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ABSTRACT 
The most urgent issues in crash safety research have typically been identified using retrospective, real-world 
crash data. Methods have been developed to instead project estimates of crash frequency and outcomes in the 
future, to better identify the issues that are most urgent for crash safety research. With these methods, future 
crash projections are made by modeling the forecasted effects of transportation trends, safety initiatives, and 
new technology on retrospective crash cases. As in any predictive model, the results do not predict with 
certainty what will happen in future crashes: instead, the model offers a picture of the future crashes that 
would be expected if a comprehensive combination of existing predictions and forecasts affecting 
transportation safety were applied in a single model, accounting for interactions in the effects of different 
countermeasures and avoiding double-counting of the benefits of overlapping safety improvements. In spite of 
the inherent limitations of predictive modeling, the resulting projections are useful in that they can offer a more 
comprehensive picture of the crashes expected to remain in the future than can be gleaned from analyzing 
historic data, or by consideration of the effects of individual trends or safety interventions. The objective of 
this summary is to introduce the modeling methods that have been developed and to provide example 
projections to illustrate how the model results can be used to identify future research priorities. 

INTRODUCTION 
dentification of the most urgent issues in crash safety research has typically been based on the most frequent 
or harmful crash scenarios, occupant types, or injuries in retrospective, real-world crash data. In this study, 
methods have been developed to instead make predictive estimates of crash frequency and outcomes in the 

future to identify the crash, occupant, and injury issues that are most urgent for crash safety research. With 
these methods, future crash projections are made by modeling the combined, forecasted effects of 
transportation trends, safety initiatives, and new technology on retrospective crash cases.  
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The results in this paper come from a version of the projection model that projects future injuries and 
crashes in 2020 to 2030 based on the best current estimates of the effects of expected safety interventions and 
countermeasures, as well as population and transportation trends. It is intended to illustrate the application of 
the model and provide a sample of the analyses that can be performed on model output. Although the model 
can also be used to explore hypothetical scenarios, alternative predictions, and potential future 
countermeasures, only a sample of base model results are included in this paper. More comprehensive reports 
are currently in progress to document the modeling methods and provide detailed results for the base model 
and alternative versions of the model. Those reports will include full specifications for the model and its 
components. 

METHODS 
The following summary describes the basic methods used to develop the projection model. The 

projection model was based on the concept that individual weighted cases from retrospective crash datasets 
can be reweighted, and variables in those cases can be modified to reflect how the frequency and outcome of 
crashes in the future would be changed by shifts in transportation trends and the introduction of safety 
interventions and policy changes that occurred after the year of the original crash. A brief summary of this 
case-by-case methodology follows.  

 
The retrospective cases used as source cases in the model were occupants in passenger vehicles from 

the 2004-2015 National Automotive Sampling System (NASS) Crashworthiness Data System (CDS). The 
cases were re-weighted using cases from the 2013-2015 NASS General Estimates System (GES) and the 2013-
2015 Fatality Analysis Reporting System (FARS) to calibrate crash frequency and distribution to the most 
recent available counts and to correct the retrospective dataset for inaccuracies introduced by the exclusion of 
cases with unknown data. Among the excluded cases with unknown data were the occupants in cases in older 
vehicles in crash year 2009 and later, for whom injury data was not collected. The FARS and GES reweighting 
procedures targeted accurate counts of crash occupants by injury severity, age group, belt use, and 
driver/passenger status. Cases were also reweighted to account for the over-reporting of belt use (Kahane, 
2018a) and the under-reporting of lower-severity cases (Blincoe et al., 2015). Cases from vehicle model years 
earlier than 2005 still represented pre-2005 model year vehicles in the projections and therefore were treated 
separately in the projection model: no vehicle-based countermeasures were applied to these cases. These cases 
were assumed to be affected only by crash avoidance technology installed on other newer vehicles in the crash 
and by non-vehicle countermeasures such as infrastructure and policy changes. Occupants in these early-model 
year cases were downweighted to represent the small percentage of pre-2005 model year vehicles expected to 
be involved in crashes in 2020 to 2030. The model-year distribution for occupant cases in the future was based 
on analysis of the vehicle-age distribution among crashes in retrospective data. 

 
As in retrospective studies, there is potential for individual cases with a high weight relative to other 

cases in a given analysis category to unduly influence projection results. Cases with the potential for 
unreasonably high leverage on the results were identified by comparing the average case weight in each output 
analysis category to the distribution of weights among all cases at each injury severity level. The concept is 
that individual high-weight source cases that have the potential to skew results are downweighted prior to the 
application of countermeasures, rather than simply being eliminated from the dataset.  

Overall Transportation Trends 
Overall trends in the number of drivers and passengers exposed to crashes were applied in the model 

by accounting for historical and predicted shifts in the number of people in each age group in the US population, 
as well as licensure rates and unemployment rates in those age groups. These factors were found to be better 
predictors of the annual number of crash exposures in retrospective data than vehicle miles travelled (VMT). 
Additional transportation trends in the base model were applied to adjust the proportion of crash occupants 
expected to be restrained by seat belts or child restraints in the future, as well as the proportion in each type of 
passenger vehicle. These shifts were applied by upweighting some types of cases and downweighting others. 
The primary sources for information and estimates for the trends coded in the base model are listed in Table 1. 
Full details for these parameters will be included in the methods report currently in progress. 

