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ABSTRACT 

Injury risk curves are the basis for assessing 

automotive occupant safety. They are used in 

regulation, consumer test ratings, safety system 

design, and for the evaluation of the effective-

ness of safety systems. Therefore, an injury risk 

curve should be accurate and credible. But how 

reliable is the risk prediction of an injury risk 

curve? 

The objective of this study was to identify and 

illustrate factors influencing the reliability of 

injury risk curves. Thereby, highlight the need 

for a more thoughtful construction and use of 

injury risk curves as well as the need for addi-

tional statistical measures when publishing in-

jury risk curves. The results of this study will 

lead to a better understanding of injury risk 

curves and can also be used for a better design of 

experiments in biomechanical testing. 

Four factors affecting the reliability of injury 

risk predictions were evaluated exemplarily in 

this study: 

 The sampling, i.e. the uncertainty due to sta-

tistical inference from a sample on the 

population. 

 The censoring of data, i.e. the uncertainty 

introduced by the imprecision of the toler-

ance limit determination. 

 The test severities, i.e. the uncertainty in in-

jury risk prediction as a result of test sever-

ities used in the biomechanical tests. 

 The statistical model, i.e. the bias intro-

duced by the method used to calculate the 

injury risk curve. 

Although all of the findings presented can be 

explained by statistical theory, this paper demon-

strates the effects of different factors on the 

reliability of injury risk curves in a visual man-

ner. Statistical simulation is used to replicate 

biomechanical testing and injury risk curve con-

struction. 

The statistical simulations comprise several steps 

including the definition of a distribution of the 

biomechanical tolerance limit in the population,  

the sampling and biomechanical testing of 

specimens as well as the construction of the 

injury risk curve. 

The statistical simulations clearly illustrate the 

effect of the sample size and data censoring on 

the uncertainty of injury risk curves. It can be 

concluded that the interpretation of an injury risk 

curve without a proper measure of confidence is 

meaningless. Exact data of the biomechanical 

tolerance limit improve the reliability of the 

injury risk curve – however only with the use of 

an appropriate statistical method. 

The range of criterion values used in the injury 

risk curve construction systematically affects the 

shape and reliability of the curve. Biomechanical 

tests should be done over a wide range of test 

severities in order to avoid bias in the risk esti-

mation. 

It is demonstrated that the use of an unsuitable - 

nevertheless widely used - statistical method for 

constructing the injury risk curve can lead to 

unrealistic injury risk predictions. 

INTRODUCTION 

Injury risk curves are used for the safety assess-

ment of passenger cars regulated by law, for 

occupant safety ratings in consumer tests, for the 

design of safety systems, and for evaluating the 

effectiveness of safety systems. Injury risk 

curves are the basis for assessing, improving, 

and evaluating automotive occupant safety. The 

prediction of the injury risk by an injury risk 

curve plays an essential role in vehicle safety. 

Thus the risk prediction needs to be reliable. 

But how reliable is the risk prediction of an 

injury risk curve? 

Before looking at the reliability of injury risk 

curves, it should be clear what an injury risk 

curve is and how it relates to the biomechanical 

tolerance limit. 

Biomechanical Tolerance Limit 

The maximum mechanical load a person can 

withstand without getting injured is called the 

biomechanical tolerance limit of this person. 

Different persons – most likely – have different 

biomechanical tolerance limits. The biomechani-

cal tolerance limit varies within the population. 
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The distribution of the varying biomechanical 

tolerance limit can be expressed by a probability 

density function (PDF), an example of a possible 

PDF is shown in figure 1. The real probability 

density function of the biomechanical tolerance 

limit of a population is unknown and generally 

can’t be determined. The PDF or distribution can 

only be estimated statistically by using a random 

sample from the population of interest (if the 

sample isn't random, all conclusions will be 

highly biased!). 

 

Figure 1.  A possible probability density func-

tion (PDF) of the biomechanical tolerance 

limit of a population. 

Injury Risk Curve 

For an arbitrary person of a population of inter-

est the injury risk curve shows the probability of 

getting injured at a specific mechanical load 

level. The mechanical load is expressed by an 

injury criterion value. This can be a physical 

measure like force or acceleration or more com-

plex quantities like HIC or NIC. Figure 2 shows 

a possible injury risk curve. 

 

Figure 2.  A possible injury risk curve or cu-

mulative distribution function (CDF) of the 

biomechanical tolerance limit. 

