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ABSTRACT 
 
The research objective of this work was to describe 
typical accident scenarios for pedestrian accidents. 
 
The accident analysis forms a component of work 
by the AEB Test Group which aims to develop test 
procedures for assessing Autonomous Emergency 
Braking (AEB) systems. This technology is 
penetrating the vehicle market and is designed to 
offer protection against the occurrence and severity 
of collisions; however there is a need to evaluate 
the systems and their effectiveness since they are 
not yet subject to regulation or standardised 
assessment.  
 
Case files for 175 pedestrians who were struck by 
the front of a passenger car were extracted from an 
in-depth accident database and reviewed in detail to 
establish the position and movement of road users 
before impact. A dataset of key parameters was 
formed from the detailed case reviews and 
subjected to a hierarchical cluster analysis to 
identify groups of similar accident scenarios. A 
second cluster analysis was performed on a dataset 
derived from the British national accident database 
for over 10,500 accidents where a pedestrian was 
struck by the front of a passenger car. This led to a 
second set of typical accident circumstances based 
on a comprehensive coverage of the accident 
population. 
 
The national accident database for Great Britain, 
STATS 19, is compiled annually from police 
reports and effectively defines the national road 
accident population. In 2008 it registered over 
28,000 pedestrian casualties from a total of around 
230,000 road user casualties. The UK On-the-Spot 
(OTS) in-depth accident database was compiled by 

research teams at the scene of accidents in two 
regions of England from 2000 to 2010, including 
some non-injury accidents. Each team attended 
approximately 250 accidents per year, resulting in a 
total of over 4,700 accidents involving over 11,000 
road users (including 288 pedestrians). This study 
was designed to collect a representative sample of 
accidents. 
 
The cluster analyses show the association of 
accident circumstances such as speed limit, light 
conditions, weather, vehicle manoeuvre, pedestrian 
size, pedestrian movement, obstruction of 
line of sight, vehicle travel speed and change of 
speed to impact. The proportion of fatal, serious 
and slight casualties associated with these scenarios 
is quantified, showing for example that one 
scenario covered 12% of the population but 23% of 
fatal casualties. 
 
Typical circumstances for pedestrian accidents in 
the dataset include (1) crossing from the kerb side 
without obstruction of the driver’s line of sight, (2) 
smaller pedestrians crossing from the kerb side 
with at least partial obstruction of the driver’s line 
of sight and (3) adult pedestrians crossing in 
inclement light and weather conditions. These 
scenarios were computed mathematically from 
large in-depth and national accident databases 
using cluster analysis and provide relevant 
information for the formulation of controlled tests 
of AEB systems. 
 
INTRODUCTION 
 
Autonomous Emergency Braking is one of a 
number of modern safety technologies designed to 
prevent or mitigate the severity of vehicle impacts. 
There is scope for considerable variation among 
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AEB systems depending on the type of sensors 
fitted, the decision logic programmed into the 
control units, how and when the driver is alerted, 
how and when braking is activated and other 
factors. For this reason there is interest in 
developing and conducting physical tests to assess 
performance, compare systems and inform 
consumers.  
 
The AEB Test Group is formed from insurance-
based research centres around the world with a 
common interest in assessing AEB systems for 
their effectiveness in mitigating and preventing 
collisions. The members include Thatcham, the 
Insurance Institute for Highway Safety (IIHS), the 
German Insurers Accident Research (UDV) and 
Folksam. The Group is involved with assessing the 
effectiveness of these systems in real accidents, but 
since they show potential benefit of collision 
mitigation the group is authoring test procedures to 
assess the effectiveness of the systems. It is 
important to assess these systems since there is not 
yet any regulation or other consumer assessment 
that might influence the development of the AEB 
systems. The consumer rating of the systems will 
help to inform consumers of the most effective 
systems and help to drive design and development 
of systems that are best suited to addressing real-
world collisions.  
 
AEB systems can already work in collisions 
involving pedestrians and rear impacts and in the 
future will be able to address frontal, head-on 
collisions. However since the head-on systems are 
not yet widely fitted, this type of collision is not 
currently being considered by the AEB Test Group, 
but will be incorporated at a later date. 
 