 



 

 

Table 1. Trends in the Base Projection Model 

Trend Description Primary Sources 

Population 
Growth by Age 

Group 

Adjustment of the expected 
future number of occupant 

crash exposures in each age 
group as a function of 

predicted population size, 
licensure rates, and 

unemployment rates in that 
age group in the future. 

(Relationship between crash 
exposures and these 

parameters was developed 
with a regression analysis of 

2007-2015 crash cases.) 

Population Projections  
(U.S. Census Bureau, 2014, U.S. Census Bureau, 2015, 

U.S. Census Bureau, 2017) 

Licensure Rates 
by Age Group FHWA Highway Statistics (FHWA, 2014a, FHWA, 2016) 

Unemployment 
Rates by Age 

Group 

IIHS Report (Farmer, 2017a) 
Monthly Labor Review (Byun et al., 2015) 

US Labor Statistics (United States Bureau of Labor, 2018) 

Vehicle Type 

Proportion of cases in each 
vehicle type adjusted based 
on projected proportion of 

occupants in future crashes in 
cars, car-based SUVs, truck-
based SUVs, pickups, and 

vans. 

Annual Energy Outlook 2018 (EIA, 2018) 
Automotive Trends Report (EPA, 2019) 

Docket NHTSA-2016-0068 (Puckett et al., 2016) 
Kahane, Personal Communication (2018b) 

Belt Use 
Proportion of belted cases 

adjusted based on estimates 
that non-belt users will convert 
to belt users at half the recent 

historical conversion rate. 

NHTSA DOT HS 809 639 (Wang et al., 2003)  
NHTSA DOT HS 810 777 (Blincoe et al., 2007) 
NHTSA DOT HS 812 243 (Pickrell et al., 2016) 

NOPUS (Subramanian, 2017) 

Child Restraint 
Use 

Proportion of child occupants 
in age-appropriate restraints 

adjusted based on conversion 
to age-appropriate restraint at 

half the recent historical 
conversion rate. 

NSUBS: 
NHTSA DOT HS 810 798 (Glassbrenner et al., 2007) 
NHTSA DOT HS 810 895 (Glassbrenner et al., 2008) 

NHTSA DOT HS 811 377 (Pickrell et al., 2010) 
NHTSA DOT HS 811 718 (Pickrell et al., 2013) 
NHTSA DOT HS 812 037 (Pickrell et al., 2014) 

NHTSA DOT HS 812 309 (Li et al., 2016) 

Safety Countermeasures and Technologies 
Safety countermeasures and technologies were applied to the model using a case-by-case 

methodology by adjusting the case weight and outcome for every individual case that was expected to be 
affected by those countermeasures. Each countermeasure in the base model was applied to every case in the 
dataset that fell within the target population defined for the given countermeasure. The parameters needed to 
apply each countermeasure were: 

(1) A definition of the countermeasure’s target population applicable to variables available in the original 
NASS CDS source cases. 

(2) An estimate of effectiveness, in terms of the percentage of target population cases affected by the 
countermeasure. Where available, variable effectiveness estimates for different target sub-populations 
were applied. 

(3) Penetration of the countermeasure (by vehicle model year or by crash year) during the time period of 
the original source cases (2004-2015) and estimated for the future target projection years in 2020, 
2025, and 2030. 

The parameters associated with each adjustment, countermeasure, and trend in the base model in this paper 
were based on the best estimates available at the time it was run. As improved estimates for model parameters 
are available or as new countermeasures are identified or developed, they can be applied to the model to 
improve projections.  

 
The modular structure of the projection model code allows individual countermeasures to be added, 

excluded, or modified with each run so that many “versions” of output are possible. This section lists the 
countermeasures and trends included in the base version of the model presented in this summary. Detailed 



 

 

specifications of the parameters used will be included in the methods and results reports that are currently in 
progress. 

Vehicle-Based Crash Avoidance Countermeasures 
Crash avoidance countermeasures were applied to occupants in their target populations by adjusting 

individual case weights to reflect the percentage of these cases that would be prevented in the future. 
Penetration of the countermeasure was used to adjust this reweighting step. This adjustment was based on 
estimates of penetration among vehicles in the crash based on model year, as well as among vehicles in the 
fleet in the targeted projection years. The adjustment was necessary because the addition of a given vehicle-
based countermeasure would have no effect on the proportion of vehicles that already had the countermeasure 
available at the time of the original crash, or on the proportion of vehicles that would still not be expected to 
have the countermeasure available in the future target year. The model also accounted for the fact that 
individual occupants may be affected by crash avoidance technologies in other vehicles. Therefore, although 
the case-by-case model applied countermeasures to individual occupants, the potential installation of crash 
avoidance technologies was considered for partner vehicles in the crash, as well as for the occupant’s own 
vehicle. The primary sources for the parameters used to code vehicle-based crash avoidance countermeasures 
included in the base model are listed in Table 2. 

