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ABSTRACT

The concept of information flow applied to crash sens-
ing in airbag systems introduced in [3] is further devel-
oped. An asymptotic formula for the amount of infor-
mation available to an airbag module is obtained. This
formula is applied to study the information flow in a lin-
ear spring-mass model and it gives a simple and insight-
ful relationship between the fire time of an airbag and the
accuracy of the estimation of the initial impact velocity.
This relationship is in the form of an “uncertainty princi-
ple” describing the balance between the amount of time
needed for the airbag sensor to estimate the severity of
an impact and the uncertainty of the estimation itself. An
application of the result, based on actual crash data, is
presented to illustrate the analytical result.

INTRODUCTION

Airbag systems are tools designed to improve occupant
protection when a vehicle is involved in a crash. To
achieve this goal, an airbag system must have the abil-
ity to detect the severity of an impact in a timely manner.
Therefore, based on the estimated severity of the impact,
the airbag system decides on whether to deploy the airbag
or not before the event is over. As an extreme scenario,
at the end of a crash all the information from the sen-
sors has been collected and it is possible to determine if
the impact was severe enough to require the deployment
of the airbag; however, such a strategy of deployment is
far from optimal since the airbag is deployed when the
impact is over. In the opposite extreme, an airbag could
be deployed right at the beginning of the impact. In this
case the airbag will be effective in protecting the occu-
pant, if the crash was severe, but since no information
on the severity of the impact is available, the airbag will
deploy in all crashes even when it is not needed.

The discussion above suggests that the airbag should not
be deployed too early, in order to collect enough infor-

mation from the sensors to establish, with some level of
accuracy, if it is needed or not; and at the same time the
deployment should not occur too late in the crash event
in order to make the airbag system to perform effectively.
One of the factors involved in the tuning of an airbag sys-
tem is the determination of an optimal time of deploy-
ment that balances the two requirements outlined above.

Using concepts from information and estimation theory,
this paper establishes and analyzes a fundamental rela-
tionship between the uncertainty of estimating the sever-
ity of an impact and the amount of time required to collect
enough information (from sensors), used to make a firing
decision. For a simple impact model, using a probabilis-
tic description of the signals received from the airbag sen-
sors, a relationship is determined that relates the time to
fire of an airbag system and the uncertainty in estimating
the severity of the crash. In other words, a relationship is
found between the uncertainty in determining the vehicle
speed and the time needed to collect the data necessary
to perform the estimation itself. Finally, a Bayesian anal-
ysis of crash tests at 25, 35, and 40 mph into an offset
deformable barrier is conducted to illustrate an applica-
tion of the relationship developed above.

THE ASYMPTOTIC FORMULA

In order to gain an insight into the decision making pro-
cess of an airbag system, the concept of information flow
has been introduced in [3]. The electrical signals coming
from transducers placed in a vehicle are regarded as pro-
ducing a flow of information that is to be processed by an
algorithm implemented in the control module, ultimately
responsible for the airbag deployment. The idea of infor-
mation flow has been related to the concept of Fisher in-
formation from classical statistical estimation theory [5].
In particular, this theory provides optimal criteria for un-
biased estimators of parameters of probability distribu-
tions (parametric estimation).

For a vehicle involved in an impact, the barrier equiva-
lent velocity (BEV) is commonly used as a measure of
its severity. The BEV is the initial velocity of a vehicle
impacting a rigid barrier that results in the same amount
of energy absorbed by the vehicle as in the actual impact.
The impact model that will be introduced later refers to
a rigid barrier event; therefore, in this paper, the initial
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impact velocity will be regarded as the relevant measure
of severity.