The setting of test conditions involves many 
considerations, one of which is the desirability of 
subjecting the vehicles to realistic accident 
conditions, i.e. circumstances that are encountered 
in real accidents, or at least to understand clearly 
how proposed test conditions relate to the 
circumstances of real accidents. The aim of this 
paper is to describe typical accident scenarios for 
pedestrian accidents based on empirical data. Some 
examples are given of possible test scenarios that 
could be based on this factual information.  
 
MATERIALS AND METHODS 
 
Source databases 
 
Two major sources of information about accidents 
in Britain were used in this work: the national 
accident database STATS 19 and the in-depth On-
the-Spot study (OTS). STATS 19 is compiled 
annually by the Department for Transport (DfT) 
based primarily on police reports and it effectively 

defines the road casualty population of Great 
Britain. OTS was a study run from 2000 to 2010 
for the DfT and Highways Agency to collect in-
depth information about a representative sample of 
road accidents based on approximately 500 at-
scene investigations per year. Some key facts about 
these databases are presented in Table 1 and both 
are described more fully in the literature [1] [2] [3]. 
The analysis in this paper used STATS 19 for 2008 
and OTS from 2000 to mid-2009, the latest 
versions available when work commenced.  
 
A note on the relationship between the STATS 19 
and OTS databases. While STATS 19 describes the 
whole reported road accident population for a year, 
the in-depth accident database OTS contains a 
sample of cases from two regions but over a greater 
period of time, 2000–2010. In addition, unlike 
STATS 19, OTS includes a proportion of  non-
injury accidents. There should consequently be 
some coverage of the same accidents, i.e. roughly 
one-third of the casualty accidents that occurred in 
the two OTS sample regions in 2008; however this 
overlap constitutes a distinct minority of both 
databases. Furthermore, as an in-depth database, 
OTS contains more information about accidents 
than STATS 19, especially quantitative information 
about velocity, location, injuries and causal factors 
based on accident investigation, reconstruction and 
follow-up data collection. 

Table 1. 
Source databases STATS 19 and OTS 

STATS 19 OTS 
Period  
2008 2000–2010 
Sample region  
Great Britain South Nottinghamshire 

Thames Valley 
Purpose  
National statistics Detailed information to 

support casualty 
reduction programmes 

Source  
Police reports At-scene investigations 

by research teams at 
Loughborough 
University and TRL 

Inclusion criteria  
Casualty on public road Police attendance on 

rotating 8-hour shift 
Number of accidents  
170,591 4,744 
 
The summary datasets prepared for the clusters 
analyses (described below) contain a selection of 
the most suitable fields available in each dataset. 
This resulted, for example, in taking vehicle speed 
from OTS but speed limit, the best available proxy, 
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from STATS 19. The datasets derived from STATS 
19 and OTS therefore contain only a partial overlap 
in (a) the variables used to describe the accidents 
and (b) the accidents covered. The two sources of 
information can accordingly be regarded as largely 
independent, the main link being that OTS was 
designed to be representative of the accident 
population as far as possible within the scope of the 
study. 
 
The fields selected for detailed analysis were 
chosen in the context of their relevance to test 
conditions and the design of AEB technology. So 
for example an AEB system will be engineered to 
optimise its field of view, processing (recognition) 
speed and decision logic against the pre-impact 
location, speed, trajectory and size of pedestrians 
encountered in real accidents. Detrimental ambient 
light and weather conditions could diminish the 
effectiveness of certain sensors. It is highly relevant 
whether vehicles are typically turning or 
proceeding straight ahead in their approach to the 
point of impact and whether the line of sight from 
the vehicle to the struck pedestrian is fully or 
partially obscured by other vehicles or roadside 
objects in the seconds before impact. Information 
on the frequency and extent of braking before 
impact is relevant to the choice and effectiveness of 
a system that is fully automated or that reinforces 
avoidance actions initiated by the driver. 
 