Crash Mitigation, Crashworthiness and Occupant Protection Countermeasures 
Crash mitigation, crashworthiness and occupant protection countermeasures are not expected to 

prevent crashes. Therefore, these countermeasures were applied by adjusting the outcome of each case in the 
target population for each countermeasure. This adjustment was accomplished by dividing the case weight 
between two or more “pseudocases,” one with the same outcome as the original case and one or more with 
adjusted injuries. Depending on the expected effect of the countermeasure, individual injuries in the 
pseudocases were deleted or modified in severity. In other words, the occupant case was retained, but the 
outcome modified. The original case’s weight was divided among the resulting pseudocases proportionally 
according to the percentage of future cases expected to be affected by the countermeasure, which was estimated 
as a function of effectiveness and penetration. All available information on the effects of a given 
countermeasure were applied to predict its effect on individual injuries in a case, rather than simply adjusting 
the overall case injury severity. For example, for countermeasures where effectiveness estimates were available 
for specific body regions, separate adjustments were made to injuries in each affected body region. In the case-
by-case model, countermeasure penetration was accounted for as a function of (1) the model year of the 
occupant’s vehicle in the original crash and (2) the expected penetration of the countermeasure among vehicles 
exposed to crashes in the future projection years. The primary sources for the parameters used to code the 
countermeasures included in the base model are listed in Table 3 for crash mitigation countermeasures and in 
Table 4 for crashworthiness and occupant protection countermeasures. 

Infrastructure and Policy Countermeasures 
Countermeasures such as infrastructure improvements or policy changes were associated with a range 

of effects on cases in the model. These effects were applied in the model to correspond to the benefits defined 
in the effectiveness studies available for each individual countermeasure. For example, improved cable median 
barriers were incorporated by upweighting crashes in some target populations and downweighting crashes in 
other target populations to reflect varying effects for different crash types. The effects of raising the state 
maximum speed limits, which were atypical in that they caused a reduction in overall safety, were applied by 
increasing the case weight of affected cases to reflect the expected increase in crashes in the target population. 
The primary sources for the parameters used to code the infrastructure and policy countermeasures in the base 
model are listed in Table 5.  

 



 

 

Table 2. Primary Sources of Data for Effectiveness and Penetration Estimates for Crash Avoidance 
Countermeasures 

Countermeasure 
Primary Sources for 

Development of Effectiveness 
Estimates 

Primary Sources for 
Penetration 

by Model Year 

FMVSS 126: 
Electronic Stability 

Control 
NHTSA (2007a), Dang (2007), 

Sivinski (2011), Kahane (2014b) Sivinski (2011), Webb (2017) 

Automatic Emergency 
Braking with Forward 

Crash Warning 

Najm et al. (2006), 
Anderson et al. (2012), 

Kusano et al. (2014b), Fildes et al. 
(2015), Cicchino (2016), Cicchino 

(2017a), Cicchino (2019) 

Voluntary Commitment (NHTSA, 2016a), 
NCAP Vehicle Information (NHTSA, 

2018b) 

NCAP 2004 Static 
Stability Factor 
Enhancement 

Funk et al. (2012), Pai (2017) Hershman (2001), Global NCAP (2011), 
NHTSA (2012), NHTSA (2013) 

Blind Spot Detection Cicchino (2017b), Reagan et al. (2018) HLDI (2017), NHTSA (2018b)  

Lane and Road 
Departure Warning 

Wilson et al. (2007), Sayer et al. (2011), 
Blower (2014), Kusano et al. (2014b), 
Kusano et al. (2014a), Kusano et al. 

(2015), LeBlanc et al. (2017), Cicchino 
(2017c)  

HLDI (2017), NHTSA (2018b)  

FMVSS 138: 
Tire Pressure 

Monitoring Systems 
NHTSA (2005), Sivinski (2012) Simons (2017), Simons (2018) 

Lane Keeping Support 
Scanlon et al. (2015), Flannagan et al. 

(2016), LeBlanc et al. (2017), Wiacek et 
al. (2017), Sternlund et al. (2017), 

Reagan et al. (2018) 
NHTSA (2018b) 

Level 3-5 Automated 
Driving Systems 

Fagnant et al. (2013), Stienstra (2014), 
Litman (2014), Smith et al. (2015), 

Fagnant et al. (2015), Singh (2015), 
Sivak et al. (2015), Yanagisawa et al. 

(2015), Schoettle et al. (2015), 
Blanco et al. (2016), Dixit et al. (2016), 
IIHS (2016), Kockelman et al. (2016), 
Kalra et al. (2016), Zhao et al. (2017) 

Ernst & Young (2014), Litman (2014), 
KPMG (2015), 

McKinsey & Company (2016), 
Lavasani et al. (2016), 

2030 IHS Markit (2016), NHTSA (2016b) 

 
Table 3. Primary Sources of Data for Effectiveness and Penetration Estimates for Crash Mitigation 

Countermeasures 

Countermeasure 
Primary Sources for 

Development of Effectiveness 
Estimates 

Primary Sources for 
Penetration by Model Year 

FMVSS 138: 
Tire Pressure 

Monitoring Systems 
NHTSA (2005), Sivinski (2012) Simons (2017), Simons (2018) 

Automatic Emergency 
Braking with Crash 
Imminent Braking 

Kusano et al. (2011), 
Anderson et al. (2012) NHTSA (2016a), NHTSA (2018b) 

 



 

 

Table 4. Primary Sources of Data for Effectiveness and Penetration Estimates for Crashworthiness 
and Occupant Protection Countermeasures 

Countermeasure 
Primary Sources for 

Development of Effectiveness 
Estimates 

Primary Sources for 
Penetration by Model Year 

FMVSS 202: 
Head Restraints NHTSA (2004), NHTSA (2007d) NHTSA (2004), NHTSA (2007d), 