An injury risk curve displays the percentage of 

the population having a biomechanical tolerance 

limit lower than the associated criterion value. In 

the example used in this study (figure 2) 20% of 

the population have a biomechanical tolerance 

limit (expressed as an injury criterion value) 

lower than 150.  

An injury risk curve is the cumulative distribu-

tion function (CDF) belonging to the distribution 

of the biomechanical tolerance limit. Conse-

quently the distribution of the tolerance limit and 

the injury risk curve contains the same informa-

tion. However, the presentation of this informa-

tion is different. 

Like the PDF of the biomechanical tolerance 

limit the injury risk curve of a population is not 

known and can only be estimated by statistical 

inference, i.e. inference from a sample on the 

population. The distribution of the biomechani-

cal tolerance limit within the sample is the best 

estimate of the distribution of the biomechanical 

tolerance limit in the population and the best 

predictor for the injury risk of an arbitrary per-

son of the population. 

The injury risk curve is calculated on the basis of 

the biomechanical tolerance limits found in bio-

mechanical tests mostly done on cadavers. The 

cadavers are the sample for the population of 

interest.  

Since every injury risk curve is a statistical esti-

mate, the question about the reliability of this 

estimate is obvious. 

Objective 

The development of an injury risk curve is a 

statistical procedure. Some of the problems and 

the complexity of this procedure are addressed in 

this paper. 

The main intention of this study is to analyse and 

highlight factors adding to the uncertainty of an 

injury risk curve. Another objective is to provide 

the basis for an improved assessment of pre-

dicted injury risks and to show the need for a 

precautious interpretation as well as a more 

thoughtful construction and usage of injury risk 

curves. Furthermore, this study will reveal the 

benefit of additional statistical measures or sup-

plementary information in the publication of 

injury risk curves.  

The effect of different factors on the injury risk 

curve is demonstrated in a visual way using 

statistical simulation. All of the findings pre-

sented can be explained by theory. However, 

theoretical considerations are not the purpose of 

this study. 

Only the baseline risk without any predictors 

(e.g. age) is used. The analysis of more complex 
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statistical models is not within the scope of this 

study. 

METHODS 

Four factors affecting the uncertainty of an in-

jury risk curve have been evaluated exemplarily 

in this study: 

 The uncertainty due to the statistical infer-

ence from a sample on the population, 

named the effect of sampling. 

 The uncertainty and bias introduced by the 

imprecision of the determination of the 

biomechanical tolerance limit in biome-

chanical tests, denoted as effect of censor-

ing. 

 The bias in the injury risk curve as a result 

of the test severities used in the biome-

chanical tests, herein after called effect of 

testing. 

 The effect of statistics, i.e. the bias in the 

injury risk curve as a result of the statistical 

method used in calculating the injury risk 

curve. 

The effects of these four factors were evaluated 

by statistical simulation. 

Statistical simulation 

To simulate the process of biomechanical testing 

and injury risk curve construction an underlying 

(“real”) distribution of the biomechanical toler-

ance limit in the population was predefined. A 

Weibull distribution [1] with shape parameter 5 

and scale parameter 200 was used as underlying 

distribution of the biomechanical tolerance limit 

in the simulations (see figure 1), except for the 

additional analysis of the logistic regression (see 

figure 19 and 20). Here the shape parameter was 

changed to a value of 2.5. The CDF of the distri-

bution shown in figure 1 is presented in figure 2. 

This is the “real” injury risk curve of the popula-

tion and will be used for the analysis of the ef-

fect of the factors listed above. 

The underlying distribution is an assumption for 

the purpose of the simulation study. There is no 

justification that the distribution of the biome-

chanical tolerance limit in a population is follow-

ing a certain or even common statistical distribu-

tion. Nevertheless, the effect of the factors 

evaluated in this study will in principle be the 

same on similar distributions. 

In the next step of the simulation process a ran-

dom sample of biomechanical tolerance limits 

was taken from the predefined distribution of 

tolerance limits [2]. This equals a random sam-

pling of specimens (cadavers) from the popula-

tion of interest. 

To simulate the biomechanical testing of the 

sample, a range of test severities was defined, 

i.e. a minimum and maximum test severity. The 

test severities in the simulation study are ex-

pressed as criterion values, thus, the same quan-

tity as for the biomechanical tolerance limit was 

used. The test severity in the simulation study is 

not equal to the physical test condition (e.g. 

pendulum mass and velocity) but equivalent to 

the response of the physical test condition. Test 

severities were randomly taken out of the test 

severity range and randomly assigned to the 

sampled specimens [2]. 