Summary datasets 
 
The fields used for the STATS 19 and OTS cluster 
analyses are shown in Table 2 and Table 3. The 
fields derived from STATS 19 are mostly 
simplified versions of the originals obtained by 
aggregating and thereby reducing the number of 
categories, the exceptions being ‘pedestrian injury 
severity’ which is unchanged and ‘pedestrian age-
sex’ which combines the original age and sex fields 
into a quasi-size category. The fields derived from 
OTS were recorded by an analyst after a review of 
full case materials. 
 
The categorisation of each field as nominal, ordinal 
or scale is relevant to the operation of the cluster 
analysis algorithm. The basic concept is that scale 
variables are continuous parameters measured in 
units such as seconds or metres, ordinal variables 
provide categories with a natural order such as 
injury severity or speed limit, and nominal 
variables provide categories without a natural order 
such as vehicle type or precipitation. 
 

Table 2. 
Variables in STATS 19 cluster analysis 

 Field Type 
1 Pedestrian injury severity Ordinal 
2 Speed limit Ordinal 
3 Light conditions Nominal 
4 Precipitation Nominal 
5 Vehicle manoeuvre Nominal 
6 Pedestrian age-sex Ordinal 
7 Pedestrian movement Nominal 
8 Pedestrian masked by vehicle Nominal 

 
As mentioned above, the choice of fields in the 
summary datasets was guided by their relevance for 
physical testing. While items such as light 
conditions, precipitation, vehicle speed and 
pedestrian crossing direction were included, other 
items such as the age and sex of the driver or the 
time of day of the accident were not, even though 
there could well be patterns in how these factors 
correlate in real accidents with other characteristics, 
for example it could be that female drivers 
experience a higher exposure to pedestrian 
accidents involving children in the morning and 
afternoon ‘school runs’. The underlying reasoning 
was that driver characteristics and time of day 
would not be reflected in the setup of physical tests 
of AEB performance. 

Table 3. 
Variables in OTS cluster analysis 

 Field Type 
1 Pedestrian injury severity Ordinal 
2 Light conditions Nominal 
3 Precipitation Nominal 
4 Vehicle manoeuvre Nominal 
5 Pedestrian age-sex Ordinal 
6 Pedestrian movement Nominal 
7 Pedestrian speed Ordinal 
8 Line of sight obscured (1 sec) Nominal 
9 Vehicle speed Scale 

10 Change of speed to impact Scale 
 
Cluster analysis 
 
The method employed in this analysis to move the 
from accident data to the formulation of accident 
scenarios was a data mining technique known as 
cluster analysis, in particular the hierarchical, 
ascending (agglomerative) variety. This works by 
progressively grouping together the most similar 
records of a dataset, where the notion of similarity 
is defined mathematically. As applied here, each 
record describes an accident and so the cluster 
analysis identifies groups of similar accidents. 
These groups or clusters have (by definition) 
common characteristics and can be interpreted as 
constituting accident scenarios. The foremost 
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advantage of applying this method is that the 
results are objective and reproducible, with an 
additional benefit that the representativeness of the 
resultant accident scenarios is clearly defined. 
 
The algorithm for computing the similarity or, on 
the analogy of points in space, ‘distance’ between 
clusters of accidents requires specification at three 
levels: 
●  at field level, the algorithm was set to compute a 
distance or (dis)similarity in the range 0–1 for any 
two values of a field with 0 signifying identity and 
1 signifying maximum difference 
●  at record level, the distance between two 
accidents was defined as the sum of the distances 
between the fields—the city block or Manhattan 
distance 
●  at cluster level, the distance between two 
clusters was defined as the average of the distances 
between each pair of records in the groups—the 
average linkage method. 

Table 4. 
Illustration of the assignment of numeric values 

for quantifying similarity 

Field Type Numeric 
value 

Field value 

Vehicle 
manoeuvre 

Nominal 1 
2 
3 

Ahead 
Turning 
Other 

Age-sex Ordinal 0.00 
0.33 
0.67 
1.00 

0–7 years 
8–15 years 
Adult female 
Adult male 

Vehicle 
speed 
(km/h) 

Scale 0.0 
0.2 
0.8 
1.0 

40 (min.) 
50 
80 
90 (max.) 

