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ABSTRACT

A method for determining velocity in biomechanical impact experiments on human surrogates
is presented. It employs a Kalman Filter to combine experimental acceleration and displacement
measurements along with kinematic models of the human surrogate and statistics of the experimental
noise to derive an estimaie of the velocity in a maximum likelthood sense. Results from two velocity
levels, less than 1 m/s and over 10m/s, are presented to illustrate the broad range of application of this
approach. The velocity of deflection of an anthropomorphic test device (ATD) in two airbag related
cases are presented: an ouf of position child ATD and an in position adult advanced ATD.  The
results indicate that the problems associated with attempting to obtain velocity from either
acceleration or displacement can be eliminated or significantly reduced.  The infrierent noise from
unfiltered differentiation of displacement, the loss of information from standard filtering procedures
and the velocity drift from low frequency noive when integration is wsed on accelerarion are
eliminated or significantly reduced

INTRODUCTION

btaining the response of a human surrogate to an impact event typically requires measurement of

certain phenomena (acceleration and displacement) and estimation of others (velocity). Velocity
is an important parameter to measure in certain impact tests. For example. the chest cavity and
associated internal organs represents a viscous environment. Forces on internal organs can be a
function of both chest deflection and their velocity of deflection relative to their fluid surroundings.
An accurate way of estimating chest velocities, such as the velocity of the sternum relative to the
spine, is necessary in order to assess the injury potential [1-4].
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Velocity is typically derived from accelerometers, displacement transducers or film analysis
by means of various algorithms. There are few sensors that provide direct measurement of velocity.
Furthermore. there are no direct measurement velocity transducers currently used in standard vehicle
crash applications. Each commonly employed method of estimating velocity from related phenomena
is subject to interpretation and measurement noise. Numerical differentiation of displacement data is
inherently noisy and requires application of filtering. Numerical integration of accelerometer data is
subject to drift, time shifting and emphasizes any steady state errors that may exist in the system. Film
analysis is labor intensive and cannot capture high speed events.

STATE MODELING TECHNIQUES

State models are a way to estimate the dynamics of a system. State models are common tools
used in modern control theory and have been applied in numerous aircraft systems and, more recently,
automotive systems, including emissions control algorithms. A state characterizes a dynamic system
at some point in time (e.g., position and its time derivatives). An example of a state is the rectilinear
kinematics of a particle, x:

X=|x {]}

The column of observations suggests that the state is a vector, The state model is typically
expressed in vector/matrix formulations.

The state model is a description of how the dynamics of a system is propagated over time.
The modeling of a system involves determining the state transition equations. Typically, these are
taken from equations of motions based on the kinematics (motion) or the kinetics (force/motion
relationships) of a system. Each state can be related to the other states by a relationship from an
equation of motion or an approximation made from empirical observations of a system. A simple
state model for the rectilinear kinematics of a particle is given by:

x, =x = Position
x, = X, = Velocity (2)
x, = &, = Acceleration

x, =% = "Jerk"

The state of the system appears as the variables x1 ... x4. The equations of motion that
describe the interrelationship of these variables comprise the state transition model. The state model is
the combination of the state transition (how position is related to velocity, etc.), any deterministic
input (such as an actuator that could drive a component from one position to the next) and the noises
that corrupt the states (the system or process noise). A complete state model is shown below:

i = Ax+ Bu + Gw 3
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The state change is determined by the state transition model (the product of A and x), the
deterministic input, v, and the effect of system noise, w. B and G are used to scale the input and the
noise to match the dimensions of the state. The system noise is a way to describe or compensate for
systems that are poorly understood or inadequately modeled. A state model that is corrupted by
system noise with a large standard deviation is one that does not have a good dynamic model to
describe its performance.