An airbag algorithm is expected to make a fire decision
based on the impact estimated severity, therefore its main
activity can be regarded as an attempt to estimate the im-
pact speed of a vehicle. For notation, ��� is the actual
impact speed of a vehicle (the one to be estimated) and���� denotes the estimate given by the algorithm on which
the firing decision is based. Besides estimating the crash
speed, it is also important to know what is the best pos-
sible accuracy that can be achieved in determining � � as
measured by the variance of

�� � .
The signal is modeled as a discrete time series since the
transducer time histories are read by an analog-to-digital
device with a pre-determined sampling interval

���
. The

signal received from the sensors is then represented by
the vector �
	���
�����������������	�� , where ������� ��� . The
signal � 	 and the speed � � of the impact are linked by a
probabilistic model. This model summarize our knowl-
edge about the crash process and how the signal from the
transducers depends on the impact speed �!� . The model
is given by "$# �
	&% � ��' � (1)

the probability density of the time history � given a cer-
tain impact speed �(� . A key result of the Fisher infor-
mation theory is given by the Cramer-Rao information
inequality which asserts that, under some regularity as-
sumptions for the distribution density

"
, the variance of

the unbiased estimator
���� of ��� is bounded from below.

This inequality is given in the form) #*"$# �
	+% � �,'�' �.-./ # �� ��'10�2 � (2)

where
)

is called the (Fisher) information which is a
function of the probability density

"
. A key feature of

the quantity
)

is that it is monotonically increasing with� or, in other words, the longer the signal time history,
the larger the amount of (Fisher) information. From this
point of view the Cramer-Rao inequality can be regarded
as a statistical uncertainty principle, that is, shorter signal
time history or faster-sought decision time of the airbag
algorithm implies a larger variance of

�� � or uncertainty in
the determination of the impact speed. This uncertainty
principle is the tool that describes the balance between
the two extreme scenarios discussed in the introduction:
either always fire the airbag early or fire it at the end of
the impact.

In [3], the Fisher information theory described above has
been applied to the case that the distribution density of �

is Gaussian"3# � 	 % ��� ' � 2#54 6
	87:9 ' %,;<	�% ��7:9>=?!@�AB�CED�F @HG F8CJI:K�LMLON�P.AF CED�F @HG FQCJI:K�LOLSR � (3)

where ;1	 is the covariance matrix and TU	 �# - �,������� � - 	 ' is the mean time history which depends
on the initial velocity � � . In the case that ;1	 �
diag

# V �(��������� V 	 ' (diagonal matrix), it has been shown
that the information

)
is given by) � 	W X Y � Z 2V X\[ -

X[ � �H] 9 � (4)

The formula above shows that the information
)

is mono-
tonically increasing with � , the length of the signal time
history, and is “inversely proportional” to ; 	 . It follows
that for a given time � , the value of

)
computed from

equation (4), depends on the choice of
���

. While this
may look reasonable, for a fixed � the problem arises as�^��_a`

. In general, assuming that the elements in the
diagonal of ;1	 are constant for every � , as

���b_c`
,
)

goes to infinity for every value of � ; this suggests that an
exact determination of �(� , at any time � , is theoretically
possible, provided that a continuous reading of the sig-
nal is available. This is clearly impossible and shows that
the discrete reading assumption is not suited for model-
ing a continuous reading. In particular, the definition of
the matrix ; 	 is not adequate when taking the limit for�^�>_d`

since this assumption is equivalent to impose
that the readings

# ���(�����������H	 ' are statistically indepen-
dent with constant variance, no matter how close they are
in time. However, in order to obtain a measure of all the
information available in the signal, it is necessary to let�^�+_e`

. In order for such a procedure to lead to use-
ful results the independence condition has to be dropped,
otherwise

)
goes to infinity as

���8_f`
. The scope of this

paper is to extend the results obtained in [3] by introduc-
ing a probabilistic model for the signals such that taking
the limit of

)
for

���g_h`
is meaningful and leads to an

expression of
)

as a function of the time duration of the
signal. The quantity

)
represents the maximum informa-

tion contained in the signal.

The use of a probabilistic model for the signals that in-
troduces a time correlation between successive readings
is discussed. In this case the ; 	 becomes a full matrix
whose off-diagonal elements describe the amount of cor-
relation.