 
For nominal fields, the distance or dissimilarity 
between two values is always either 0 or 1, 
depending whether the characteristic is the same or 
different for two accidents. Making reference to 
Table 4, if in two accidents the vehicles are both 
‘Turning’, the distance is 0; if one is ‘Going ahead’ 
and the other ‘Other’, the distance is 1. For ordinal 
and scale values, the range is set to span 0–1 in 
equal increments for ordinal variables or 
continuously for scale variables. Accordingly the 
distance between an adult female and an adult male 
is 0.33 (1.00-0.67) and the distance between 50 and 
80 km/h would be 0.6 (0.8-0.2) assuming minimum 
and maximum speeds in the dataset of 40 and 90 
km/h respectively. 
 
It remains to state briefly how the number of 
clusters for each analysis was determined. The 
hierarchical cluster analysis begins with one cluster 
for each record and iterates through a grouping 

procedure until it ends with one cluster for the 
whole dataset. No particular set of clusters is right 
or wrong: each is a valid representation of the data. 
The question is rather the usefulness of a set of 
clusters for a particular purpose. Clearly neither 
extreme—one for each record or one for the whole 
population—adds value. For the purpose of 
contributing to the design of testing procedures, it 
was considered relevant to have a relatively small 
number of clusters that covers much of the 
population. To this end supplementary 
programming code was written to assist in the 
identification of around six clusters to contain 
about 75–80% of the population, including the fatal 
and seriously injured sub-populations. In 
conjunction with further code to identify ‘natural’ 
gaps between the clusters, the final number of 
clusters for each accident type and source database 
was chosen manually after examination of the data. 
 
The technical specifications of the algorithm 
underlying the cluster analysis were selected from a 
range of standard methods. Further details are 
available in the literature [4] [5]. This style of 
analysis has been applied to accident data before 
[6] but not, to the authors’ knowledge, to STATS 
19, OTS or another major British accident 
database. The details provided above are intended 
to suffice in principle for the clusters to be 
independently derived starting from the same 
datasets using any software. The order of cases in 
the input dataset should make no difference. 
 
RESULTS 
 
National accident database STATS 19 
 
The casualty file for STATS 19 (2008) contains 
information on 230,905 road users, among whom 
were 28,482 pedestrians. There is provision to 
nominate a vehicle with which each pedestrian 
interacted. These constitute the pool of cases from 
which the pedestrian accidents were drawn. The 
primary criteria for the selection of pedestrian 
accidents from STATS 19 were: 
●  cars, including taxis and private hire cars, 
associated with a pedestrian casualty 
●  first point of impact of the front surface. 
 
There were 13,257 vehicles that met these criteria 
(Table 5). A second filter was made (a) of vehicles 
that were parked or reversing and (b) of records 
with missing or unknown information in any field. 
This resulted in a drop in the number of cases from 
13,257 to 10,574, the main contributor being 
unknown pedestrian movement (2,263). 
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Table 5. 
Vehicle type and first point of contact for 

pedestrian accidents (STATS 19) 

 First point of contact  
 Front Other Total 
Car 13257 9857 23114 
Other 2833 2535 5368 
Total 16090 12392 28482 

 
Table 6 shows the distribution of maximum 
pedestrian injury severity for the cases with 
complete and partially incomplete information, 
providing a check on the number of fatally or 
seriously injured casualties excluded at this stage. 
The proportions are reasonably evenly distributed 
among the fatal, serious and slight categories and, 
as a practical matter, 13,257 was slightly beyond 
the technical capacity of the hardware and software 
to process in a standard manner. The cluster 
analysis of STATS 19 was therefore performed on 
the basis of 10,574 vehicles. 

Table 6. 
Availability of information for pedestrian 

accidents of interest (STATS 19) 

 Complete Partially 
incomplete 

Total 

Fatal 240 79 319 
Serious 2463 559 3022 
Slight 7871 2045 9916 
Total 10574 2683 13257 

 
The outcome of the cluster analysis is shown in 
Table 8 at a level where the accident population 
was partitioned into 23 groups. The characteristics 
of the largest six clusters which comprise 85% of 
the population are shown in detail. Cells printed in 
bold font indicate (a) that the distribution of 
numbers for the given field is significantly different 
from the distribution in the total population (chi-
squared test to 99.5% significance) and (b) that the 
particular numbers highlighted are over-
represented. To take an example, all cases in 
Cluster 1 occurred in daylight compared to a 
distribution of 67% daylight and 33% darkness in 
the overall population of 10,574. The probability 
that this would happen by chance is less than 0.5% 
and the value of 100% is over-represented. 
 