Simons (2017), Simons (2018) 

FMVSS 208: 
Advanced Airbag 

Updates (including 
Phase II 5th female) 

NHTSA (2000), NHTSA (2006), 
Greenwell (2013) NHTSA (2000), NHTSA (2006)  

FMVSS 214: 
Side Impact Update NHTSA (2007c), Kahane (2014a) Simons (2017), Simons (2018) 

FMVSS 216: 
Roof Strength Update 

Austin et al. (2003), NHTSA (2007b), 
Strashny (2007) Simons (2017), Simons (2018) 

FMVSS 226: 
Ejection Mitigation 

Update 
NHTSA (2011a), NHTSA (2011b),  NHTSA (2011b), Simons (2017) 

Simons (2018) 

FMVSS 301: 
Rear Impact NHTSA (2003), Viano et al. (2016) NHTSA (2003), Pai (2014) 

NCAP 2011 
Enhancement (Frontal 
and Side Impact Tests) 

Park et al. (2015)  
Hershman (2001), Global NCAP (2011), 

NHTSA (2012), NHTSA (2013), 
Park et al. (2015), Dang (2017) 

 
Table 5. Primary Sources of Data for Effectiveness and Penetration Estimates for Infrastructure 

Countermeasures and Policy Changes 

Countermeasure Primary Sources for Development 
of Effectiveness Estimates 

Primary Sources for 
Penetration by Model Year 

Rumble Strips 
(Edge and Centerline) Torbic (2009), Himes et al. (2016) Spears (2017), Satterfield (2019) 

Red Light Cameras Council et al. (2005) 
US Census Bureau (2017), IIHS 
(2018), Goble (2018), NHTSA 

(2018a)  

State Maximum Speed 
Limit Increases 

Parker (1997), Skszek (2004), Kockelman 
(2006), Mannering (2007), Retting et al. 

(2008), Elvik (2013), Nelli et al. (2014), Hu 
(2017) 

Nelli et al. (2014), Farmer (2017b) 

Cable Median Barriers 
Shankar et al. (1996), Ray et al. (2009), 

Villwock et al. (2010), Hu et al. (2010), Chitturi 
et al. (2011), Marzougui et al. (2012), Blank 

(2012)¸ Russo et al. (2016)  

Ray et al. (2009), Marzougui (2012), 
FHWA (2014b) 

Application of Countermeasures to the Model 
Countermeasures were applied sequentially to avoid double-counting benefits from different 

countermeasures, i.e., each countermeasure was applied only to the cases remaining after other 
countermeasures had already been applied. Interactions among countermeasures were accounted for where 
data was available. For example, improvement in rollover rate with increased SSF (Static Stability Factor) was 



 

 

modeled as a function of ESC (Electronic Stability Control) penetration since SSF effectiveness was reported 
to vary for vehicles equipped with ESC (Pai, 2017).  

 
As a final step, the resulting projected future cases and pseudocases were aggregated into a projected future 

dataset for each of the target projection years (2020, 2025, and 2030). Each of the occupant cases in those 
projected datasets had been adjusted individually to reflect the combined effects of all predicted trends and 
countermeasures in the model, as well as interactions among those countermeasures. Each case retained 
variables and parameters from its original corresponding NASS CDS case, including those not affected by 
countermeasures and those that had been adjusted by the application of trends or countermeasures. Thus, the 
resulting projected dataset could be disaggregated and analyzed by almost all variables available in the source 
NASS CDS cases. Additionally, since individual injuries were adjusted when target populations and 
effectiveness varied by body region or by injury source, the projected outcome in future datasets could be 
evaluated relative to the many harm measures that can be calculated from NASS CDS injury variables.  

Model Output 
Since the projection dataset can be analyzed using harm variables available in the source NASS CDS 

cases, projection model results are presented in this summary in terms of the number of occupants in crashes, 
as well as in terms of injury by MAIS (Maximum Abbreviated Injury Scale) severity level, cost, and fatality. 
AIS (Abbreviated Injury Scale) analysis was based on AIS Version 1990/1998 (AAAM, 1998) because the 
majority of cases in the 2004-2015 source dataset were coded with that version. Source cases coded with a 
newer version of AIS were converted to Version 1990/1998 using the mapping recommended in the AIS 2005 
coding manual (AAAM, 2008). Cost analysis was based on injury-specific estimates from Blincoe et al. (2015) 
that included medical and emergency services, lost household and wage work, and legal and insurances costs 
in 2010 dollars, keyed to codes from AIS Version 1990/1998. Fatality counts and rates were estimated based 
on the change in the expected number of fatalities in the dataset before and after application of trends and 
countermeasures, using a fatality probability function (Hasija et al., 2006, Mallory et al., 2017). All estimates 
of outcome in the future projected datasets were plotted with corresponding estimates for the retrospective 
(2005-2015) period using survey analysis procedures for survey-sampled, weighted data in SAS 9.4 (SAS 
Institute, Cary, NC). The 95% confidence intervals reported for estimates of the retrospective period could not 
be calculated for the projections because of the complexity of the adjustments made in those datasets.  

