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1. ABSTRACT 
Rollover of trucks is a major problem. In The 
Netherlands, it occurs about twice a week, and the 
number is increasing. A factor contributing to this 
might be the maximised speed of commercial 
vehicles, not stimulating the driver to reduce this 
speed in potentially critically conditions.  
Several causes can be identified, one of them is 
excessive yaw behaviour of truck or trailer posing 
major difficulties for the driver, and likely to occur at 
lateral accelerations far below the static tilting 
boundary.  
 
This paper first treats yaw-stability  for a single 
heavy vehicle in a fundamental way. The analysis 
will be based on the full non-linear vehicle behaviour 
where critical (stationary) points are discussed within 
a phase plane representation. Local behaviour of 
trajectories around these points will be analysed 
yielding the type of  (in-)stability, for all possible 
combinations of effective tyre behaviour 
(incorporating suspension characteristics).  
These effects will also be presented in terms of the 
handling-diagram representation, showing the lateral 
acceleration under stationary conditions in terms of 
steering angle and road curvature.  The shape of this 
diagram can be interpreted in terms of steering 
sensitivity of the vehicle.  
The results will be extended to tractor-trailer 
combinations, where the previous results applied to 
each of the articulations together lead to an 
understanding of stability of the full vehicle 
combination.  
The different types of excessive yaw modes (jack-
knifing, trailer swing) of the combination will be 
discussed as related to the steering characteristics of 
the separate parts, and with reference to various 
vehicle parameters. 
 
2. YAW STABILITY OF A SINGLE VEHICLE. 
We start with a discussion of the yaw stability of a 
single vehicle. Clearly, this item is thoroughly 
discussed in many textbooks, however in most cases 
based on linear tyre-characteristics. In this paper, 
focus will be on non-linear tyre characteristics, and 
the appropriate analysis approaches will be reviewed 
first. In the next section, these approaches will be 
extended to articulated vehicles. 

We start with the well-known single-track bicycle 
model for plane behaviour of a single vehicle in 
terms of lateral velocity v and yaw-rate r: 
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with vehicle forward velocity u, vehicle mass m, and 
Jz the polar moment of inertia (yaw moment of 
inertia). Effective axle lateral forces are denoted as 
Fyi for i=1,2 for front and rear axle, respectively. The 
parameters a and b are the distances between the 
vehicle cog and the front and rear axle, respectively. 
The effective lateral axle forces include the combined 
performance of tyre characteristics as well as 
suspension characteristics (such as for special axle 
configurations), where suspension compliances, 
lateral load transfer  etc. may be accounted for. 
Special axle configurations such as with dual tyres or 
including two- or three axle combinations may also 
be accounted for by this model, as observed by 
Winkler [6]. More specific, the axle configurations as 
mentioned effect the steering axle on top of the 
influence of the lateral acceleration. In other words, 
the necessary steering angle to negotiate a curve is 
not only depending on the lateral acceleration ay but 
also on the radius of curvature, independent of ay.  
Both in the linear case (linear tyres) as in the case of 
nonlinear load dependency of the tyre lateral 
characteristics, this can be accounting for (exact for 
linear tyres, a good approximation for the nonlinear 

Figure 1.: Nonlinear axle characteristics 



 

load dependency) by shifting the front axle more to 
the front, and the rear axle-configuration slightly 
further to the rear.  
The set of equations (1) is formulated in terms of two 
dependent variables, v and r. The lateral axle forces 
Fy1 and Fy2 depend on the slip angles α1 and α2: 
 

)( 111 αyy FF = ; )( 222 αyy FF =           (2) 

 
where we recall that these functions are highly non-
linear, see figure 1, with the slip-angles given by 
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with steering angle δ. That means that the state 
variables v and r can be replaced by the slip angles α1 
and α2, resulting in: 
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for normalised axle characteristics  
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with axle loads Fzi, front and rear (i=1, 2). The 
dynamic behaviour of solutions of (5) may be studied 
in the phase plane, with state vector (α1, α2). Clearly, 
solution lines (trajectories) will either move to the 
singular points corresponding to steady state 
solutions of  (4) or vanish to infinity. Some examples 
are shown in figures 2 – 4 below, corresponding to 
the following cases: 
 

q understeered vehicle  
q stable oversteered vehicle (below critical speed) 
q unstable oversteered vehicle (beyond critical 

speed: v < vcrit) 
 
Axle characteristics have been chosen such that three 
steady state solutions may exist.  The same figures 
also show (in blue) the isoclines corresponding to a 
fixed slope of the solution curves (horizontal, 
vertical, under 45o). Intersections of these isoclines 
coincide with the singular points.   
 