The figures on cluster representativeness in Table 7 
express the numbers for pedestrian injury severity 
in Table 8 as row percentages. This is useful in 
highlighting for example that Cluster 3, which 
comprises 12% of the overall population, contains 
23% of the pedestrian fatalities. It can therefore be 
construed as a particularly dangerous scenario. 
 
 

Table 7. 
Cluster representativeness by pedestrian injury 

severity (STATS 19): N=10,574 vehicles 

 Cluster %  
 1 2 3 4 5 6 7–23 Total
Slight 41 15 11 8 7 3 16 100 
Serious 35 14 15 13 5 4 15 100 
Fatal 24 4 23 19 3 14 14 100 
Total 39 14 12 9 6 3 15 100 
 

Table 8. 
Pedestrian accident clusters derived from 

national data (STATS 19): N=10,574 vehicles 

 Cluster %  
 1 2 3 4 5 6 7–23 Total 
Pedestrian injury severity 
Slight 78 77 68 63 81 60 76 74 
Serious 21 22 28 32 17 30 22 23 
Fatal 1 1 4 5 1 9 2 2 
Speed limit (mph) 
10-30 92 97 90 90 97 71 92 92 
40-50 5 3 8 7 2 8 4 5 
60-70 3 0 2 3 1 21 4 3 
Light conditions 
Light 100 100 0 0 98 0 46 67 
Dark 0 0 100 100 2 100 54 33 
Precipitation 
No 96 100 71 73 100 79 42 83 
Yes 4 0 29 27 0 21 58 17 
Vehicle manoeuvre 
Ahead 100 100 100 100 0 98 62 88 
Turning 0 0 0 0 100 2 38 12 
Pedestrian age-sex 
0–7 yrs 11 23 2 3 5 1 7 10 
8–15 yrs 34 42 18 16 11 9 26 28 
Female 26 16 26 27 46 20 33 27 
Male 28 18 53 55 38 71 34 35 
Pedestrian crossing from… 
Left 59 57 100 0 63 0 59 57 
Right 33 40 0 100 31 0 37 36 
Other 7 2 0 0 6 100 4 7 
Masked by vehicle 
No 100 0 100 100 100 100 54 79 
Yes 0 100 0 0 0 0 46 21 
Total 100 100 100 100 100 100 100 100 
 
The highlighting of cells in bold font assists in four 
ways to interpret the clusters. Firstly, where all of 
the cases fall into a single category, the cluster can 
be thought of as “purely” something. For example 
in Cluster 1 all of the accidents occurred in 
daylight, all vehicles were going ahead and no 
pedestrians were masked by a vehicle. As a starting 
point in building up the concept of a scenario based 
on this cluster, these characteristics are 
unambiguous. Secondly, where a category or 
associated group of categories is over-represented 
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and constitutes a majority of the cases, it also lends 
its character to the cluster. In Cluster 2 the vast 
majority of accidents occurred in a 10–30 mph 
speed zone where the pedestrian was either 
crossing from the left or from the right. Thirdly, 
where a category or associated group of categories 
is over-represented but constitutes a minority of the 
cases, this can be thought of as a tendency. In 
Cluster 6, serious and fatal casualties are 
significantly over-represented along with the higher 
speed limits 40–50 and 60–70 mph. Finally, where 
no cell is marked in bold, the column of numbers 
for a given characteristic is not significantly 
different from the overall population. This can be 
seen in the speed limit zones of Cluster 4. 
 