Model Evaluation 
The model methods have been evaluated using a version of the model to predict 2014 crash outcomes 

using NASS CDS crash data from 2004 to 2012, reweighted with NASS GES and FARS cases from 2010 to 
2012. The 2014 projections were compared to real-world data averaged across 2013 to 2015 to evaluate the 
reliability of the modeling methods, i.e., how well the model predicted real-world outcomes for that period. 
Analysis of the evaluation version of the model was limited to very broad categories of crashes and injury 
severity since there were too few cases in the three-year real-world comparison dataset to evaluate projections 
of categories broken down by specific combinations of injuries, crash type, and occupant type. Although 
limited, this evaluation version of the model provided an opportunity to broadly assess the reliability of the 
modeling methods. 

RESULTS 
The high-leverage check identified only one case in the source dataset with unreasonably high 

leverage on the model results. Among seriously-injured (MAIS 3+) occupants in rear impacts, mean trend-
adjusted case weight was higher than 25 for the following categories: 0-15 year-old occupants, rear seat 
passengers, and car-based SUV (CUV) occupants. In comparison, mean trend-adjusted case weight for MAIS 
3+ occupants overall was only 9.5, with a mean absolute deviation (MAD) of 12.2. All three of these categories 
included the same case involving a rear impact with a child in the rear seat of a CUV, with a case weight of 
1445.31. This case weight had substantial leverage in these analyses because of the relatively small number of 
cases in these MAIS 3+ rear-impact cases that were further disaggregated by age, seat position, and vehicle 
type. As a result, this case was identified as an outlier, with the potential to distort results involving rear impact, 

 
 
1 Case year 2015, PSU 43, CASENO 126, VEHNO 2, OCCNO 3 



 

rear seat, and child cases. Instead of completely removing the potential outlier case from the source dataset, 
this case was downweighted to the mean weight for other cases in the bin of restrained, 0-15 year-old 
passengers with MAIS 3-5 injuries. After the weight adjustment, the mean case weights for all analysis 
categories were below the threshold of the mean plus MAD for their corresponding injury severity levels. The 
following results reflect this outlier adjustment. 

Model Evaluation (Projection of 2014 Crashes) 
Results of the model evaluation, which used the projection model procedures to project 2014 crashes 

for comparison to retrospective results averaged over 2013-2015, are shown in Figure 1 to Figure 3. Both the 
projected and retrospective evaluation results are limited to occupants in vehicles that are less than 10 years 
old, since the comparison data was based on 2013-2015 NASS CDS cases, which have no injury data for 
occupants of older vehicles. All results are also limited to cases in vehicles of model year 2005 and later. 
 

When aggregated across all crash and occupant types, the overall distribution of injury severity in the 
projected 2014 dataset was compared to the real-world 2013-2015 point estimates for the annual number of 
cases and rate of injury at each severity level in Figure 1. All projected values were well within the 95% 
confidence intervals (CI) shown for the comparison real-world data from 2013-2015.  
 

    
Figure 1. Annual injury frequency and rate by MAIS in evaluation model 

(95% CI shown for retrospective data only) 
 

Figure 2 shows the total number of occupants in the dataset by pre-crash scenario category, based on 
Volpe’s more detailed crash-type taxonomy (Swanson et al., 2016). For every pre-crash scenario category, the 
projected annual number of occupants was within the 95% confidence interval for the annual number estimated 
from the 2013-2015 real-world comparison data. The relative frequency of different crash types was similar in 
the projected data and the comparison 2013-2015 data: with the exception of occupants in crashes classified as 
“other,” the rank-order of the number of crashes in each category in the projection matched the rank-order for 
the retrospective dataset. Rear end, crossing path, and left turn across path/opposite direction crashes accounted 
for the most occupant crash exposures.  

 
Results were also analyzed by impact direction. Rollovers were identified as those with primary 

damage from overturn. Frontal oblique crashes were categorized using previously defined methods (NHTSA, 
2015) and frontal, side, and rear crashes, defined on similar principals. Limiting the analysis to serious injury 
cases (MAIS 3+), the projected number of injured occupants is within the confidence interval of the estimated 
number for each impact direction in the comparison 2013-2015 retrospective data (Figure 3). However, the 
relative frequency of injuries in different crash types was not the same in the projection and the comparison 
real world data: while the projection suggested serious injury cases would be more frequent in side impacts 
than in frontal oblique crashes, the opposite was true in the comparison real-world cases from 2013-2015.  
 



 

  
Figure 2. Annual frequency of occupants in crashes by pre-crash scenario 

(LTAP/OD = left turn across path/opposite direction) 
 

  
Figure 3. Annual frequency of serious (MAIS 3+) injury cases by impact direction 

 
Further breakdown of 2014 projections by additional injury measures for each category of pre-crash 

scenario and impact direction showed that injury cases of all severities were reasonably well-predicted by the 
evaluation model. With few exceptions, the number of injury cases in each crash category and at each injury 
severity level, as well as the rate of injury among those cases, were within the 95% confidence interval for the 
comparison retrospective data for 2013-2015. The only exceptions were an overestimate of low-severity 
rollover cases relative to the retrospective 2013-2015 cases and overestimates of the rate of MAIS 3+ or MAIS 
4+ injury among side impact crash occupants. While the overestimate of side impact injury rate estimates 
changed its relative rank-order with respect to frontal oblique crashes, the overestimate of low-severity rollover 
cases did not affect the relative frequency of rollovers compared to other impact directions. 