In the model proposed in this paper, signal readings that
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are
���

units of time apart are assumed to have a correla-
tion of � # ��� ' � ? @������ # �	� ` ' � (5)

Note that the amount of correlation tends to 2 as
�^�

tends to zero. This can be viewed as a continuity prop-
erty and from the standpoint of information content ex-
presses the idea that the increment of information gained
from a further reading

�^�
time apart from the current one

goes to zero as
���

goes to
`
. This suggests that the time

correlation introduced in the model is a mechanism that
may strike a balance between the fact that more readings
(available with a finer sampling of the signal) contribute
to more information, and the fact that this added informa-
tion goes to zero as the sampling gets finer.

Development of a formula

In the probabilistic model considered here, the signal

is a Gaussian process (time continuous) (cfr. [1]).

This process is defined such that for any

# � � �������
� � 	 '
the random vector � 	 � # � # � � ' �������
��� # � 	 '�' has dis-
tribution given by (3) where T 	 � # - # � � ' ��������� - # � 	 ' '
and the covariance matrix ; 	 �d
(; X � � is such that; X � � V # � X ' V # � � ' � # % � X � � � % ' . The functions - and V
are the mean and standard deviation of the process (time
wise), respectively, and

�
is given by (5). It is impor-

tant to note that for
� _�


this model approximates the
one in which each reading is independent from the others.
The parameter

�
can be intuitively considered as a coeffi-

cient that determines the frequency content of a particular
signal in such a way that the smaller

�
the “smoother” the

signal.

Following the above model, the information content in �
readings of the signal �$	 is given by (cfr. [3])) � 	WX � � Y � ; @ �

X � [ - # � X '[ � � [ - # � � '[ � � (6)

where ; @ �X � are the elements of ; @ �	 , the inverse of ; 	 .
The matrix ;<	 is given by

;<	����
����
�

2 � ����� � 	� 2 ������� 	 @ �
...� 	 � 	 @ � ����� 2

�����
� � (7)

with � � ? @������ and
� � � ! ��� (uniform

time spacing), while � is the diagonal matrix

� � diag

# V # � � ' �������
� V # � 	 '�' . Computing
)

using
(6) requires computing ; @ �	 and in the general case it
is intractable. Instead, when ;�	 has the form given
in (7), ; @ �	 can be computed as the tridiagonal matrix� @ �#" � @ � , where

" � 22 � �39
�������
�

2 � �� � 2%$&� 9 � �� � . . .
. . .

. . . 2%$&� 9 � �� � 2
��������
� �
(8)

This result can be used into (6) so that, after some lengthy
algebraic manipulations, the expression for

)
can be put

in a form that allows taking the limit for
���^_ `

. The
following result is obtained) � 24 �('&)�+* 9 #-, '/. , $ 24 � '0)� # */1 #-, '�' 9 . ,$ 24 Z * 9 # ` '2$ * 9 # � ' ] (9)

where

* # � ' � 2V # � ' [ - # �43 ��� '[ ��� � (10)

The linear case

In this section, the asymptotic formula (9) developed
above, is applied to the case in which the average signal
is an acceleration which is linear in the initial velocity � �- # �43 ��� ' � ���65 # � '6$&7 # � ' (11)

for any functions 5 and 7 . In particular, a linear spring-
mass model is considered, for which a simple formula for
the information

)
can be obtained. For such system the

acceleration is given by- # �43 � � ' �98 � �6: ;=< 8 � (12)

and follows that

* # � ' � 2V # � ' [ - # �43 � � '[ ��� � 8%>�?A@ # 8 � 'V�B�C XEDGF �
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assuming V # � ' � V�B C XEDGF is a constant. Applying the
asymptotic formula (9) for the information we get

