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ABSTRACT 
 
The focus of the subject study was on the 
development of the closed-form solutions for 
displacement, velocity and acceleration, based upon 
the utilization of the Laplace transform, experienced 
by each collision partner involved in a collinear 
collision under the constraints of linearity in the 
force-deflection response during closure and 
separation and while subject to any number of net 
externally applied loads for which an analytic 
Laplace transform was determinable.  Starting from 
the basic expression of Newton’s Second Law, the 
coupled equations of motion were developed in 
standard matrix-vector form by the introduction of 
the definitions of structural deflections in terms of  
the displacements of the center of mass of each 
collision partners and the massless common collision 
interface.  The solution for the equations of motion 
was determined by applying the Laplace Transform 
and determining the solution for the dynamic 
stiffness matrix and transfer function by means of an 
Eigendecomposition.  The closed-form analytic for 
the Laplace domain displacement was readily 
amenable to the inverse Laplace Transform and 
thereby provided a closed-form analytic solution for 
displacement in the time domain.  The first and 
second time derivatives of this solution provided the 
closed form solution for velocity and acceleration, 
respectively.  The reduced forms of each of these 
three equations, addressing the specific limits of the 
achievement of common velocity at the terminus of 
closure and the achievement of zero acceleration due 
to the collision force at the terminus of separation, 
were then developed.   
 
The use of the residue theorem, instead of a partial 
fraction expansion, for the evaluation of the transfer 
function, coupled with the reduction in the 
complexity of the general problem secondary to both 
the complex conjugate nature of the solutions for the 
Eigenvalue problem and the reduction of the same to 
only complex roots for the solution to the 
characteristic polynomial of the dynamic stiffness 
matrix for the undamped problem, revealed a solution 
set comprised of a rigid body mode and a solution 

based upon the circular frequency of the effective 
system mass and stiffness.  Depending on the nature 
of the net externally applied forces, the solution for 
the time of terminus of closure could be determined 
from basic trigonometric relationships or from 
equating the velocities of the collision partners in the 
Laplace domain, solving for the Laplace variable and 
then performing an inverse Laplace transform to 
obtain the solution in the time domain.  The terminus 
of the separation could be solved for in a similar 
manner through the use of the acceleration of either 
collision partner. 
 
INTRODUCTION 
 
Collinear vehicle-to-vehicle collisions, either in full 
actuality or reductive in the case of minimal vehicle 
rotation or lateral translation during the collision 
phase, thereby reducing the collision phase to that of 
global uniaxiality, represent a common situation 
encountered in the field of motor vehicle accident 
reconstruction. The analysis of such collisions, as 
with a substantial number of vehicle-to-vehicle 
collisions, is predicated upon the treatment of the 
collision partners, during the duration of the collision, 
as being a single system subject solely to the collision 
force, generated internally, within the system.  Forces 
applied external to the system (e.g. braking, 
acceleration, drag, etc.) are typically neglected as 
their magnitude is substantially smaller than that of 
the magnitude of the collision force.  There are two 
general situations in which such an approach may 
lead to the substantive underestimation of the 
collision severity.  The first case is when one or both 
of the collision partners is interacting with at least 
one additional partner during the collision phase.  
The second is in the case of exceedingly low velocity 
collisions.  There are a number of empirical studies 
within the scientific literature that detail the collision 
response for the latter case [1-5] or for relatable 
events [2, 6-8].  
 
From the modeling perspective, the focus of the 
extant scientific literature has been within the context 
of modeling the effects of brake application during 
the collision phase.  Emori and Horiguchi [1] and 
Siegmund et al. [2] modeled the effects of braking by 



adding impulse terms to the post-collision side of the 
one dimensional conservation of linear momentum 
equation.  This was combined with the definition of 
the coefficient of restitution to derive paired 
equations for the change in velocity of each collision 
partner in relation to the velocity of the striking 
vehicle under the case of the struck vehicle being at 
rest at the start of closure.  Anderson et al. [4] 
expanded this formulation in terms of closing speed.  
Mastandrea and Vangi [9] approached the problem 
by separating the closure and separation phases.  The 
separation force-deflection response was modeled as 
being bilinear with the inflection point being defined 
by the collision force magnitude corresponding to the 
collision force magnitude on loading associated with 
the linear bumper stiffness.  The authors 
implemented a discretized form of the equations of 
motion and braking force, over each sequential time 
step, was taken as the average value between the time 
step.  The cited literature has focused on the use of 
time domain techniques for modeling the collinear 
vehicle-to-vehicle problem, under global uniaxial 
constraints, and with net externally applied forces 
present.   
 