Base Model (Projection of 2020-2030 Crashes) 
The projection model results are drawn from analysis of the full projected dataset, which was based 

on source cases from NASS CDS that were reweighted and modified in the steps described in the methods 
section. The projection model estimates that the annual number of occupants in crashes from 2020 to 2030 will 
be 2 to 6% higher than the average number in the 2004 to 2015 range (Table 6). In spite of the projected 
increase in crash exposure, the number of serious or worse injuries (MAIS 3+) is expected to be 24 to 31% 
lower than in the retrospective period, a trend echoed in analyses by other outcome harm measures. Examples 
of model projections for 2020-2030, broken down by pre-crash scenario and by impact direction, are shown in 
Figure 4 to Figure 10. Note that reweighting procedures, such as those to address inaccuracies introduced by 
exclusion of cases with missing data or undercounting of low-severity crashes, were applied to both the 



 

 

retrospective and projection datasets to allow direct comparison. As a result, the retrospective values are higher 
than would be reported in a typical NASS-based retrospective analysis. 

 
Table 6. Passenger Vehicle Occupants and Injuries in Retrospective and Projection Datasets 

(with 95% CI where possible to calculate) 

 Retrospective 
2004-2015 2020 2025 2030 

Occupants in crashes 29,686,195  
± 6,570,393 31,551634 30,737,703 30,190,264 

MAIS 3+ injured occupants 100,780  
± 24,627 76,492 71,555 69,937 

Fatally injured occupants 25,108 
± 7,408 18,284 16,237 15,811 

Base Model Projections by Pre-Crash Scenario (2020-2030) 
Analysis by pre-crash scenario category can be used to identify how broad crash patterns have 

changed since the 2004 to 2015 period. For example, control loss and road departure crashes, as well as 
associated injuries, are projected to be less frequent in the future by any of the harm measures considered, 
including the number of occupants in crashes (Figure 4) or the number of occupants with serious or worse 
injuries (Figure 5). Much of the projected reduction in these crash types relative to the 2004-2015 retrospective 
period is expected by 2020. In spite of an anticipated reduction in the number of injury cases in opposite 
direction crashes, opposite direction crashes are projected to be the most frequent crash type among seriously 
injured occupants in 2020 to 2030 (Figure 5). Opposite direction crashes were projected to take over as the 
most frequent serious-injury crash type because of the projected drop in control loss and road departure cases. 

 
The number of occupants in rear end crashes, with or without serious injury, is projected to be higher 

in 2020 than in the retrospective period, followed by a decline in later years (Figure 4, Figure 5). There were 
no trends or countermeasures coded in the model to explicitly increase the number of rear end crash occupant 
cases, or to increase the harm associated with these crashes, so the projected increase in rear end impact harm 
is simply a result of the upweighting of occupants expected to be in these crashes based on trends associated 
with factors such as population growth, vehicle type, age, licensure rates, and the improving economy. Future 
decreases in rear end crashes and injuries between 2020 and 2030 are consistent with the predicted increasing 
prevalence of automatic emergency braking (AEB) systems. However, the substantial number of occupants 
still projected to be involved in rear impact crashes and the substantial harm still projected to be associated 
with rear end crashes is consistent with the expected target population, effectiveness, and penetration of AEB, 
which reflect that AEB is not expected to eliminate front-to-rear crashes in the foreseeable future. 

 
In contrast to several crash types expected to become less frequent between 2020 and 2030, 

intersection crashes, such as left turn across path/opposite direction and crossing path crashes, are projected to 
become more common (Figure 4). These increases reflect that no intersection countermeasures are included in 
the model because of uncertainty about the adoption of potential technologies such as vehicle-to-vehicle (V2V) 
or vehicle-to-infrastructure (V2I) communication or vehicle-resident crash-avoidance technologies. 
 



 

 
Figure 4. Annual number of occupants by pre-crash scenario 

(LTAP/OD = left turn across path/opposite direction) 
 

 
Figure 5. Annual number of seriously injured (MAIS 3+) occupants by pre-crash scenario 

Base Model Projections by Impact Direction (2020-2030) 
Samples of the analyses that can be performed on data that has been disaggregated by impact direction 

are shown in Figure 6 through Figure 10. Note that impact direction is defined relative to the occupant’s vehicle, 
e.g., an occupant in a “rear end” impact as classified by pre-crash scenario could be in a rear impact or a frontal 
impact when classified by impact direction. Note that the total harm to passenger vehicle occupants cannot be 
estimated from these results since some crashes cannot be identified as being in one of the five defined crash 
types. 
 

By impact direction, the most dramatic improvements projected in future crash safety are in rollovers, 
with a substantial drop from the retrospective period to the 2020 projection, and continued decreases in the 
number of occupants in rollovers (Figure 6), as well as in harm measures such as fatalities (Figure 7), injuries 
(Figure 8), or cost (Figure 9). Overall injury rate in the remaining rollovers is projected to drop steadily from 
the retrospective period through 2030, which indicates that rollover prevention is especially effective in the 
most severe crashes, and/or that occupant protection is expected to improve in the rollovers that will continue 
to occur (Figure 10). 
 

