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TRANSFORMING ANATOMICALLY ACQUIRED KINEMATIC PARAMETERS
TO INERTIALLY REFERENCED COORDINATES

\ E. B. Becker

= Assume that some system of anatomically mounted inertial transducers has monitored
the displacement of the anatomical body from some known initial position, orientation,
and velocity. Assume further that the transducer outputs have been reduced to obtain the
time history of the body translational acceleration expressed in some body referenced co-
ordinate system and the time history of either the body angular velocity or angular accelera-
tion expressed in the same body coordinates. Obtain the inertially referenced body position
and orientation as well as the first and second time derivatives of these quantities.

These inertial parameters may be obtained in the manner diagrammed in figure 1. Body
oriented angular acceleration is integrated to obtain body oriented angular velocity. The
time history of the angular velocity vector is treated to obtain a time history of the quaternions
of the body orientation. These quaternions yield the direction cosine matrix and the Euler
angles relating the body axes to the inertially referenced coordinates.

These direction cosines are now applied to the body oriented angular acceleration,
angular velocity, and translational acceleration to obtain their inertially referenced values.
Finally, the inertially referenced translational acceleration as integrated to obtain the trans-
lational velocity and the body position.

The legality of the first step in this procedure, integration of body oriented angular
cceleration to obtain body oriented angular velocity, depends on the following statement
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In the next step the body oriented angular velocity is treated to obtain the quaternions
of the body orientation. The quaternions are essentially a four parameter representation of
the reiation between the body axes and the inertially referenced system, the same quantity
as that represented by the nine rarameters of the direction cosines or the three parameters
of the Euler angles. The advantage of the quaternions over the direction cosines is that
where the direction cosines are bound by six constraints, the quaternions are bound only
by one. The advantage over the Euler angle representation is that the quaternions have
no such singularity as "gimbal lock," a differential change in orientation produces a
differential change in the quaternions. A description of these quaternions and the mani-
pulations used to obtain them is provided in the appendix.

Once the quaternions have yielded the direction cosines the rest of the parameters
can be obtained by means of straightforward integration and matrix arithmetic.
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List of Variables
Inertially Referenced Acceleration
Body Referenced Acceleration
Direction Cosine Matrix Relating Inertial and Body Axes
Initial Value of the Direction Cosine Matrix
TheEuler Angles
Inertially Referenced Velocity
Initial Velocity
Inertially Referenced Position
Initial Position
Quaternion
Vector Part of the Quaternion
Inertially Referenced -Angulcr Acceleration
Body Referenced Angular Acceleration
Inertially Referenced Angular Velocity

Body Referenced Angular Velocity

Initial Angular Velocity
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Notes on Quaternions

A quaternion consists of four parameters, these are a scalar, qy and a three dimensional ,
vector q. Multiplication of these quaternions is as follows: ~’
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The quaternion inverse is defined by
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The inverse of a quaternion product is
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The product
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Since these three terms are perpendicular, the component of a5 parallel to a is just

The magnitude of 93 is
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The angle befween 9, and q 3 is
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Thus, the effect of
-1
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is that q 24 remains unchanged while the vector a, is rotated about a,
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A rotation x about an axis I ;

n I =1 can be represented by the quaternion

- X
Ay = Cos (T)
3; =Sin (%)5

Operating on a quaternion made up of the vector to be rotated and to which any
scalar may be appended as the quaternion scalar, a series of rotations becomes
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Thus body oriented angular velocity has the quaternion form

w = w4 =]

gw = (W/2)dt

and the expression corresponding to the integration of angular velocity is
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Further Notes on Quaternions

2 . . - . - -
Since the term g =~ turns up so frequently in the denominator of fractions it is
required that this term be nonzero and positive. A useful value for this term is
2

2|

Since the volume of computations will certainly produce deviations from unity, this term
will be carried through in the calculation. This expression is the single constraint in the
quaternion representation of rotation.

Fag = -9y
cmdﬂ2 = -9,
then
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Any rotation in three dimensions can be represented by two distinct quaternions.
However, since each quaternion corresponds only to a single rotation in three dimensions
no difficulty is encountered.
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