In case of an understeered vehicle, a stable focus 
arises in the middle with two unstable saddle points 

for the other two steady state conditions. This means 
that initial conditions should not be too far off from 
this stable point in order to guarantee the solution to 
approach this point as t → ∞. In other words, the 
attraction area of this point is bounded with boundary 
built up from the manifolds of both saddle points. 
Consequently, the non-stable singular points 
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Figure 2.: Phase plane representation  
                 understeered vehicle. 
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Figure 3.: Phase plane representation 
                 Oversteered vehicle, v < vcrit 
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Figure 4.: Phase plane representation 
                 Oversteered vehicle, v>vcrit 



 

determine the attraction area of the stable steady state 
solution.   
In case of an oversteered vehicle for sufficiently large 
speed, the intermediate steady state solution has 
turned into an unstable point (as expected) being a 
saddle point in between two stable focus points.  This 
unstable point is known to turn into a stable one with 
decreasing vehicle speed, as observed in figure 3. 
This time, a stable two-tangent node is obtained as 
singular point.  
Sofar, we have discussed singular (steady state) 
points and the type of stability with distinction in 
divergent instability (saddle points), oscillatory (in-) 
stability (focus point), convergent stability (two-
tangent node), etc.  
We shall treat both aspects more in detail. For further 
interpretation of stability and the occurrence of 
several steady state solutions in terms of forward 
speed u and steering angle δ, the so-called handling 
diagram offers many advantages.   
From the equations (1) under steady state conditions, 
one easily finds: 
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for pathradius R and acceleration of gravity g. 
Inverting  (6) with: 
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being now multivalued functions in the lateral 
acceleration ay (in g’s, i.e. K/(mg)), i.e. where both 
single-valued branches may be treated separately. 
It follows using (3) that  
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with l = a + b. Considering this relationship as ay 

versus steering angle δ, one recognises the handling 
characteristic expressing the change of steering angle 
in lateral acceleration. A positive slope of δ versus ay 
is usually related to understeer behaviour whereas a 
negative slope indicates understeer behaviour. The 
result of this exercise is shown in figure 5 for a 
certain combination of axle characteristics, indicating 
clearly the strong impact of axle (i.e. tyre) 
characteristics on vehicle steering performance.  This 
result (handling curve) will be merged with another 
diagram having the ordinate K/(mg) yielding the so-
called handling diagram. From (6), one observes that 
the side force K depends linearly on the path 
curvature (a+b)/R ≡ l/R, i.e. corresponding to a 
family of straight lines with slope proportionally to 
the square of the vehicle speed. According to (8), 
these curves and the diagram in figure 5 combine to 
produce the steer angle as the horizontal distance 
between the handling curve (figure 5) and these 
straight lines, see figure 6.  
 
For a better understanding, the application of the 
handling diagram as depicted in figure 6, is discussed 
step by step. Assume a path-radius R1 (i.e. path 

curvature l/R1) and a vehicle forward speed u1. That 
means that the point (l/R, K/(mg)) is lying on the 
straight line with slope (u1

2/(g.l)). Because of  (8), 
applying a steering angle δ means that this line is 
shifted to the left over a horizontal distance δ.  
As a result, steady state solution I is found, lying in 
the understeer region. For very small speed u, the 
corresponding straight line is almost coinciding with 
the horizontal axis, and consequently, the necessary 
steering angle to reach the origin equals l/R, the 
Ackermann angle. For speed u1 and steering angle δ, 
three steady state solutions arise, denoted as I, II and 
III as long as δ is not too large. For a certain value of 
δ, δ = δS the point S is reached (see figure 6) and 
beyond this value, the number of three steady state 
solutions drops down to 1 (which must be unstable).  

Figure 5.: Handling diagram, first step 

 

Figure 6.: Handling diagram 



 

Now assume the steering angle δ to be chosen below 
δS but close to it, and consider the resulting steady 
state solution I. Slightly increasing the lateral 
acceleration ay implies increase of the steering angle 
in order to reach a new steady state solution. That 
means that I is stable as long as it is situated below S. 
In the same way one may conclude that, for the 
steady state solution II lying above S, increase of ay 
would involve reduction of steering angle δ yielding 
a self-reinforcing affect (further increase of ay), 
leading to yaw-instability. 
This kind of instability can only occur if the vehicle 
behaves oversteered, i.e. when the slope of the 
handling curve is positive. Decreasing of the speed u 
leads to increase of the lateral acceleration where the 
steering angle is maximal. This maximum steering 
angle increases as well with decreasing u. 
Consequently, stability is improved.  
 