In contrast to rollovers, the number of occupants in crashes in all planar impact directions is projected 
to increase between the retrospective period and 2020 (Figure 6). After 2020, projected increases or decreases 



 

in planar crashes varied by impact direction as a result of the modeled adoption of countermeasures with 
varying effects for each crash type. For example, the projected reductions in frontal and rear crashes outpace 
improvements in other planar directions because of the expected widespread adoption of AEB technology. 
Projections of injury outcome for each impact direction also vary depending on harm measure, with fatalities 
(Figure 7) and serious injuries (Figure 8) generally showing more improvement in the future than harm 
measures that account for more minor injuries. For example, cost-based harm measures (Figure 9Error! 
Reference source not found.), are projected with future increases over 2005-2015 levels for some impact 
directions because of the influence of AIS 1 and 2 injuries that typically are not captured by other harm 
measures. 
 

 
Figure 6. Annual number of occupants in crashes by impact direction 

 

 
Figure 7. Annual number of fatalities by impact direction 

 



 

 
Figure 8. Annual number of MAIS 3+ injured occupants by impact direction 

 

   
Figure 9. Total annual cost by impact direction 

 

.  
Figure 10. Rate (proportion) of MAIS 3+ injury among occupants by impact direction 



 

 

DISCUSSION 
The projections in this summary are from the base version of the model coded with the predicted 

effects of transportation trends and safety countermeasures since 2005, as well as best estimates of anticipated 
future trends and countermeasures (Table 1 to Table 5). The objective of this workshop paper is to introduce 
the modeling methods developed and to use the sample of included results to demonstrate how the projections 
can help identify future research opportunities. More comprehensive details on the methods, and additional 
results from the base model and hypothetical projections, will be available in two separate reports that are 
currently in progress.  
 

Since there is no future dataset available to validate the results of the projection model, the modeling 
methodology used for the development of the 2020 to 2030 projections was evaluated by splitting the source 
data years used in the model to compare a projection made using 2004-2012 data to real-world data from 2013-
2015. This method is a compromise in that it reduces the data available to make the projection in order to 
reserve a small number of cases to use as real-world comparison data. Using only three years of data for the 
comparison dataset limits detailed analysis since the relatively small number of cases precludes disaggregation 
by multiple variables. Even broad analyses of these cases must be interpreted carefully because of the relatively 
small number of cases in this three-year dataset. The necessary limitation of the evaluation to cases involving 
occupants in vehicles that were from model year 2005 and later and were less than 10 years old at the time of 
the crash further limited the evaluation. However, although the evaluation version of the model cannot be used 
to definitively validate the model, it was the best option available to broadly assess the overall reliability of the 
modeling methods in the absence of data for true validation of the model projections. 
 

Overall, the evaluation suggested that the projections were reasonable, insofar as the relatively small 
dataset of comparison cases can be used to assess the reliability of the model. The only crash categories where 
the injury projections were outside of the 95% confidence intervals for the comparison real-world data were 
side impact injury rates for MAIS 3+ and 4+ injuries, and the frequency of overall rollovers and rollovers with 
MAIS 2+ injury. Ultimately, it was determined that there was insufficient evidence that side impact or rollover 
crash or injury projections were overestimated to tweak or correct the model to match the comparison data. For 
all crash categories, but in particular for those identified as outside or near the boundaries of the confidence 
intervals of the real-world comparison data, model parameters affecting these types of crashes should be 
reviewed and updated as new information becomes available regarding any potentially related trends or 
countermeasures.  
 

The absolute counts of injuries and crashes in the retrospective and projected datasets in this study 
should be compared to other sources with care. For example, since the model covers only occupants in CDS-
eligible vehicles, estimates cannot be compared to annual traffic safety statistics that include data on 
pedestrians, bicyclists, motorcyclists, buses, recreational vehicles, or heavy trucks. Additionally, since cases 
in the model were upweighted to address undercounting of low-severity crashes, results are not comparable to 
the total numbers or severity distributions in other NASS GES and NASS CDS studies.  
 

Overall, the number of occupants projected in future crashes is higher than in the retrospective 2004-
2015 period. However, in spite of the overall increase in the number of crash exposures, the harm associated 
with serious or fatal injuries is projected by most measures to be lower in the future than it was in the past. 
This improvement in future crash outcomes results from the modeled effects of retiring early-model vehicles 
from the fleet, as well as from recent and expected future crash safety advancements.  
 

Because the model outputs full crash datasets, representing the crashes projected in the future with 
most of the same variables included in NASS CDS cases, the results can be analyzed by crash, occupant, and 
injury characteristics. To illustrate how the results can be used, projections in this paper are disaggregated at 
the crash level by pre-crash scenario and impact direction.  
 

Projection by pre-crash scenario (Figure 4) suggests that the frequency of control-loss and road 
departure crashes has dropped more than any other type since the 2004-2015 retrospective period and will 
continue to drop in the future. This projected reduction results from penetration of electronic stability control 
(ESC) into the fleet, as well as other countermeasures such as tire pressure monitoring systems (TPMS). The 
highest-frequency scenarios in the retrospective period (rear end, crossing path, and left turn across 
path/opposite direction), are still expected to be the most frequent in 2030. The results can be used to flag the 



 

 

importance of increased implementation of technologies that could address these crash types. For example, 
hypothetical versions of the model have been run to explore the effects of accelerated implementation of 
automated driving systems (which are included in the base version of the model at very low, but realistic, levels 
of penetration up to 2030) and the implementation of V2V communication (which was not coded in the base 
version of the model because of uncertainty regarding its widespread adoption). Hypothetical versions of the 
model have also been used to investigate the potential benefit of non-vehicle-based solutions that could 
potentially be implemented more quickly, such as red light camera enforcement or conversion of signalized 
intersections to roundabouts.  
 