The objective of the subject study was to apply an 
integral transform method, specifically the Laplace 
transform method, to the subject problem, under strict 
linear force-deflection modeling constraints. 
 
THEORY 
 
Collinearity with global uniaxiallity greatly simplifies 
the collision problem by reducing the rotation 
matrices associated with orientation to identity 
matrices and by reducing the degrees of freedom for 
each collision partner to unity.  We consider the case 
of an aligned collinear collision between two 
collision partners.  For ease of reference, the collision 
partners and their relevant parameters are referenced 
using the subscript notation of one and two, 
respectively.  Two limiting factors are emplaced in 
regards to the subject theoretical development.  The 
first is that the collision force is a function of the 
structural deflection of the collision partners.  The 
second is that scope of externally applied unbalanced 
forces applied to each collision partner are either 
constant or temporally varying without the explicit 
inclusion of being functions of displacement.  Terms 
in boldface type represent vector quantities. 
 
The collision is temporally manifested by the start of 
closure, denoted as t = to, the terminus of closure/start 
of separation, denoted as t = tc and the terminus of 
separation, denoted as t = ts.  The structural deflection 
experienced by the contacted regions of the first and 

second collision partner, are denoted as δ1(t) and 
δ2(t), respectively.  The peak deflection experienced 
by each collision partner, under the modeling limits, 
occurs at t = tc and is denoted as δ1(tc) = δ1d and δ2(tc) 
= δ2d, respectively.  The residual deformation (i.e. 
crush – a purely static parameter) for each collision 
partner, under the modeling limits, occurs at t = ts and 
is denoted as δ1(ts) = δ1s and δ2(ts) = δ2s, respectively.  
The center of mass displacement experienced by each 
collision partner, measured with respect to an inertial 
frame of reference, is denoted by u1(t) and u2(t), 
respectively.  The displacement of the common 
collision interface between the two collision partners, 
measured with respect to an inertial frame of 
reference, is denoted as uIF(t).  The single and double 
dot notation is used for velocity and acceleration, 
respectively.  The collision force is denoted as Fc(t) 
and has a peak magnitude |Fcp| at t = tc and zero 
magnitude at t = ts.  Figure 1 depicts the collinear 
collision under consideration. 
 

 
 
Figure 1.  Collinear collision under consideration 
 
Equations of motion for the collinear collision 
 
The second order differential equation of motion for 
each collision partner can be written through the 
direct implementation of Newton’s Second Law [10]. 
 
 ( ) ( )1 1 c 1extm t t= − +&&u F F   (1). 

 
 ( ) ( )2 2 c 2extm t t= +&&u F F   (2). 

 
As noted previously, the form of the externally 
applied unbalanced forces on either collision partner 
are in the form of a constant force Fjext = Fjconstant, a 
time varying force Fjext= Fjext(t) or a combination of 
the two. 
 
Linear loading and unloading models 
 
The simplest method for modeling the force-
deflection response is that of a linear relationship 
between force and deflection.  In this case, each 
collision partner has a structural response defined as 



k1 and k2, which differ from each other during closure 
(loading) and separation (unloading) and which differ 
for each collision partner during loading and 
unloading.  The limitations of the linear-linear model 
have been detailed elsewhere [11-12].  We consider 
the time parametric force deflection response 
between time t = ta and time t = tb such that tb > ta.  
Figure 2 depicts a plot of the magnitude of the 
collision force as a function of the deflection for each 
collision partner between ta and tb.   
 

 
Figure 2.  Magnitude of collision force plotted as a 
function of deflection for each collision partner for 
the linear force-deflection model. 
 
The structural stiffness of each collision partner is 
simply the slope of the response between ta and tb.  
The force values shown in equation (3) represent the 
magnitude of the collision force and the subscripts 
“a” and “b” denote evaluation at t = ta and t = tb 
respectively.  
 

 cb ca cb ca
1 2

1b 1a 2b 2a

k k
− −

= =
− −δ δ δ δ

F F F F
  (3). 

 
Each of the equations shown in (3) can be solved for 
Fcb. 
 
 ( ) ( )cb ca 1 1b 1a cb ca 2 2b 2ak k= + − = + −δ δ δ δF F F F  (4). 