The states can be measured directly or related indirectly to measurements made on the system.
An example would be the relationship between the state of a wehicle (position, velocity and
acceleration) and a measured phenomenon of motion (acceleration). A typical model for
measurements in a state model format would be:

(4)

The measured phenomena (z) are related to the state (x) by a transformation, H. The observer
sees measurements of the state that are corrupted by measurement noise, v. The measurement noise is
a way of describing the disturbances that typically corrupt a sensor (mechanical or elecirical
interference). A measurement model corrupted by a large standard deviation measurement noise is
one that has sensors providing data subject to significant interference.

z=Hx+v

KALMAN FILTER ESTIMATORS

Kalman filters are tools for estimating the states of a dynamic system from available data. Kalman
filters are applied to problems where noisy, uncertain measurements are taken from a dynamic system
and states must be estimated. These filters or estimators use a standard algorithm for state estimation
that is customized based on the state transition and measurement model that applies to a specific
system. These estimators provide a powerful {and possibly optimal, under certain conditions) means

of dealing with:

. Uncertain systems (systems that are not well understood and corrupted with system or process
noise)
. Uncertain measurements (observations that are corrupted by measurement noise) [3,6].

A Kalman Filter can be applied in real time or as a way of post processing measurements.
Typical applications for Kalman Filters include:

. ICBM Systems: Noisy measurements of missile acceleration are used in conjunction with a
ballistic model to guide a missile.

. Ground to Air Defense: Limited, noisy radar measurements are used to track a target (e.g.,
Patriot)
. Aireraft Navigation: Locations are estimated based on speed, attimde and heading [6].

The Kalman Filter is a well-documented algorithm for continuous and digital systems. There are
several modeling environments that directly support its implementation (e.g., MATLAB, Simulink and
others). The process is illustrated in the flowchart shown in Figure 1 [7]:
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Initialize State and

Error Statistics Introduce Measurement (z) Extract State Estimate (x)
Compute Kalman Update State Estimate Update State
r‘ Gain (Kg) with Measurement (z ) Error Statistics (Py )

MEASUREMENT UPDATE (Uses observations of sensor data in conjunction with
the kinematic model to create optimal state estimates)

TIME UFDATE (Uses the kinematic model of the system to anticipate the state at the
next interval of time)

Use System Model to Use System Model (Kinematics)
— Project State Error Statistics *+—— to Project the State T
Forward in Time (P, 4) Forward in Time (X k+1)

Figure 1. Kalman Filter Algorithm

The Kalman Filter operates recursively with a new measurement and a new estimate of the

system dynamics being used to update the state at each time step. The input to the system is the
measurements. The output is the estimate of the state at each time step.

Implementing the algorithm is a straightforward procedure. However, significant engineering insight
is mecessary to apply the algorithm to a specific system. There are several key elements to the
implementation of a successful Kalman Filter:

A reasonable state model must be created. These result from an understanding of the
dynamics of the system and are generally traceable to the first principles of physics. Some
models are widely known for simple systems (e.g., a particle subject to a constant
acceleration).

The system model must be “tuned.” The tuning process requires an understanding of the
system or process noise. The variance of the system noise needs to be selected. A large
magnitude noise indicates that the state model is not very accurate. This does not necessarily
mean that the Kalman Filter will not provide good state estimates. The Kalman Filter is
capable of producing accurate state estimates if the system noise is properly characterized.
This will frequently require experimental trials to effectively test the model accuracy. The
amount the deviation between the actual system performance is stationary (i.e., does not vary
significantly over time), the Kalman Filter can apply measurements to create very good state
estimates.

The measurement model must be tuned. The process requires an understanding the

measurement noise. The variance of the measurement noise must be selected. A large
magnitude measurement noise indicates that the sensors used to observe the system are highly
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corrupted.  As with system noise, this does not meet that good estimates cannot be derived
from the Kalman Filter. Kalman Filter estimators can produce highly accurate state estimates
provided that the sensors are well understood and are subject to noise that has observable
statistics.

Generally, the tuning of the measurement model is much easier than the system model because
the sensors are generally well understood devices and experimental techniques exist to provide
accurate characterizations of sensor performance.