Table 8 defines the accident scenarios precisely and 
succinctly and it would not necessarily be 
informative to re-express them in words. A few 
‘higher level’ observations may however be of 
interest. The two largest clusters, 1 and 2, mostly 
amplify the dominant characteristics of the overall 
population (slight injury, 10-30 mph, daylight, fine, 
going ahead and pedestrian crossing) with two 
exceptions, (a) an over-representation of children 
and (b) in cluster 2, the pedestrian being masked 
(obscured) by a vehicle. Clusters 3 and 4, on the 
other hand, are weighted towards serious and fatal 
injury, occur in darkness with a tendency towards 
wet weather and adult males who are not masked, 
the really substantial difference between these two 
clusters being that the pedestrian was crossing from 
the left in one case and from the right in the other. 
Cluster 5 introduces a turning scenario at low 
speeds and low injury outcomes, mostly matching 
the dominant features of the overall population 
except for an over-representation of adults. Apart 
from the higher severity levels and speed zones in 
Cluster 6 already mentioned, it is worth noting that 
this group of accidents occurred in darkness with 
mostly men who were stationary in or moving 
along the carriageway, this being the meaning of 
the “Other” category. This is the only major cluster 
not dominated by pedestrian movement across the 
carriageway. 
 
In-depth accident database OTS 
 
The On-the-Spot study had compiled records on 
7,665 vehicles at the commencement of work for 
this analysis, among which were 216 passenger 
cars that struck (219) pedestrians. After filtering 
out non-frontal impacts and cases where inadequate 
information from the scene of the accident was 
available to support a quantitative assessment of 
the movement of the pedestrian and striking vehicle 
before impact, 175 were subjected to a detailed 
case-by-case review. 
 

 

Figure 1.  Vehicle travel speed for clusters 1–6 
(OTS): N=175 vehicles 

A focus of these reviews and reconstructions was 
the speed, direction of movement and distance 
apart of the road users and the presence or absence 
of a clear line of sight between the driver and 
pedestrian for up to five seconds before impact 
using established protocols where possible [7]. This 
is illustrated in Figure 1 which shows the location 
of the pedestrian relative to the striking vehicle one 
second before impact and whether there was a clear 
line of sight between the driver and pedestrian at 
this time. This parameter was not explicitly 
included in the cluster analysis because it is highly 
correlated with two items that were included: 
vehicle travel speed and change of speed to impact 
(braking). Including it would have provided double 
weight to essentially the same information. 
 
The results of the cluster analysis of the OTS 
dataset are detailed at the level of 14 clusters. The 
largest six of these contain 79% of the population 
of the dataset (Table 9). The cells printed in bold 
font in Table 10 indicate (a) that the distribution of 
numbers for the given field is significantly different 
from the distribution in the whole population (chi-
squared test to 95% significance) and (b) that the 
particular value highlighted is over-represented. 
This is similar to the treatment of STATS 19 above 
except that the statistical test is evaluated at 95% 
confidence instead of 99.5%. This level is better 
suited to the lower number of cases in OTS for 
providing an objective guide to differences between 
the clusters and the overall population. 
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Table 9. 
Cluster representativeness by pedestrian injury 

severity (OTS): N=175 vehicles 

 Cluster %  
 1 2 3 4 5 6 7–14 Total
Slight 29 20 12 9 8 0 23 100 
Serious 30 9 15 24 4 0 19 100 
Fatal 20 0 40 10 0 20 10 100 
Total 29 15 14 14 6 1 21 100 
 

Table 10. 
Pedestrian accident clusters derived from in-

depth data (OTS): N=175 vehicles 

 Cluster %  
 1 2 3 4 5 6 7–14 Total
Pedestrian injury severity 
Slight/nil 64 81 52 42 82 0 69 63 
Serious 32 19 32 54 18 0 28 31 
Fatal 4 0 16 4 0 100 3 6 
Light conditions 
Light 100 100 0 0 100 100 56 63 
Dark 0 0 100 100 0 0 44 37 
Precipitation 
No 90 85 100 38 82 100 61 77 
Yes 10 15 0 63 18 0 39 23 
Vehicle manoeuvre 
Ahead 100 100 72 100 55 100 69 87 
Turning 0 0 28 0 45 0 31 13 
Pedestrian (age-sex) 
0–7 years 8 22 4 0 55 50 14 13 
8–15 years 24 44 8 4 45 0 42 27 
Female 36 11 24 38 0 0 14 23 
Male 32 22 64 58 0 50 31 37 
Pedestrian movement from… 
Left 58 100 100 29 0 50 39 59 
Right 34 0 0 58 100 50 58 37 
Other 8 0 0 13 0 0 3 5 
Pedestrian speed 
Walking 100 0 96 100 0 0 42 65 
Running 0 100 4 0 100 100 58 35 
Line of sight obstructed (1 sec) 
No 90 74 100 100 100 100 69 87 
Yes 10 26 0 0 0 0 31 13 
Vehicle travel speed (km/h) 
Mean 43 35 48 51 37 87 - 44 
Change of speed to impact (km/h) 
Mean -7 -6 -6 -7 -11 -7 - -7 
Total 100 100 100 100 100 100 100 100
 