 
The magnitude of the collision force is equal, as 
determined from either vehicle, at all points in time 
during the collision.  As a result, the two equations 
shown in (4) can be set equal to each other at tb and 
Fca can be eliminated from both sides of the equality. 
 
 ( ) ( )1 1b 1a 2 2b 2ak k− = −δ δ δ δ   (5). 

 
The structural deflections can be readily defined in 
terms of the center of mass displacements of each 
collision partner and in terms of the displacement of 
the common contact interface. 
 

 
( ) ( ) ( )
( ) ( ) ( )

1 1 IV

2 IV 2

t t t

t t t

= −

= −

δ

δ

u u

u u
  (6). 

 

Defining the deflections for both collision partners at 
ta and tb, in terms of the displacements and 
substituting into equation (5) leads to a solution for 
uIFb. 
 

 
( )1 1b 1 1a 2 2b 2 2a

IVb IVa
1 2

k k k k

k k

− + −
= +

+
u u u u

u u   (7). 

 
A closed-form analytic solution for the displacement 
of the common collision interface at t = tb is one that 
is generally not developable in cases in which the 
force-deflection response is non-linear.  Substitution 
of equation (7) into either of the equations shown in 
(4) results in a solution for the collision force in 
terms of the center of mass displacements at ta and tb. 
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  (8). 

 
Substitution of equation (8) into equations (1) and (2) 
provides for the form of the equations of motion for 
the specific linear force-deflection modeling 
methodology under consideration. 
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  (9). 
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  (10). 

 
The constant term, for each phase, defined by the 
quotient of the product of the individual stiffnesses to 
the sum of the stiffnesses, is termed the effective 
stiffness, keff.  Equations (9) and (10) can be written 
in vector-matrix form. 
 
 ( ) ( ) ca ua extt t+ = + +&& ΔMu Ku F F F   (11). 

 
Where: 
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eff eff2

k km 0

k k0 m
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M K   (12). 
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For the analysis of the closure phase, the subscript 
“o” denoting the start of closure replaces the general 
subscript “a.”  The initial displacement conditions are 
generally taken as being zero.  The column vectors 
Fco and FΔua are both 0.  The initial velocities of the 
collision partners are defined as: 
 

 1o

2o

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

&
&

&o

u
u

u
  (15). 

 
The effective stiffness during closure is derived from 
the loading stiffness values of both collision partners. 
 

 1load 2load
eff

1load 2load

k k
k

k k
=

+
  (16). 

 
The initial conditions for separation are the terminus 
conditions for closure.  The constant valued forcing 
terms become: 
 

 
( )

( )
cp eff 2c 1c

cp eff 2c 1c

k

k

− ⎡− − ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦
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F u u
F F
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The effective stiffness in (17) is the effective stiffness 
for the unloading phase and is defined as: 
 

 1unload 2unload
eff

1unload 2unload

k k
k

k k
=

+
  (18). 

 
The initial conditions for the unload phase, using t* = 
t – tc, are: 
 

 1c 1c

2c 2c

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

&
&
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The velocities of the collision partners, at the 
terminus of closure, are equal. 
 

Laplace transform and Eigensolution for the 
undamped equations of motion 
 
The unilateral Laplace transform for a time domain 
function f(t) that is integrable over the domain [0, ∞) 
is defined as: 
 

 ( ) ( ){ } ( )st

0

F s f t e f t dt
∞

−= = ∫L   (20). 

 
Taking the Laplace transform of equation (11) 
converts the differential equations of motion in the 
time domain into algebraic equations in the Laplace 
domain. 
 

 
( )( ) ( )

( )

2

ca ua
ext

s s s s

s s
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&
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F F
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  (21). 

 
Rearranging equation (21): 
 

 
( ) ( )
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s s

s
s s
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M K u

F F
Mu Mu F

  (22). 

 
The dynamic stiffness matrix D(s) and the transfer 
function H(s) are defined as: 
 
 ( ) ( )1 2s s s−= = +D H M K   (23). 

 
For a complex valued function with characteristic 
polynomial of the order m and degrees of freedom N, 
m = 2N + p; p ≥ 0.  For a complex valued non-zero 
square matrix under the case of having m 
Eigenvalues appearing in 2N complex conjugate 
pairs, the Eigenvalues are sj and js  with 

corresponding Eigenvectors zj and jz  for 

j 1, , 2N.∀ = K    This holds for the undamped 

problem.  The Eigenproblem for any such matrix 
X(s), s ,∈   can be expressed in the following 
manner where νk(s) is the distinct kth Eigenvalue with 
corresponding distinct Eigenvector φk(s). 
 