) # � ' � � 84 V 9B C X=DGF '&)� : ; < 9 # 8 � '/. # 8 � ' $8 �4 � V 9B C XEDGF ' )� ��� : 9 # 8 � '/. # 8 � '2$ 8 94 V 9B C XEDGF : ; < 9 # 8 � '
� 8 �� V 9B C X=DGF�� Z 8 9� 9 $ 2 ] 4 8Q� $ Z 8 9� 9 � 2 ] : ; < 4 8Q�

$ 4 8 � Z 2 � ��� : 4 8Q� ]
	 � (13)

The term in square brackets is an increasing function of
the time � in which information is collected. Another
parameter appearing in this term is the dimensionless ra-
tio 8<� � ; 8 is the natural frequency of the oscillator while�

is directly related to the highest frequency in the noise
spectrum. Figure (1) shows a plot of the information as a
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Figure 1: Plot of I(T) (solid line) and and linear
approximation (dotted line) from (13) for

� ����
�
 ,8 �����H� � , and V���������� � ��
 .
function of the time � . The solid line is the function

) # � '
while the dotted line is a linear approximation given by
keeping only the linear term (in � ) in (13). The informa-
tion content

)
is an increasing function of � . It is relevant

to observe that the rate of increase for the information
(information flow) is low at the beginning and at the end
of the oscillation cycle while it is high around the peak
of the sinusoid - . This implies that more information is
available when the acceleration - reaches its peak. The

linear approximation of
)

in figure (1) is given by

) # � '"! 8 9 �# V 9B C X=D F Z 8 9� 9 $ 2 ] � � (14)

Later, this approximation will be used to explain the un-
certainty principle type of result that derives from the
Cramer-Rao inequality (2). By substituting

)
, as approx-

imated in (14), the following is obtained

� �.-./ # �� �('<0 # � V 9B C XEDGF8 9 # 8 9%$ � 9,' � (15)

for any unbiased estimator
���� of ��� . The quantity on the

right is a constant that depends on the physical model
( 8 ) and on the noise characteristics ( V B C XEDGF and

�
). In

particular, it increases with V B C X=DGF , the standard deviation
of the noise.

STATISTICAL ANALYSIS OF OFFSET TESTS

From a simplified point of view in which an airbag al-
gorithm estimates the impact velocity from the signals,
the algorithm is calibrated by fixing a “threshold” ve-
locity ��$ with which the estimated velocity

��!� is com-
pared. It is conceivable that many automotive companies
in their effort to address the issue of inadvertent airbag
deployment have increased the firing “threshold” �%$ in
the airbag algorithm. The effect of raising �%$ has been
discussed in [3]. For a given impact velocity �!� that war-
rants the use of an airbag ( � � � � $ ), raising the threshold
velocity � $ requires a more accurate estimate of � � , in
order to maintain the same system performance. There-
fore, a smaller variance for the estimate of � � , �.-./ # �� ��' ,
is required. From formula (15) it is concluded that � , the
airbag fire time, must increase. Summing up, if auto com-
panies after 1998 have raised the “threshold velocity” in
airbag systems, an increase in airbag fire time should be
observed in the field data. To evaluate this hypothesis the
relationship between the airbag fire time for offset tests
and the calendar year in which the data has been col-
lected has been studied. The study has been performed
only for offset tests since it is known (see [3]) that the
information flow for offset tests is lower than for rigid
barrier tests. This implies that an increase in the thresh-
old velocity will lead to a larger increase in the airbag
fire time for the offset tests than for the rigid barrier tests.
Thus if there is a trend between airbag fire time and pe-
riod of data collection, this trend should be more evident
for offset tests than for rigid barrier tests.
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Data

The data set consists of crash tests collected during the
calendar year 1997 through 2001. The analysis was re-
stricted to crash tests in 25, 35 and 40 mph events into an
offset deformable barrier. The data were collected from
various sources. High speed offset tests data came from
the Insurance Institute for Highway Safety (IIHS). The
lower speed offset test data were obtained from Transport
Canada. Some data were gathered from various experi-
ments conducted by several different companies. More-
over, for each of the three crash test velocities consid-
ered, three periods of data collections were used: up to
April 1998, from April 1998 to November 2000, and
from November 2000 to October 2001. The specific time
frame subdivision used has been decided by the authors
as a convenient method to organize the data.