ESTIMATION OF ATD RESPONSE

One potential application for the Kalman Filter approach is to estimate the velocities in the
chest cavity of an ATD (“crash test dummy™). The chest velocity is difficult to accurately derive from
sensor data collected from a typical test. Typically accepted instrumentation for estimating velocities
in the chest of an ATD is:

. accelerometers mounted to the sternum and spine
. displacement transducers mounted between the sternum and spine

Each of these transducers is indirectly related to chest velocities. Current chest velocity
estimation technigues typically use:

. numerical integration of the difference between the chest and spine acceleration measurement
channels
. numerical differentiation of the displacement measurement channel

Each of these approaches is problematic. The numerical integration is prone to drift, time
shifting and accumulation of steady state error (the chest motion has stopped; yet, the velocity estimate
shows motion is still occurring). The numerical differentiation, like virtually all numerical derivatives,
is highly noisy.

The following presents two examples of the types of faults that result from these numerical
estimates. The examples are selected to represent extremes in conditions, The first example is based
on an airhag deployment on a 50" Percentile Male NHTSA Advanced ATD (TAD). This is a
standard in-position test under the conditions of a standard 30-MPH crash test. This example is
characterized by small deflections; consequently, the full-scale gain is set very high, resulting in a
noisy signal. The second example is an out-of-position test with a J-year-old ATD brought in contact
with the airbag module while in a static test buck. This example is characterized by very high
velocity changes in a small time interval. In each case, the displacement represents motion of the
sternum with respect to the spine. The acceleration is the difference of the sternum and spine motion.
Filtering of each data set followed SAE J211 guidelines.

IN-POSITION EXAMPLE

Figures 2 and 3 show the sternum acceleration and displacement for the standard In-Position
test. The chest motion begins at about 0.04 seconds. The acceleration profile indicates that the motion
of the chest began at approximately (.04 seconds into the test and that the sternum undergoes
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significant variations in acceleration during the event. As would be expected in this type of test, the
overall deflection of the chest is relatively small.

NHTSA TAD In-Posltion - Sternum Acceleration
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Figure 2. Sternum Acceleration

NHTSA TAD In-Position - Sternum Displacement
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Figure 3. Sternum Displacement
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The typical estimates of velocity extracted from the accelerometer and displacement
transducer are illustrated in Figure 4.

NHTSA TAD In-Position- Sternum
Velocity Estimates

Darivative of Displacement

Time [sec]

Figure 4. Velocity Comparisons

The derivative of the displacement shows a large signal to noise ratio that basically occludes a
reasonable estimate of velocity, The integral of acceleration exhibits significant accumulated error
over time

Various ad hoc strategies can be employed to correct the errors in the estimates of velocity
based on displacement and acceleration measurements. Some common approaches include applying
low pass filters to the noisy velocity measurements and using a moving average smoothing technique.
The low pass filter approach requires the judicious selection of a break frequencies and number of
poles. The moving average approach is highly dependent on the interval selected for the averaging. In
both cases, parameter selection is subjective and results are inevitably corrupted by time shifts and
attenuation of important information.  Ulimately, these strategies are difficult to trace to first
principles and find consensus among various strategists.

KALMAN FILTER APPROACH TO VELOCITY ESTIMATION

A Kalman Filter approach has been applied to the estimation of ATD response. A state model
was formulated that consisted of the equations of motion for position and the three corresponding time
derivatives (velocity, acceleration and jerk). This model was used in conjunction with observations
of acceleration and position to produce estimates of the state (position, velocity and acceleration). The
resulting estimates of velocity were compared to the estimates derived from numerical integration and
differentiation of transducer measurements.
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NHTSA TAD In-Position - Comparison of Velocity Estimates

20000
//, Darivativie of Displacamant
15000 : _ .
H f '
i | A P ¥ . -
10000 T $ — P — ——
- 0 R T S B T e e R o
g sooo Byt B DR aR L. i §idcs | Lo AR ELRe Evimate o
45 ] ! ] 4 i i
E i Mt i i | e o FI' n E._p" i
P LT o
g
=
2 a
= B [l s e 4 | T e Reh
-5000 ] R - e H HE 3L AL rﬂ: g e TS
e LR R R ey -'%‘pn R i Itegralof Accelaremater
3! il C3 R i 1" e RH ; Mag :
-10000 ——= - : —
-15000

Time [sec]
Figure 5. Kalman Filter Estimates

Figure 5 shows a comparison of the velocity estimates made by numerical integration,
numerical differentiation and the Kalman Filter.