 ( ) ( ) ( ) ( )k k ks s s s k 1, , Nφ = ν φ ∀ = KX   (24). 

 
Because the Eigenvalues, νk(s), are distinct, the 
Eigenvectors are orthogonal and the following 
relationship holds: 
 
 ( ) ( )T

j k kjs s k, j 1, , Nφ φ = δ ∀ = K   (25). 



 
Equation (24) can then be rewritten as: 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
T

j k k kj
T

s s s s

s s s s

φ φ = ν δ
=Φ Φ

X

X ν
  (26). 

 
Equation (26) is the Eigendecomposition of X(s).  
Substitution of the dynamic stiffness matrix D(s) for 
X(s) results in the following solutions for D(s) and 
H(s). 
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  (27). 

 
The use of the residue theorem allows for the transfer 
function to be written in the form shown by equation 
(28),which avoids the necessity for a partial fraction 
expansion of the transfer function. 
 

 ( )
m

j

j 1 j

s
s s=

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠
∑

R
H   (28). 

 
When s = sj, the rth Eigenvalue, νr, is νr(sj), which 
equals zero, while all other Eigenvalues are non-zero 
and the corresponding Eigenvector φr(sj) = zj.  
Adhikari [13] has shown that the residue Rj and the 
transfer function H(s) may be written as: 
 

 ( )
j j

j j j j

j

j j
j

s

s

= = γ
∂

∂

T
T

T

z z
R z z

D
z z

  (29). 

 
The transfer function H(s) then becomes: 
 

 ( )
m

j j j

j 1 j

s
s s=

⎛ ⎞γ
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∑

Tz z
H   (30). 

 
Adhikari [13] has also shown that for the case in 
which there exists 2N eigenvalues in complex 
conjugate form, among the m Eigenvalues, equation 
(30) can be written as: 
 

 

( )
N m

j j j j j j j j j

j 1 j 2N 1j j j

s

s s s s s s= = +

=

⎛ ⎞ ⎛ ⎞γ γ γ
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∑ ∑
T T T

H

z z z z z z   (31). 

 
For the undamped case such that the characteristic 
polynomial of D(s) of second order and zero order 
terms in s, m = 2N and p = 0.  The second term to the 
right of the equality in (31) becomes zero secondary 
to the limits on the summation operator.  The partial 
derivative of the dynamic stiffness matrix, evaluated 
at sj, with respect to sj becomes: 
 

 
( )

j
j

s
2s

s

∂
=

∂
D

M   (32). 

 
Correspondingly: 
 

 ( )j
j j jj

j j
j

1 1
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s
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∂

∂
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z MzD

z z

  (33). 

 
The transfer function then becomes: 
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( ) ( )
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1
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=
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H

z z z z

z Mz z Mz

 (34). 

 
For the undamped system, the characteristic 
polynomial of D(s) results in a solution for the 
Eigenvalue problem where sj = aj + jbj = jbj, where 

j jb ,s∈ ∈  for j.∀  As a result: 

 
 j j j j js jb s jb s= = − = −   (35). 

 
The Eigenvalues of D(s) are determined by taking the 
determinant of D(s) and solving for the values of sj 
such that det[D(s)] is equal to zero. 
 

 ( ) 2det s det s 0⎡ ⎤= + =⎡ ⎤⎣ ⎦ ⎣ ⎦D M K   (36). 

 
Substitution of the terms from M and K into equation 
(36) results in the following form of the characteristic 
polynomial. 
 

 ( )( )2 2
1 2 eff 1 2s m m s k m m 0+ + =   (37). 

 
The Eigenvalues are the roots of equation (37) 
 



 1 2
1 2 eff

1 2

m m
s 0 s j k

m m

⎛ ⎞+
= = ± ⎜ ⎟

⎝ ⎠
  (38). 

 
Correspondingly: 
 

 1 2
1 2 eff

1 2

m m
b 0 b k

m m

⎛ ⎞+
= = ⎜ ⎟

⎝ ⎠
  (39). 

 
The Eigenvector problem for D(s) is given as: 
 

 ( )j js 0=D z   (40). 

 
Substitution for the positions of D(sj) in terms of the 
components of M and the positions of K results in 
the following: 
 

 
2

j1j 1 eff eff
2

j2eff j 2 eff

zs m k k 0

zk s m k 0
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=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

  (41). 

