error terms caused by the misalignment of the accelerometer
principal axis from its intended axis are in the form of sinzd, which is
neglegible. This indicates that most of the angular acceleration errors
are caused by the accelerometers picking up linear acceleration components
on the plane which is intended to be perpendicular to the accelerometer
principal axis. : <

After dropping the second order terms in Eq. (1s5), this equaticn has
similar form-as that of Eq. (4). It is clear that these two problems are
similar in nature. The analysis of the misalignment problem then becomes

the problem of cress-axis sensitivity when one equates a 0.6-degree

accelerometer principal axis misalignment from its intended axis to a 1%



101

-

Al - (al) + {E%"sinzal)al + (cosBl)a2 - (cosTl)aa] S ay - Adl (15-1)
Az = (az) + [(coaaz)al f E% sinzaz)a2 + (cosyz)a3] = a, + Aaz (15-2)
= (a,) + [(cosa,)a, + (cosB da, + ﬁi sinzy Ja_] = a, + Aa (15-3)
S o 393 it G e
A, = (a,) + [(cosa,)a,. + EL sinZB Ja, + (cosy,)a_] = a ;-&a (15-4)

AT 4"%10 ™ 2 4% &8 Y T 0%
33 = (as) + [(cosas)al0 + (cosss)a4 + ;%-sinzys)asl =ag + Aas (15-5)
A6 = (36) + [E% sinzaﬁ)a6 = (cos66)a11 + (cosyﬁ)37] = ag + aﬁs (15-6)
= (a,) + [(cosa,)a, + (cosB Ja.., + Ei sinzy Ja,]l = a_ + Aa (15-7)

e e 7745 P T e SR Yale ) Sy & da,
A -‘(a ) + [El sinza Jag + (cosBy)a, + (cosy Ja,,] = a_, + Aa (15-8)

8 ] 2 8778 ; 879 812" " T8 8
= (ay) + [(cosa,)a, + El sinZB Jag + (cosy.)a,.] = a_ + Aa (15-9)

fg kg g)3g + 9739 i T i e

accelerometer cross-axis sensitivity. It should be noted that this 0.6-degree
misalignment is perhaps the state-of-the-art specification for piezoresistive

‘accelerometers [3] because the principal axis is difficult to define.

CONCLUSIONS

It appears that the accelerometer cross-axis sensitivity or axis
misalignment jmposes limitations on the 9-acEe1erometer module for the

application in biomechanicalexperiments. Some of these limitations are:
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Planar Motion -~ The rotational kin=matics creates two ersor terms in

che calculated angular acceleration, Zq. (12). The constant error

accumulates angular velocity and angular displacement errors while the
second-harmonic error creates distortion in the calculated angular
acceleration. The translational kinematics creates an error in the calculated
angular acceleration, Eq. (11-2), proportionally. However, calculated data

of angular acceleration and angular velocity in the local coordinate system

s

are generally valid for impact experiment [11,[2].

Oblique Motion -~ In oblique experiments, the calculated angular

accelerations have errors due to the non-zero cross-axis sensitivity or the
principal axis misalignment of the accelerometers. See Eq. (8). This is
especially true for oblique but near planar motion where the kinematics in
one plane dominates the others. The rotational kinematics creates three
error terms in Fhe minor axis angular -acceleration, Eqs. (11) and (12).

The first term is coupled from the major axis angular acceleraticn; the
'seconq term is a constant error; and the third term is the second-harmonic

distortion. The translational kinemetics creates an error in the calculzate

2.

angular acceleration, Eq. (11), proportionally. These errors become simnificant
in the minor axes but not necessarily in the majér axis because of the near
planar nature. They can easily overcome the true angular acceleratioms in the
minor axes. Even with moderate errors, the translation of data through a
rigid body, say, to the head center of gravity, may contain large error because
this requires the knowledge of angular velocities. Chau [2] seems to have
validated the transformed head resultant linear acceleration data under near
oblique condition. But this was a special case where the minor axis components
and their associated errors did not contribute significantly to the resultant.
In other words, the resultant acceleration can be closely approximated by a

(15 Kmlhr)
simple planar motion assumption. Furthermore, in his key example, the head

angular excursion was limited to +15 degrees. This further restr;:Eed the
motion to a near 1-D linear motion where the dominating acceleration component
was in the PA-axis. For complete kinematic application, a coordinate trans-
formation in three dimensions is almost impossible because the elements of

the directional cosine matrix consist of the sums of the products of the

trigonometric functions of the three angles. A small angle with large error
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(in percentage) will offset the values of the matrix elements, especially when one or

~ more of the angles changes sign or reaches +90 degrees.

Other error analyses involve the accelerometer principal axis error (linearity,
hysteresis, resolution, threshold, noise, thermal drift, frequency response, etc.),
seismic mass center error, data channel error, and.computational error. They are not

included in this paper. The basic problem of the nine-accelerometer module lies in
the fact that it measures the differences of paired accelerations while the accele-
rometers undergo severe impact environment. It'requiresvextremely accurate accele-
rometer tracking data. In addition, the measured angular acceleration errors caused

by the linear accelerations are inversely proportional to the size of the module, thus
limiting the reduction of the module size.

If it should be determined that current nine accelerometer system error is unacceptable
there are at least two possible alternatives for biomechanics applications. The first
method is to use better quality accelerometers such as the servo grade force-balanced
accelerometers. This may improve the measurement accuracy sufficiently to previde cata
within acceptable limits. A second method is to use angular sensing devices such as
the rate gyros. This method is not new. Previous applications were limited because
of the weight of the sensors. Recent development of angular rate measuring devices
has reduced the size (1'"Dx1.5"L) and weight (20z.) significantiy. Tor examp.e, one
device senses inertial angular rates based on the principal of coriolis acceleratiosn.

Another example is the magneto-hydrodynamic two-axis rate sensor. It shouic be pointed
out, however, that other type errors may be introduced in the application of rate scnsors

and that an analysis such as the foregoing for such application would be desiravie.
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