Data Analysis

Before describing the statistical method that has been
used, some notations and symbol definitions will be in-
troduced. The following notation will be used: �

X � is the
random variable denoting the fire time at the ? ��� period
of data collection, ?8� 2 � 4 � � , and at speed � , � � ` � 2 � 4 .
In particular � � `

is for the 25 mph offset tests, � � 2
is for the 35 mph offset tests while � � 4

is for 40 mph
offset tests.
From a preliminary analysis the airbag fire times ap-
peared to follow a Log-normal distribution as it was al-
ready noticed in [4]. Thus, it was assumed that �-@ # � X � '
are independently and normally distributed with mean �

X �
and unequal variance V 9X � with ?8� 2 � 4 � � and ��� ` � 2 � 4 .
An unequal variance assumption has been considered
since the sample data sizes from each of the nine speed-
time collections (3 periods for each of the three speeds
considered) differ.

The data was analyzed using a Bayesian approach ([5]).
The Bayes analysis allows introduction of prior informa-
tion (prior distribution) into the model. This is informa-
tion about the unknown means ( �

X � ) of the logarithmic
of the fire time. Once a prior distribution is given, the
whole inference process can be summed up according to
this approach: an observed result changes our degrees of
belief in different parameter values by changing a prior
mean and variance into a posterior mean and variance.
In this study, the (prior) means of the logarithm of the

airbag fire-time �

X � were assumed to arise from a regres-
sion model:

�

X � � � � � $ � �	� ? $�
 X � � (16)

�

X � � � #
� � $ � 9 '2$ � ��� ? $�
 X � � (17)

�

X � 9 � #
� � $ � � '2$ � � � ? $�
 X � 9 (18)

Where 
� � #
� � ��� � ��� 9 ��� � ' � being an unknown vector of

regression coefficients and the 

X � being independent ran-

dom variables normally distributed with zero mean and
variance V 9� . The expression introduced above can con-
cisely be rewritten as:


�^��� � 
� $ 

 (19)

where Y is a ( � x # ) matrix.
The model introduced amounts to assuming that the prior
distribution of 
� is a normal with mean � � 
� and varianceV 9� . In particular, we are assuming that on average the
(prior) mean of the logarithm of the air bag fire time is
changing at the same rate for all the three offset crash test
speeds considered ( � � ).
Generally, in the Bayesian analysis, the parameters of the
prior distribution are known; In our study the prior pa-
rameters, 
� , are unknown thus we will perform an Empir-
ical Bayes analysis. The Empirical Bayes analysis entails
estimating the hyperparameters 
� and V 9� and using the
estimates in the prior distribution for 
� . The estimation
of the hyperparameters have been performed following
the parametric empirical Bayes procedure developed by
Morris ([2]).
The performed analysis (Empirical parametric Bayes)
can be seen as a compromise between the model where
the mean logarithm of the airbag fire time, 
� , are com-
pletely unrestricted (unrelated to each other) and the stan-
dard linear regression model where the mean airbag fire
time is linearly increasing, without error, that is ����� � 
�
is non random.

The estimated mean fire times and their 90 � credible sets
are plotted in Fig. 2. A 90 � credible set for � is a subset�

such that the probability that � belongs to
�

is at least
0.9.
This analysis shows that the airbag fire time has been
significantly increasing since 1998 (see Fig.2). The in-
creasing trend is observed for all the three crash test
speeds considered. The uncertainty principle discussed
in this paper, implies that this trend is consistent with the
hypothesis that velocity thresholds in airbag algorithms
have been functionally raised after 1998.
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Figure 2: Bayes estimate of the Air-Bag Fire Time for
crash tests into an Offset Deformable Barrier.