Analysis of projected crash outcomes from different pre-crash scenarios in terms of serious injury 
(MAIS 3+) frequency instead of occupant exposure identifies the most harmful future crash mode as opposite 
direction crashes (Figure 5). Furthermore, road departure and control loss crashes are still projected to result 
in a substantial number of serious injury cases in the future, in spite of the expected reductions in overall 
frequency. This injury analysis suggests a higher priority for road departure, control loss, and opposite direction 
crash prevention than would be concluded solely from the analysis of case counts, underlining the importance 
of considering multiple measures of harm in analysis of the projections. Analyzing by additional harm 
measures beyond those used in this summary, such as a range of AIS injury severities, fatality, attributable 
fatality, or equivalent lives saved (analogous to the equivalent lives lost harm measure used in benefits 
analyses), yields an even more detailed picture of the most urgent crash issues in the future. 

 
Analysis of the projections by impact direction suggests that rollover crashes will continue to be 

important in the future because they will be associated with higher rates of injury than any other crash type 
(Figure 10). However, planar crashes are projected in the future to contribute a growing proportion of the total 
injury harm from crashes. The relative harm associated with different crash types is sensitive to the 
countermeasures applied. For example, anticipated penetration of AEB in the base version of the model 
noticeably reduces the frequency of frontal and rear impact crashes between 2020 and 2030. However, by any 
injury measure considered, frontal, frontal oblique, and side impact crashes all contribute substantially to 
fatalities, injuries, and injury costs in the future. These increases underline the continued need for 
crashworthiness and occupant protection research for these crash types, even after applying the expected effects 
of crash avoidance and automated driving system technologies.  

 
Development of effective countermeasures for the broad crash types analyzed in this summary 

requires more detailed information about the crash parameters most frequently associated with harm. Although 
the sample projection results in this summary are disaggregated only by pre-crash scenario and impact 
direction, the full analysis of these results disaggregates them by a variety of variables associated with the crash 
(e.g., intersection type, roadway type, near/far side, vehicle type), the occupant (e.g. sex, age, seat position, 
restraint use), and by injury body region.  
 

A report summarizing results for additional versions of the model is in progress. These alternative 
versions of the model explore the effects of varying predictions regarding transportation trends (e.g., future 
restraint use and economic trends), the introduction and adoption of potential future safety countermeasures 
(e.g., V2V communication), or hypothetical conditions (e.g., 100% penetration of advanced technologies, or 
potential countermeasures that could reduce alcohol-related crashes). The model can also be used to model the 
effects of rare events such as the COVID-19 pandemic, which is influencing 2020 crash exposures and vehicle 
sales, which will also affect future penetration of vehicle improvements. 
 

Analysis of weighted, survey-sampled retrospective crash data results is necessarily imprecise. In this 
crash prediction model, the imprecision associated with the analysis of retrospective crash cases is exacerbated 
by the modeled adjustments to the case weights and outcomes. These adjustments were based on estimates of 
the effects of several forecasted trends, as well as estimates of the effectiveness and penetration of multiple 
safety countermeasures, innovations, and policy changes. The uncertainty in the results is compounded at each 
stage of adjustments. In addition to these sources of uncertainty inherent to predictive models of this type, the 
source data available for this predictive model led to additional limitations. For example, projection results for 
crash types that are excluded or under-sampled in NASS CDS, such as lower-severity cases or cases involving 
older vehicles, were based on fewer source cases and are therefore associated with especially high uncertainty. 
In particular, the occupant characteristics associated with crashes involving older vehicles may be 
underrepresented in the current projections. Additionally, the effectiveness and future penetration of modeled 
countermeasures were based on available estimates of these parameters. While the estimates for established 



 

 

countermeasures could be based on detailed retrospective analyses, the parameters for recently-introduced and 
future vehicle technologies were necessarily based on the broad estimates that are currently available. Also, 
less research was available on many behavioral and program countermeasures, limiting their inclusion in the 
model. Furthermore, the retrospective cases used as model input are limited to cases from crash year 2015 and 
earlier because of the termination of NASS CDS and GES data collection. Although future versions of the 
model may incorporate cases from NHTSA’s more recent CISS and CRSS datasets, this model’s NASS-based 
projections of 2020-2030 crashes may be especially useful until there are a sufficient number of CISS and 
CRSS cases available for retrospective analysis. In spite of the uncertainty associated with making multiple 
adjustments to survey-sampled retrospective crash data, the value of this projection model is its ability to 
combine the effects of all modeled safety measures, predictions, and forecasts. The model results should not 
be viewed as a prediction of future crashes expected to occur, but as a tool to visualize the combined effects of 
individual trends, countermeasures, and shifts in transportation safety. The layering of all available forecasts 
and estimates in the same model is expected to provide a more complete picture of crashes in the future than 
can be drawn from retrospective data or analysis of any single safety intervention or trend. 

CONCLUSIONS 
It is acknowledged that the imprecision inherent in sampled real-world crash data is compounded by 

applying forecasts of future trends and countermeasures, and that transportation safety can be affected by 
unforeseeable shifts in transportation trends and market forces. In spite of these limitations of predictive 
modeling, projections from this model offer more comprehensive estimates of crashes expected to remain in 
the future than can be gleaned from analyzing historic data, or by consideration of the effects of individual 
trends or safety interventions. 
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