 
Normalizing the solution such that zj2 is unity: 
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z
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For the conjugate of sj: 
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From equation (35), it can be seen that the square of 
the Eigenvalue sj = jbj and its complex conjugate are 
equal.  Therefore, the Eigenvector zj and its complex 
conjugate are equal for the undamped case. 
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The Eigenvectors corresponding to s1 and s2 thus 
become: 
 

 
1
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Equation (34) requires the evaluation of the scalars 

j j
Tz Mz and j j.

Tz Mz  
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Terms of the form j j

Tz z  and j j
Tz z are matrices: 
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  (48). 

 
Equation (34) can then be rewritten as: 
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From equation (45), the values of c1 and c2 are: 
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Substitution of equation (49) into equation (22) yields 
the solution for the displacement of the collision 
partners in the Laplace domain. 
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The inverse Laplace transform of equation (51) yields 
the time domain displacement solution.  The first and 
second derivatives, with respect to time, yield the 
velocity and acceleration solution, respectively, in the 
time domain. 
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For the case in which a rigid body mode of motion is 
indication (i.e. sj = 0), the terms associated with j = 1 

can be separated from the summation operator in 
equation (51) and evaluated separately. 
 
Specific issues regarding closure 
 
Using the initial conditions, described previously, for 
a typical closure scenario, equation (51) reduces to 
the following form: 
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Applying the summation operator and substituting for 
the constituent terms results in the following form of 
the displacement solution in the Laplace domain. 
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The time domain solutions are obtained as before. 
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In the case in which there are no externally applied 
unbalanced forces on either collision partner, the time 
at which closure terminates can readily be found as tc 
= π / (2b2).  An analytical closed form solution for tc 
can also be found for cases in which Fext is not zero 
and for which the time domain velocity solution 
includes other functions of time besides cos(b2t).  The 
solution in such cases is determined by taking the 
Laplace transform of equation (58), setting the 
velocities of the collision partners equal to each other 
and solving for s.  The inverse Laplace transform of s 
yields the solution tc δ(tc) where δ is the Dirac Delta 
function and δ(tc) has a value of unity at tc and zero 
elsewhere.  With the value of tc known, the 
displacements at the terminus of closure can be 
solved for using equation (57) and the velocities at 
the terminus of closure can be solved for using 
equation (58)  The displacement of the common 
collision interface at the terminus of closure can then 
be solved for using equation (7)  The peak deflections 
can then be determined from equation (6) and the 
magnitude of the peak collision force can be 
determined from equation (5) 
 
Specific issues regarding separation 
 
As noted previously, the terminus conditions 
regarding closure represent the initial conditions for 
separation.  Furthermore, the equations defined in 
(17) become operative.  Because the time shift of t* = 
t – tc is being used, the conjoined loading and 
unloading solutions, require the substitution of the 
latter for the former for a complete solution in terms 
of t.  The tilde notation is employed to distinguish 
parameters associated with the unload (separation) 
phase from those associated with the load (closure) 
phase.  We sequentially expand the three terms to the 
right of the equality of equation (51) 
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In equation (61), the second term within the 
parenthesis on the right of the equality is zero as the 
differences in the velocities of the collision partners 
at closure is zero.  In equation (62), the first term 
within the parenthesis on the right of the equality is 
clearly zero (i.e. -1+1 = 0).  Taking the inverse 
Laplace transform of equations (60) through (62) and 
summing the resultants (along with the general form 
for the externally applied unbalanced forces) gives 
the specific form of the displacement solution in the 
time domain. 
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The solutions for the velocity and acceleration are: 
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The time at which separation occurs is the time at 
which the accelerations of the collision partners due 
to the collision force alone, drops to zero.  By the 
form of equation (65), this occurs at ts

* = π / (2b2). 
 
ANALYSIS 
 
We first consider the case in which no net externally 
applied forces are present to develop a reference.  We 
define the constant terms Am ∀m, which are readily 
defined in the following development.  From 
equation (39), b11 = b12 = 0 while b21 and b22, where 
the second subscript represents loading and 
unloading, respectively, are non-zero. 
 
During closure, from the form of equation (57), with 
the term associated with the external forces set to 
zero, the displacement for each collision partner may 
be written as 
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The velocity and acceleration during closure are: 
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The displacement of the common collision interface 
during closure is (where the stiffness values are the 
loading stiffnesses): 
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The structural deflection experienced by each 
collision partner during closure is: 
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As noted before, the terminus of closure is at t = tc = 
0.5πb21

-1.  The common velocity reached at the 
terminus of closure, vcom is equal to Ao and the peak 
acceleration for each collision partner is –A1jb21

2.  