 

Figure 3.  Sample injury risk curve (grey 

continuous line), “real” injury risk curve (red 

line), non-parametric CDF of the sample (grey 

dotted line). 

By comparing the biomechanical tolerance limit 

of a specimen with the assigned test severity 

(expressed as resulting injury criterion value) a 

binary outcome is produced: injury or no injury. 

 

Figure 4.  Injury risk curves of two samples 

(grey continuous lines), “real” injury risk 

curve (red line), non-parametric CDFs of the 

samples (grey dotted lines). 
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The last step of the statistical simulation was the 

calculation of the injury risk curve. Except for 

the analysis of the effect of statistics, a survival 

analysis with Weibull distribution assumption 

was used to calculate the injury risk curve of the 

samples [1, 3]. A baseline survival analysis, i.e. 

without predictors, equals a distribution fitting. 

The fitting of a Weibull distribution to data sam-

pled from a Weibull distribution should give a 

reasonable estimation. 

The statistical software R was used for the calcu-

lations and the plotting of the results [4]. 

Figure 3 shows a comparison of the result of one 

simulation run (sample size 40) with the “real” 

injury risk curve. Figure 4 shows a comparison 

of the results of two simulation runs (sample size 

40) with the “real” injury risk curve. 

The simulation process explained before was 

repeated hundred times and the resulting injury 

risk curves were compared to the “real” injury 

risk curve (see figure 5 as example). The scatter 

of the sample injury risk curves demonstrates the 

uncertainty of the injury risk curve estimation. 

Effect of sampling 

To show the effect of sample size on the reliabil-

ity of the resulting injury risk prediction, hun-

dred simulation runs with a sample size of 10, 

40, and 160 have been performed. 

Effect of censoring  

Data censoring means that the exact biomechani-

cal tolerance limit is not known for a specimen. 

If an injury is known to have occurred below a 

certain value of the injury criterion this data is 

called “left censored”. If it is known that an 

injury will occur above a certain value of the 

injury criterion this value is called “right cen-

sored”. 

By comparing the biomechanical tolerance limit 

of a specimen from the sample with the assigned 

test severity, the binary result (injury or no in-

jury) will lead to left and right censored data. If 

the assigned test severity is above the biome-

chanical tolerance limit, the outcome is an injury 

and the test severity is a left censored data and 

vice versa. 

To simulate exact data, instead of using the test 

severity, the tolerance limit was used in the 

injury risk curve calculation when an injury was 

detected. 

For the analysis of the influence of data censor-

ing when using different statistical methods, 

injury risk curves with right censored and exact 

data were calculated with the use of logistic 

regression [1, 2] and survival analysis with logis-

tic distribution assumption. The logistic distribu-

tion assumption in the survival analysis was used 

to avoid the influence of different distribution 

assumption in the compared methods. 

Effect of testing 

Usually, biomechanical tests are done at a cer-

tain mechanical load or at least within a certain 

range of loading severities. Very low and very 

high loadings are not used because it is assumed 

that such tests will not give valuable information 

since the outcome is known beforehand. To show 

the influence of the test severity range used in 

biomechanical testing on the injury risk curve, 

different ranges of test severities have been 

defined in the simulation: a low range, a small 

centred range, a high range and a large range. 

The lower and upper limit of the test severity 

range was defined with respect to the “real” 

distribution, i.e. quantiles of the “real” distribu-

tion were used for the definition of the test se-

verity ranges (table 1). 

Table 1. 

Quantiles used for the definition of the test 

severity ranges 

Range Lower limit Upper limit 

low 0.001 0.25 

 
high 0.75 0.999 

small 0.35 0.65 

large 0.01 0.99 

  

Effect of statistics 

To visualize an important effect of the statistical 

method on the injury risk curve, simulations 

using logistic regression as well as survival 

analysis with Weibull distribution assumption 

were performed. To show the dependency of this 

effect on the sample size, simulations with a 

sample size of 20 were conducted in addition to 

the simulations with a sample size of 40. In order 

to further analyse the influence of the statistical 

method on the injury risk curve, a different 

“real” distribution of biomechanical tolerance 

limits were used. The shape parameter of the 

Weibull distribution was changed from 5 to 2.5, 

i.e. the distribution was shifted to the left (com-

pare figure 16 to figure 19).  
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RESULTS 

Effect of sampling 

In figure 3 the difference between the “real” 

underlying injury risk curve (red curve) and the 

calculated injury risk curve based on a random 

sample of size 40 is shown. The underlying risk 

curve is a Weibull distribution and the calcula-

tion method is a survival analysis with a Weibull 

distribution assumption (which basically is a 

fitting of a Weibull distribution). 