DISCUSSION

The main result of this paper is the derivation of (9), that
expresses the maximum amount of information available
in a continuous reading of a signal up to time � . For each
time

�
, the quantity * # � ' in (9) is a measure of the ability

to separate the means of the signals at different values of� � , weighted by the standard deviation of the reading it-
self. The information

)
increases as a function of � and

depends on the “smoothing” parameter
�

in such a way
that as

� _ 

, then

) _ 

. This is expected since

as
� _ 


the model of the signals approximates the
discrete model in which each reading is independent of
the others. The first term in (9) is directly proportional
to

�
while the second is inversely proportional to it. In

particular, this first term can be regarded as a continu-
ous version of (4) and it expresses the fact that the higher
the values of

�
(small time correlation of the signals) the

more information is available in the signal. This is analo-
gous to the discrete case where the information increases
as the number of readings increases. On the other side,
for low values of

�
, the second term can be higher than

the first one. This term implies that some information is
stored in the time variation of * # � ' for low values of

�
(high time correlation). The second term can be regarded
as added information in the signal coming from the possi-
bility to infer the error in a reading of the signal from the
error of the previous reading, if they are highly correlated
(small

�
).

Using (9) in the Cramer-Rao inequality, an explicit rela-

tionship between the time � , regarded as the fire time,
and the variance (accuracy) of the estimator of the im-
pact velocity

�� � is obtained. This relationship has been
approximated as the inequality (15), which describes the
balance of all the factors that are involved in the airbag
firing decision for a simple linear model. If � is regarded
as the time at which the airbag is fired, the inequality
expresses the fact that the error in estimating the actual
value of �(� , as measured by � -./ # ��(� ' , at time � , cannot
be smaller than some known value that depends on the
characteristics of the system and the noise. The inequal-
ity implies that a more accurate estimate of ��� is possible
if more time is allowed for making a decision on firing
an airbag, that is, if � is larger. As the noise in the signal
is higher, the constant on the right of the information in-
equality increases, so that to maintain the same accuracy
in estimating � � more time is necessary. In other words, if
the time cannot be increased a less accurate estimate will
result. This can be summarized by saying that, in this
simple case, airbag fire time and the minimum error in
estimating � � (necessary to decide if an airbag is needed)
are inversely proportional.

In order to illustrate some of the implications of the prin-
ciple expressed above, an airbag algorithm can be re-
garded as a process that estimates the impact velocity of a
crash. As discussed at the beginning of the the paper, the
impact velocity is taken as a measure of the severity of
the impact, on which the deployment decision is based.
The algorithm is calibrated by fixing a “threshold” veloc-
ity ��$ with which the estimated velocity

���� is compared:
the algorithm decides to fire the airbag if the estimated
velocity is above the value of � $ . Under the assumption
that the estimator

��(� is normally distributed it is possi-
ble to compute confidence intervals of the operation of
the algorithm and to relate these to the airbag fire time.
More specifically, if � � is the actual value of the impact
velocity of a firing event

# � � � � $ ' , being
�� � an unbi-

ased estimator, a � � � reliability of the airbag algorithm,
for example, can be expressed as"3# ���� � ��$ ' � ` � � � � (20)

That is, � � � of the time the algorithm correctly guesses
that it is observing an impact that requires the use of the
airbag. Assuming that

���� is normally distributed, the con-
dition above is satisfied if% � � � � $ %���� � � ��� V��I K � (21)

where V��I K is the standard deviation of
�� � and ��� is de-

fined by 	 # 
�
 � � ' � � �
Rabbiolo, 6



where
	

denotes probability and



is a random variable
normally distributed with mean

`
and variance 2 . Using

this identity in the approximated information inequality
for the linear case, equation (15), it is concluded that� 0 # � V 9B C X=D F � 9�8 9 # 8 9 $ � 9 ' 2% � � � � $ % 9 � (22)

The quantity on the right hand side is the minimum
amount of time necessary to collect enough information
to correctly estimate the airbag outcome to a � confi-
dence level. In figure 3, a plot of the minimum time
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Figure 3: Plot of � from (22) assuming the
equal sign for values of � ��
 ����� #

��� � ' and� � 

��� � #
� � � ' .

as a function of the velocity gap % ��� � ��$ % is presented
(the distance of the actual impact velocity from the ve-
locity threshold). Note that the smaller the velocity gap
the higher the time that is required to make a fire decision
with a fixed level of reliability. Faster firing decisions can
be accomplished for the same velocity gap at the expense
of the system reliability.