The comparison of three estimation technigues shows the limitations of the numerical
differentiation and integration techniques. The Kalman filter estimates clearly tracks the centroid of
the derivative estimate, changing direction in a synchronized fashion with the derivative. The
derivative does not tend to mask the underlying dynamics of the velocity profile and the Kalman filter
estimate clearly tracks them without time shifts. The signal to noise ratio of the Kalman filter estimate
15 nearly an order of magnitude smaller than that exhibited by the numerical differentiation technique.
The effects of the time shift and error accumulations in the numerical integration technique are also
shown clearly. The large changes in direction occur in the profile between 0.06 and 0.10 seconds are
time shifted by nearly 0.02 seconds in the integral estimate.

The comparisons are open to significant debate since there is no “ground truth” for the
velocity. There is no direct measurement of velocity available to use as a baseline. Fortunately, there
is one additional comparison that can be made to help provide some validity to the Kalman Filter
estimate. The Kalman Filter also produces estimates of position and acceleration (adjusted by the state
model for the influence of process and measurement noise) as well as the velocity. These three
kinematic quantities can be compared to illustrate the effectiveness of the Kalman Filter approach as
shown in Figure 6.

The position and velocity are scaled so that they can be compared on the same graph. The
time phasing of the kinematics follows basic principles of physics. The profiles exhibit rapidly
changing kinematics between 0.05 and 0.10 seconds. During this interval, when the displacement is
maximum, the velocity crosses zero (the time axis). Similarly, when the velocity is maximum or
minimum, the acceleration crosses zero. These observations help confirm the proper time phasing of
the three kinematic quantities. Similar analysis can be done that will confirm the proper magnitudes
of the quantities (using numerical integration of the acceleration and comparing the magnitude of the
result to the estimated velocity). These comparisons are also favorable.
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Out of Position Occupant Test - Kalman Filter Estimates
(Scaled Position, Scaled Velocity and Acceleration)
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Figure 6. Kinematic Comparisons
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Figure7 . Acceleration Measurement
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OUT-OF-POSITION TEST
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The technique was also applied to the demanding dynamic conditions of an Out-of-Position
test with a 3-Year-Old ATD. The sternum acceleration and displacement (found in the same way as in
the In-Position test) are shown in Figures 7 and 8.

The comparisons of chest velocity estimates derived from numerical differentiation and
integration are shown in Figure 9.

3 Year Old Out-of-Position - Sternum Displacement
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Figure 7. Displacement Measurement

3 Year Old Out-of-Position - Comparison of Velocity Estimates
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Figure 8. Velocity Comparisons
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The corresponding Kalman Filter estimates of displacement, velocity and acceleration are
shown in Figure 10. As is the case with the In-Position test, the kinematic quantities have the
appropriate time phasing to make them internally consistent.

3 Year Old Out-of-Position - Kalman Filter Estimates
(Scaled Position, Scaled Velocity and Acceleration)
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Figure 9. Kinematic Comparisons

CONCLUSION

The state model approach offers an accurate means of estimating quantities related to ATD
response, such as velocity, that are difficult to measure directly. The state model/Kalman Filter
approach can provide a standardized approach to estimating velocities and other dynamic responses.
The standardization or wide acceptance could be made possible by the treaceability of the approach to
the first principles. Ultimately, this approach could provide a way to gain a better understanding of
the response of an ATD to a crash event and the associated mechanisms of injury.
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