 

Figure 5.  Scatter of injury risk curves in 100 

simulation runs with a sample size of 10. 

The difference between the underlying injury 

risk curve and the calculated risk curve is due to 

the sampling and not because of different distri-

butions in the statistical calculation (the non 

parametric CDF additionally shown in figure 3 

as dotted grey line supports this statement). 

 

Figure 6.  Scatter of injury risk curves in 100 

simulation runs with a sample size of 40. 

Figure 3 shows that a sample does not reproduce 

the “real” distribution. That is why the injury 

risk curve of a sample (most likely) will deviate 

from the “real” injury risk curve. The actual 

difference between the “real” injury risk curve 

and the injury risk curve based on a sample is up 

to the random sample. The randomness of sam-

pling leads to uncertainty in the resulting injury 

risk curve, i.e. it is not known how good the 

calculated injury risk curve represents the real 

injury risk curve. 

 

Figure 7.  Scatter of injury risk curves in 100 

simulation runs with a sample size of 160. 

Figures 5 to 7 show the dependency of the dif-

ference between real and sample injury risk 

curve from the size of the sample. The smaller 

the sample size the bigger the uncertainty of the 

risk prediction (more scatter of the simulation 

results). In other words the reliability of an in-

jury risk curve increases with increasing sample 

size. 

Effect of censoring 

Censored data substantially increases the uncer-

tainty of an injury risk curve in comparison to 

the result of exact data (compare figure 8 and 9). 

Censored data contain less information, there-

fore, the risk prediction is less reliable. It is not 

shown here but can easily be imagined, that the 

more censored data are in the dataset the more 

scatter or uncertainty will be introduced. The 

example shown here (figure 8) illustrates the 

maximal effect because all data were left or right 

censored. 

The censoring of data used in the calculation of 

the injury risk curve does not only introduce 

more uncertainty in the risk prediction (more 

scatter in the simulations) but can also lead to a 

bias in the risk prediction (shifting of the injury 

risk curve) when using an unsuitable calculation 

method.  Logistic regression assumes left and 

right censored data. The use of right censored 

and exact data in logistic regression – as in all 

binary regression models – leads to a left shift of 

the injury risk curves (figure 10). 
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Figure 8.  Simulated injury risk curves based 

on left and right censored data (sample size 

40). 

Using right censored and exact data with a sur-

vival analysis and logistic distribution assump-

tion will have no bias (figure 11). 

 

Figure 9.  Simulated injury risk curves based 

on exact (uncensored) data (sample size 40). 

The same distribution assumption (logistic) was 

used in survival analysis like in logistic regres-

sion. For this reason the result demonstrates that 

solely the calculation method (binary regression 

vs. survival analysis) is responsible for the bias 

in the injury risk curve and not the distribution 

assumption. The effects displayed in the figures 

10 and 11 show the maximal effect since all 

injury data were treated as exact data. It is not 

shown but can easily be imagined that the 

strength of this effect depends on the percentage 

of exact data in the dataset: the more exact data 

the more bias in the injury risk curve calculated 

by logistic regression. 

Effect of testing 

The test severities used are influencing the injury 

risk curve. Outside the tested severity range the 

uncertainty is high. A low severity test range 

(figure 12) will probably lead to overestimated 

risks. In contrast a high severity test range (fig-

ure 13) can easily lead to underestimated risks. A 

small test severity range in the centre (figure 14) 

will likely lead to a steeper injury risk curve 

(overestimated risks above 50% risk and under-

estimated risks below 50% risk). 

 

Figure 10.  Logistic regression based on exact 

and right censored data (sample size 40). 

These results are stochastic, i.e. a low test sever-

ity range does not necessarily lead to an overes-

timated risk. However, the probability of getting 

an overestimated risk is higher than getting a 

correct or underestimated risk. 

 

Figure 11.  Survival analysis with logistic 

distribution assumption based on exact and 

right censored data (sample size 40). 

The results for the other test severity ranges have 

to be seen analogous. A wide range of test sever-

ities gives the least bias in the injury risk predic-

tion (figure 15). Due to the unknown “real” 
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injury risk curve the width of the test severity 

range with respect to the “real” injury risk curve 

(or tolerance limit distribution) cannot be as-

sessed, unfortunately. 

Effect of statistics 

An unsuitable statistical model can lead to a bias 

in the risk prediction. An injury risk curve calcu-

lated with the logistic regression does not pass 

through zero and will always predict a non-zero 

risk at zero load. 