Inequality (22) can also be regarded as describing the fir-
ing, that is the reliability of the firing decision process.
For example, it is assumed that the requirement is set that
for impacts on a rigid barrier with initial velocities (or
BEV) above 2 # mph the algorithm must always fire the
airbag with a ��� � success rate. In the actual calibra-
tion process of an airbag algorithm such speed ( 2 # mph)
might be called the “all fire” speed. Furthermore, as an
additional requirement, the decision on firing has to be
made within 2 ` ms from the beginning of the crash. In-
equality (22) can be used to evaluate the performance of

the algorithm under these conditions. To take care of the
“all fire” condition, it is observed that setting �%$ at about2�2 mph, the corresponding equality in (22) is turned into
an equality for � � ` � ` 2 s, � � � 2 # mph, and � � ` � ���
(also,

� ��� `!` , V B C X=DGF �	� ` , and 8 � � � 2 # ' . This step
is the “calibration” step. The fire rate of this set-up of
the “algorithm” is obtained by solving the correspondent
equality in (22) (corresponding to best use of informa-
tion) for � � , obtaining

��� � # � � � � $Q' 
 � 8 9 # 8 9%$ � 9,'# � V 9B C XEDGF � (23)

In this context, � is the probability that a decision to fire
is taken by the algorithm for an impact at velocity �!� . A
plot of � as a function of ��� is shown in figure 4 with the
solid line, where � $ is set from the above “calibration”
step, ��� ` � ` 2 s, and the other parameters are chosen as
in the previous example. The plot shows that by allowing2 ` ms of data collection, the algorithm ensures a no-fire
condition (with a ��� � confidence rate) only below about�

mph. A gray zone for this algorithm is defined as the
region between

�
and 2 # mph. This is the critical ve-

locity region in which the algorithm successfully guesses
the firing strategy with less than ��� � confidence rate. If
instead, � ` ms of data collection is allowed to the algo-
rithm, its performance is expected to increase, as more
information becomes available. The same computation
as before can be carried, resulting in a threshold velocity
of ��$ ! 2 � mph, in order to satisfy the “all fire” con-
dition. The fire rate for this case is shown also in figure
4 as the dashed line. The fire rate characteristic of this
algorithm is steeper suggesting a better performance of
the airbag system. As a consequence the gray zone is
considerably smaller, 2�2 to 2 # mph.

CONCLUSIONS

The concept of information flow has been used to mea-
sure the performance of an airbag firing system. A simple
expression for the maximum amount of (Fisher) informa-
tion available to the algorithm as a function of fire time
has been developed for a model of the signal in which
the noise is correlated in time as an exponential function.
This quantity is used in the Cramer-Rao (information) in-
equality that relates Fisher information and variance of an
unbiased estimator of the impact velocity that an airbag
algorithm produces. This information inequality analyti-
cally establishes a kind of uncertainty principle for which
more accurate determination of the severity of the crash
is achieved at the expense of having higher fire times;
while, imposing lower fire time to achieve better airbag
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Figure 4: Plot of fire probability � as function of im-
pact velocity ��� for � 
 and ��
 ms maximum time for
fire decision. ( ����
 � 
�� s, ��� ! ��� mph)

performance leads to a less accurate determination of the
severity of the crash. In this paper this principle has been
used to explain the observed increase of fire time in ODB
tests as a function of the calendar year, by assuming that
velocity thresholds in airbag algorithms have in time been
effectively raised to avoid inadvertent firing of airbags.
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