Cluster 1, the largest in the set comprising 29% of 
the population, has accidents in daylight involving 
vehicles going ahead and pedestrians walking 
(Table 10). Other majority characteristics are fine 
weather and an unobstructed line of sight one 
second before impact. The mean travel speed was 
43 km/h with a reduction of 7 km/h before impact. 
The range of these last two parameters are shown 

in Figure 2 and Figure 3. Cluster 2, the second 
largest, has an over-representation of children 
running from the left with a tendency to be 
obscured. This compares interestingly with the 
corresponding STATS 19 cluster. There are also 
parallels with the STATS 19 results in clusters 3 
and 4, with the tendencies towards serious injury 
outcomes, darkness, wet weather and adults. 
Cluster 5 is the closest that a major cluster 
approaches to a turning scenario, involving 
children running across from the right side; the 
mean travel speed is 37 km/h with 11 km/h 
reduction in speed before impact. This is consistent 
with the STATS 19 turning scenario which has 
speed limits and injury outcomes at the lower end 
of the range. Two of the ten fatalities are in cluster 
6 which is too small to support any generalisations, 
but noteworthy for very high vehicle speeds. 
 

 

Figure 2.  Vehicle travel speed for clusters 1–6 
(OTS): N=175 vehicles 

Figure 2 and Figure 3 show the median values, 
interquartile ranges (IQR) and outliers for vehicle 
travel speed and change of speed to impact using 
Tukey’s hinges and outliers denoted as ‘o’ for 1.5–3 
IQR and ‘*’ for 3+ IQR [8]. 
 

 

Figure 3.  Change of speed to impact for 
clusters 1–6 (OTS): N=175 vehicles 
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DISCUSSION 
 
The decisive reason for using cluster analysis to 
identify groups and associated characteristics in the 
accident data is that the procedure is objective, 
reproducible and multivariate. It would not make 
sense to provide a subjective interpretation of the 
data to over-ride the key findings presented in 
Table 8 and Table 10. With this caveat, it is 
possible to discern some striking parallels between 
the two sets of clusters. 
 
Firstly the set of characteristics of the largest 
clusters derived from STATS 19 and OTS mirror 
the most common features of the accident 
population, establishing a type of baseline scenario 
(Table 11). 

Table 11. 
Baseline scenario 

STATS 19 Cluster 1 OTS Cluster 1 
● 39% of population 
● Daylight 
● Fine 
● Vehicle going ahead 
● 10–30 mph limit 
● Pedestrian crossing, 
especially from left 
● Not masked  
● Children over-
represented minority 

● 29% of population 
● Daylight 
● Fine 
● Vehicle going ahead 
● Speed 43 km/h 
● Pedestrian crossing, 
especially from left 
● Walking 
● Not obstructed 

 
The set of characteristics from the second largest 
clusters of each dataset differs from the first in 
having a smaller pedestrian who may be partially or 
fully obstructed from the line of sight of the driver 
and (in OTS) is moving faster than walking pace 
(Table 12). 