 

Figure 12.  Low range of test severities (black 

dots showing the test results: 0.0=no injury, 

1.0=injury). 

 

Figure 13.  High range of test severities (black 

dots showing the test results: 0.0=no injury, 

1.0=injury). 

This is because a logistic distribution (like a 

normal distribution) is defined from minus eter-

nity to plus eternity and is the basis of the injury 

risk curve calculation in logistic regression. This 

non-zero risk at zero load often is not obvious 

because the offset is very small (see figure 16). 

The probability of getting a substantial offset at 

zero risk depends on the sample size. The 

smaller the sample size the greater the probabil-

ity of getting a substantial injury risk at zero load 

(compare figure 16 and 17). 

If the underlying distribution has an early rise of 

the risk, the bias of a logistic regression injury 

risk curve will be more pronounced (figure 19). 

 

Figure 14.  Small range of test severities 

(black dots showing the test results: 0.0=no 

injury, 1.0=injury). 

 

Figure 15.  Large range of test severities 

(black dots showing the test results: 0.0=no 

injury, 1.0=injury). 

A survival analysis with the assumption of a 

distribution which is defined only for positive 

values will always result in a injury risk curve 

passing through zero at zero load (as an example 

see figure 18 and 20 for a Weibull distribution). 

CONCLUSION 

This study shows factors influencing the injury 

risk curve, namely the data sampling, the data 

censoring, the test severities, and the statistical 

method. That means the reliability of the risk 

prediction of an injury risk curve depends on the 

size of the sample, the number of censored data, 
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the range of test severities and the method used 

in the injury risk curve development. One or 

more of these factors may affect the injury risk 

curve in a way that leads to a significant differ-

ence of the predicted risk from the real risk. 

 

Figure 16.   Logistic regression based on left 

and right censored data (sample size 40). 

It is highly recommended to consider the reli-

ability of an injury risk prediction in automotive 

safety. Before utilizing an injury risk curve the 

validity of the risk prediction should be assessed. 

Furthermore, the uncertainty of the injury risk 

prediction should be considered with respect to 

the required precision. 

 

Figure 17.  Logistic regression based on left 

and right censored data (sample size 20). 

The calculation of a confidence interval (with 

description of the method used for its calcula-

tion) will give the user a measure of reliability. 

If there is no confidence interval given, the sam-

ple size and the number of censored data can 

provide an idea about the reliability of the risk 

prediction. 

Logistic regression is not suitable for exact data 

in the dataset because it will lead to a bias in the 

injury risk curve and, therefore, in the risk pre-

diction. Logistic regression should not be used 

with exact data. The same applies to all binary 

regression methods, e.g. probit regression. 

 

Figure 18.  Survival analysis (Weibull) based 

on left and right censored data (sample size 

20). 

 

Figure 19.  Logistic regression based on left 

and right censored data (sample size 40) and a 

early rising “real” distribution. 

As have been demonstrated by this study the test 

severities used in the biomechanical tests have a 

significant influence on the result of the injury 

risk curve calculation. A wide range of test se-

verities with respect to the underlying biome-

chanical tolerance limit distribution ensures a 

small bias in the risk prediction. In contrast to 

the simulation the underlying distribution of the 

biomechanical tolerance limits is not known in 

reality. Thus, the range of test severities is not 

known at which the specimens should be tested 

to be able to lead to optimal results. Neverthe-

less, it is clear that biomechanical tests should 

not be done in a small range of severities. 

In general risk predictions outside the range of 

tested severities are less reliable than within the 

test severity range. Therefore, the range of test 
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severities should be presented with the injury 

risk curve. 

  

Figure 20.  Survival analysis (Weibull) based 

on left and right censored data (sample size 

40) and a early rising “real” distribution. 

Exact data improves the reliability of injury risk 

curves, however, only with the use of an appro-

priate statistical method. The use of binary re-

gression methods is critical because exact data 

will introduce bias in the injury risk prediction. 

In addition logistic regression shows an injury 

risk at zero load. This non-zero risk at zero load 

is more pronounced with lower sample size and 

with early rising “real” injury risk. 

This study clearly shows, that an injury risk 

curve is affected by different factors and may 

lead to a unrealistic injury risk prediction. This 

can lead to misdirect the development of safety 

systems. Adapting safety systems to a misleading 

risk may have a negative impact on vehicle 

safety. 

This study demonstrates that there is a need for a 

“quality control” for injury risk curves. Simply 

calculate a curve is not enough! 
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