Instability occurs in points II and III where the slopes 
are negative but where one of the axle characteristics 
(rear axle) shows a downward slope at the α 
concerned.  
Analysis of the coefficients of the characteristic 
equation for the disturbed motion around an 
equilibrium point reveals the question of stability.  
Also, the nature of stability (monotonous, oscillatory) 
follows from these coefficients. This is reflected in 
the type of singular points (node, saddle, focus) as 
discussed earlier. This analysis has been carried out 
yielding the diagram in figure 7.  

 
This diagram shows areas with similar type of 
singular points, depending on the value of cornering 
stiffness for the normalised axle characteristics. The 
boundaries of these areas depend on vehicle velocity 
u. Clearly, the part of the diagram for large negative 
values of these normalised cornering stiffnesses are 

only relevant for theoretical reasons, i.e. to illustrate 
the typical pattern of these areas. However, observe 
that the cases in the lower half of the diagram may 
occur for excessive vehicle behaviour for small u. 
The stable and unstable regions excluding the saddle 
points are distinguished by a slightly lighter colour 
for the stable regions. Figure 7 reveals that stable 
steady state solutions are either two-tangent nodes or 
a stable focus. 
A stable oversteered vehicle with positive axle 
cornering stiffnesses will correspond to a two-tangent 
node, i.e. with disturbances (such as in case of a J-
turn) approaching it in a monotonous way without 
oscillations. As long as u2 is bounded by g.l.[fy2,α(α2) 
– fy1,α( α1)] in the understeer region, the steady state 
solution corresponds to a stable focus. Beyond this 
speed, this focus turns into a stable two-tangent node. 
In the situation of excessive understeer (fy1,α( α1) < 
0), a same distinction can be made. 
These regions are more or less flipped to the unstable 
area leading to unstable two-tangent nodes and 
unstable focus. In all the other cases, the singular 
point is a saddle point. 
 
3. YAW STABILITY OF ARTICULATED 
VEHICLES. 
Now let us discuss an articulated vehicle, as 
schematically shown in figure 8, below. 
Roll-motion will be neglected, steer and slip angles 
will be assumed small, driving forces and braking 
forces are small compared to lateral forces or are 
neglected. Consequently, a similar approach will be 
followed as for the single vehicle but this time with 

the articulation angle ∆ as an additional state. All 
wheels for one axle are taken as one system with 
overall characteristics and response. That means that 
tyre characteristics are again replaced by axle 
characteristics. Forward speed u is taken constant and 
pneumatic trails (i.e. aligning torques) are neglected. 
Masses are denoted as m1 for the first articulation 
(tractor, car) and m2 for the second articulation 
(trailer, caravan,..). The polar moments of inertia are 
denoted as J1 and J2, respectively. 

Figure 7.: Stability areas and types of singular 
                  points 
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Figure 8.: Articulated vehicle model 



 

The equations of motion can be derived from the 
statements that equilibrium must hold in lateral and 
yaw direction. The lateral tyre forces must balance 
the lateral vehicle accelerations at both vehicle-parts. 
Moreover, the yaw moment acting on each of the 
articulations must be balanced by the moment due to 
the tyre forces plus the moment resulting from the 
internal reaction force at the articulation point. This 
leads to the equations (see figure 8 for notation): 
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in terms of lateral speed v and yaw rate r, both of the 
first vehicle (tractor), and the articulation angle ∆. 
The slip angles ate the three axles are derived similar 
to (8), leading to: 
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We’ll discuss first the steady state situation, where 
the above equations reduce to: 
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Observe that  
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Finding expressions for the lateral axle forces, one 
finds similar to (6) for the normalised axle 
characteristics that 
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which can again be inverted leading to multi-valued 
functions of αi in terms of K/(mg). That means that a 
handling diagram can be established giving steady 
state solutions in terms of α1 - α2 and lateral 
acceleration ay for given steering angle δ just as this 
was established earlier. At the right-hand side of the 
diagram, one draws ay versus l1/R with path radius of 
curvature R according to:  
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In the same figure, a handling diagram can be 
established giving steady state solutions in terms of 
α2 - α3 and lateral acceleration ay for given 
articulation angle ∆. At the right-hand side of the 
diagram, one now draws ay versus (l2 + e)/R (as 
suggested by (12)): 
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For a typical case of a tractor-trailer with normalised 
tyre characteristics as shown in figure 9, this analysis 
has been carried out, with the result depicted in figure 

 

   Figure 9.: Normalized axle characteristics 

 

       Figure 10.:Handling diagram articulated vehicle 



 