Table 12. 
Smaller pedestrian with obstructed line of sight 

STATS 19 Cluster 2 OTS Cluster 2 
● 14% of population 
● Daylight 
● Fine 
● Vehicle going ahead 
● 10–30 mph limit 
● Children over-
represented majority 
● Pedestrians crossing, 
especially from left 
● Masked by vehicle 

● 15% of population 
● Daylight 
● Fine 
● Vehicle going ahead 
● Speed 35 km/h 
● Children over-
represented majority  
● Pedestrian crossing, 
especially from left 
● Running 
● Obstructed for over-
represented minority 

 
The set of characteristics from the third and fourth 
largest clusters of each dataset involves darkness 
and potentially wet conditions, with a large 

pedestrian crossing at walking pace from either 
side of the carriageway without sight obstruction 
(Table 13). 

Table 13. 
Larger pedestrian in darkness and some 

precipitation 

STATS 19 Clusters 3–4 OTS Cluster 3–4 
● 21% of population 
(combined) 
● Darkness 
● Not fine over-
represented minority 
● Vehicle going ahead 
● 10–30 mph limit 
● Adult male over-
represented majority 
● Pedestrian crossing 
from both directions 
● Not masked 

● 28% of population 
(combined) 
● Darkness 
● Fine (cluster 3) and 
not fine (cluster 4) 
● Vehicle going ahead 
● Speed 48–51 km/h 
● Adults 
● Pedestrian crossing 
from both directions 
● Walking 
● Not obstructed 

 
Having used cluster analysis on the accident data to 
define a set of pedestrian collision types that have 
similar features and represent over 75% of the 
selected cases, it is considered reasonable to use 
these as relevant scenarios for generation of an 
AEB testing protocol. In further on-going work, the 
UK data is being compared to other data sources 
from different countries to ensure that a global set 
of pedestrian collisions is represented and initial 
indications are of a high level of commonality. It is 
also necessary to ensure that testing procedures are 
feasible, repeatable and reproducible. The AEB 
Group is currently considering a number of 
provisional test conditions which are not, it must be 
stressed, a final precise list, but are subject to 
further discussion, definition and finalisation. 
These are: 
●  Pedestrian walks from near-side pavement into 
path of car 
●  Pedestrian walks from near-side pavement from 
behind an obstruction into path of car 
●  Pedestrian runs from far-side pavement into path 
of car 
●  Pedestrian walks along near side of carriageway 
ahead of car 
●  Pedestrian walks across junction from near-side 
pavement into path of car turning towards far side 
into junction. 
 
This data analysis method has also been applied to 
car-to-car rear and head-on collision types [9]. For 
each of these collision types, including pedestrian 
collisions, the AEB Test Group is developing a test 
scenario along with procedures and targets that will 
evaluate the effectiveness of the AEB systems for 
preventing or mitigating these collisions [10]. 
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A restriction on the scope of the results presented 
in this paper is that they are based on data from a 
single country. The frequency with which a certain 
event or combination of factors occurs is naturally 
dependent on the local road environment, vehicle 
fleet, driver characteristics and various social and 
legal factors. At a different level, the formation of 
clusters is determined in a substantial part by the 
fields on which accidents are compared. As 
mentioned above, fields relevant to physical testing 
were used in this work. If other factors were added 
or substituted for these, it would not be surprising 
to see this reflected in the constitution of the 
clusters. A further consideration relating to the 
effect of fields is that the number of fields that can 
be used meaningfully in a cluster analysis is limited 
by the number of cases. The risk of using too many 
fields is overfitting of the data with the 
consequential danger that at least some of the 
patterns observed would not be maintained with the 
addition of extra cases. With 175 cases for the OTS 
analysis and thousands of cases for the STATS 19 
analysis, this is a relatively minor concern for the 
current work. Experience also indicates that the 
results obtained above are relatively insensitive to 
fine-tuning of the computational algorithm.  
 
CONCLUSION 
 
The most common scenarios for pedestrian 
accidents identified in the STATS 19 and OTS 
databases are described in Table 8 and Table 10. 
These include a baseline scenario where a 
pedestrian steps out from the kerb without 
obstruction of the driver’s line of sight; a similar 
second scenario where the pedestrian is smaller and 
at least partially obscured; and a third scenario in 
adverse meteorological conditions with adult 
pedestrians. The derivation of these situations from 
the accident data using cluster analysis is objective 
and mathematically reproducible, also providing a 
clear definition of the proportion of the accident 
population represented by the scenarios. 
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