10. The handling curve related to first and second 
axle is shown in red. The handling curve related to 
the second and the third axle is shown in green.  
The tyre characteristics were chosen to obtain an 
illustrative handling diagram. The parameters as 
chosen for vehicle and vehicle input are listed in table 
1, below. 
 

a (m) b (m) c (m) d (m) e (m) 
1.5 2.5 6.0 3.0 -0.5 
m1(kg) m2(kg) δ (rad) u (m/s)  
5000 20000 0.06 20  

Table 1.: Parameters, tractor-semitrailer    
 
Two straight lines are shown, blue and purple relating 
to (14) and (15), respectively. Shifting the first over a 
steering angle δ and intersecting with the handling 
curve for the axles 1 and 2, leads to three steady state 
solutions, one of which is stable in yaw (I). As 
discussed above, this solution determines the lateral 
acceleration at hand, and from this the articulation 
angle being the horizontal distance between the 
straight line according to (15) and the α2 -α3 curve. 
 
Having determined the steady state solutions in this 
graphical way, one may consider their stability. The 
handling diagram can be used to interpret yaw 
stability and divergent yaw-instability. Oscillating 
phenomena require a full treatment of the linearised 
equations of equilibrium. In figure 10, one may 
conclude just like for the single vehicle in the 
preceding section, that increasing the lateral 
acceleration starting from situation I implies that the 
steering angle δ must increase as well. At the same 
time, the articulation angle ∆ will increase as well. 
That means that for both the tractor and the trailer, 
there is a compensating effect for the increased 
lateral acceleration and this effect was related to 
stability in the preceding section. 

We shall continue with cases where at either the 
tractor or the trailer, these conclusions cannot be 
drawn.  
Replace normalized tyre characteristics such that the 
highest cornering stiffness is obtained at the second 
axle and the lowest cornering stiffness is obtained at 
the rear axle. These characteristics are shown in 
figure 11. That means that for limited lateral 
acceleration, the tractor as a single vehicle, is 
understeered whereas the trailer with the second axle 
regarded as its leading and steering axle can be 
regarded as oversteered. Two handling diagrams 
(enlarged) have been determined for input steering 
angle 0.05 rad. and different speeds: 
 
 u1 = 18 m/s 
 u2 = 40 m/s. 
 
The handling diagrams are shown in figures 12 and 
13. 

Again, take the steady state solution as starting point 
and consider steady state solutions for slightly larger 
lateral accelerations. That means that the steady state 
point will move up in the figures. In both figure 12 
and 13 the steering angle δ will have to increase. 
However, considering the articulation angle ∆, this 
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trailer oversteered 
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     Figure 13.: Handling diagram, u=40 m/s 

 



 

angle appears to change sign for vehicle speed 
changing from 18 m/s to 40 m/s. Starting from both 
steady state solutions, the angle ∆ will increase with 
increasing ay in figure 12 whereas it will decrease 
with increasing ay in figure 13. Consequently, in the 
last case, the trailer points inward and tries to follow 
a smaller path radius. Observe that steering angle and 
articulation angle have opposite signs. Apparantly, 
the trailer ‘runs the show’ in determining the vehicle 
performance, where the understeered nature of the 
tractor keeps the vehicle stable. As soon as the 
critical lateral acceleration is reached (where the 
tractor becomes oversteered), divergent instability 
will occur, controlled by the trailer. Compare this 
situation with figure 12 for low speed where steering 
angle and articulation angle both have the same sign, 
i.e. the tractor dominates the behaviour and the trailer 
follows the tractor response. 
 
To get an understanding of all possible types of 
instability, we shall draw similar plots as figure 7, i.e. 
Fy2,α versus Fy1,α for various values of Fy3,α. We shall 
do that for two typical vehicle configurations: 
 
i. Tractor – semitrailer 
ii. Truck with centre-axle trailer 
 
The data used for both configurations is shown in 
table 2 and 3 below, with Ai denoting the values for 
axle cornering stiffness, setting the boundaries of the 
stability plot:  
 

iyii AFA <<− α,4/  

 
That means that we shall also consider negative slope 
of the axle characteristics under steady state 
conditions, ofcourse corresponding to the case of full 
sliding at that axle. 
 

m1(kg) m2(kg) a(m) l1(m) c(m) 
5000 20000 1.5 4 6 
l2 (m) e(m) A1(N) A2(N) A3(N) 
9 -0.5 3.8E5 7.5E5 1.3E6 

Table 2.: Parameters, tractor-semitrailer    
 

m1(kg) m2(kg) a(m) l1(m) c(m) 
8000 20000 4 8 4 
l2 (m) e(m) A1(N) A2(N) A3(N) 
4 0.5 4E5 3E5 2E6 

Table 3.: Parameters, truck & centre-axle trailer    
 
We’ll discuss first the impact of moving the cog of 
the trailer backward up to c = 8 m. Assuming linear 
tyre behaviour with the cornering stiffness equal to 
Ai, root-locus plots for varying speed u have been 

established for c = 6 m (reference case) and c = 8 m 
(cogtrailer moved backward), see figure 14. For small 
value of c, two types of  eigenvalues turn out to exist, 
real ones and complex ones, corresponding to the 

motion of the tractors and the semitrailer, 
respectively. Moving the cog of the trailer backward 
will make the vehicle combination unstable in the 
trailer-mode, indicating trailer oscillations beyond a 
certain speed. The corresponding cornering stiffness 
plot for u = 30 m/s is shown in figure 15, i.e. where 
the type of stability is indicated as a function of the 
actual slope of the lateral axle force, assuming full 
non-linear axle characteristics. This slope at the 

semitrailer axle is taken according to table 2 (A3).  
Note that the scales along both axes are not the same 
(cf. values of Ai in table 2) 
 
This plot clearly corresponds to figure 7, with a 
stable area in the first quadrant, moving to divergent 
instability for decreasing slope of the lateral force at 
axle 2 (saddle point for a single vehicle), and moving 
to oscillatory instability for small negative slope at 

 

Figure 15.: Stability areas, reference case 

 

     Figure 14.: Root-locus plot tractor-semitrailer 



 

axle 1. The same plot for the cog of the trailer moved 
backward is shown in figure 16. 

This plot shows a strong increase of the oscillatory 
instability area, corresponding to behaviour of the 
trailer and confirming the occurrence of trailer 
oscillations around specific unstable steady state 
solutions. We have further decreased the slope of the 
trailer axle lateral force with 50 %. This resulted in a 

new boundary between the convergent stability area 
and the oscillatory instability area, indicated by a 
dash-dotted line. Consequently, the instability area 
will increase which is obvious from the reduced 
stiffness against yaw-oscillations of the trailer. 
 
Next, we treat the truck with centre axle trailer, 
according to the data in table 3. The axle 
characteristics have been chosen such that unstable 
oversteer will occur beyond a certain speed. We’ll 
discuss the impact of reducing the cornering stiffness 
of the trailer axle. with 50 %. Again, first assuming 

linear tyre behaviour with the cornering stiffness 
equal to Ai as listed in table 3, root-locus plots for 
varying speed u have been established for A3 = 2E6 
N (reference case) and A3 = 1E6, see figure 17. One 
observes divergent instability beyond a critical speed 
in the reference situations. Reducing the trailer axle 
cornering stiffness results in oscillatory instability  at 
much lower velocity compared to the initiation of 
divergent instability (oversteer).  The corresponding 
stability areas for u = 25 m/s in terms of the cornering 

stiffnesses of the truck-axles are shown in figure 18 
and 19, respectively. 
 
One observes in figure 18 three different stability 
areas, with the stable combinations surrounded by 
divergent instability and oscillatory instability.  
Reducing the cornering stiffness at the trailer axle 
results in a significant reduction of the stability area, 
i.e. leaving only a stable solution for very specific 
combinations of slopes of the truck axle 
characteristics.  
 

        Figure 17.: Root-locus plot truck with  
                          centre-axle trailer 

 

Figure 16.: Stability areas, cogtrailer moved 
                   backward 

 

Figure 18.: Stability areas, centre-axle trailer,  
                   reference case 

 

Figure 19.: Stability areas, centre-axle trailer,  
                 reduced cornering stiffnes trailer axle. 



 

CONCLUSIONS. 
In this paper, several tools have been used to analyse 
stability of nonarticulated and articulated commercial  
vehicles. All of these approaches confirm the strong 
impact of axle characteristics on vehicle 
performance, in combination with other vehicle 
parameters. Only simple models have been treated, 
based on the single track vehicle model. It is shown 
that the handling diagram concept, formerly extended 
from passenger cars to single trucks by Winkler, can 
be used to analyse articulated vehicles as far as 
nonoscillatory behaviour is concerned. With full 
nonlinear tyres, the type of (in-)stability can be nicely 
illustrated in a plot in terms of the slopes of the 
normalised lateral axle forces. This type of 
visualisation can be generalised to articulated 
vehicles as well, allowing a birds eye view of the 
combined impact of modified vehicle design and 
loading parameters and axle characteristics. This has 
been illustrated for some types of vehicle 
combinations. 
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