The peak displacements for each collision partner and 
the common collision interface are:  
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The peak deflections are: 
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Finally, the magnitude of the peak collision force is: 
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During separation, t* = t – tc.  From equation (63) it 
is evident that the form of the displacement for each 
collision partner during unloading is: 
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The solutions for the velocity and acceleration are: 
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The displacement of the common collision interface 
during separation is (the stiffness values are the 
unloading stiffnesses): 
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The deflection experienced by each collision partner 
during separation is: 
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The terminus of separation, as noted previously, 
occurs when the collision force drops to zero 
magnitude.  This occurs at t* = 0.5πb22

-1.  The 
displacements at the terminus of separation are: 
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The residual damage depths are: 
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Linear net external forces  
 
We define the net externally applied force on the 
striking vehicle as Fext1(t) = go1 + g11t.  When this 
force is time invariant (i.e. g11 = 0) then the model 
reduces to a simple constant force model (i.e. g01 = -
fμm1g for constant braking).  The external force 
vector, in the Laplace domain, in equation (51), 
becomes: 
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Multiplying the external force vector, in the Laplace 
domain, by the transfer function and taking the 
inverse Laplace transform results in the following 
time domain solution (using the subscript notation as 
before): 
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As expected, substitution of t = 0 into equation (84) 
results in zero displacement due to the externally 
applied loads.  The corresponding first and second 
time derivatives, required for the velocity and 
acceleration solution, respectively, are: 
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The time at which closure occurs can be readily 
obtained by setting the velocities of the collision 
partners equal to each other and solving for t = tc.  
For zero initial displacement conditions the solution 
is determinate in closed form but is of such length as 
to preclude its inclusion herein. 
 
The solutions for the displacement and acceleration 
of each collision partner at the terminus of closure are 
obtained, directly, by substitution of the time at 
which closure terminates into equations (84) and (86) 
respectively.  Using the terminus of closure 
conditions as the initial conditions for the separation 
phase, the time domain displacement solution is: 
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The velocity of each collision partner during 
separation is: 
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Where: 
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Finally, the acceleration of each collision partner 
during separation is: 
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The time at which separation terminates can be 
determined in closed form as before.  The solution, 
however, is exceedingly lengthy and precluded from 
inclusion due to space limitations.  Substitution of the 
solution for the time at which separation terminates 
into equation (87) yields the solution for the 
displacement at the terminus of closure.  Similarly, 

substitution into equation (90) yields the velocity of 
each collision partner at separation. 
 
EXAMPLE 
 
As a hypothetical example, we consider the inline 
collision between two collision partners with the 
following parameters: m1 = 1500 kg, m2 = 1900 kg, 
k1 (loading phase) = 5 ⋅ 105 Nm-1, k2 (loading phase) 
= 1.9 ⋅ 105 Nm-1, k1 (unloading phase) = 3 ⋅ 106 Nm-1, 
k2 (unloading phase) = 5 ⋅ 106 Nm-1, zero magnitude 
initial displacement and with initial velocities of 15 
and 4 msec-1.  The circular frequency for the load 
phase, using equation (39), is 12.8 sec-1.  The load 
phase displacement response, under no net external 
forces, for each collision partner and the common 
collision interface, respectively, are: 
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The load phase velocity and acceleration is obtained 
by the simple first and second time derivatives of the 
equations shown in (96).  The structural deflection, 
during the load phase, for each collision partner, is: 
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The time at which closure occurs is 0.123 sec with 
peak displacements of 1.56 m and 0.71 m for each 
collision partner and with peak deflections of 0.24 m 
and 0.62 m, respectively.  The common velocity at 
the terminus of closure is 8.85 msec-1 and the peak 
collision force is 1.18 ⋅106 N.  For the unload phase, 
the circular frequency is 47.3 sec-1.  The displacement 
for each collision partner and the common collision 
interface, respectively, are: 
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Separation terminates at t* = 0.033 sec (ts = 0.156 
sec) with terminus displacement values of 1.83 m and 
1.03 m, respectively, and peak deflections of 0.20 m 
and 0.59 m, respectively.  The separation velocity of 
each collision partner is 7.19 and 10.2 msec-1, 
respectively.  Figure 3 depicts the kinematic response 
for both collision partners. 



 

 
Figure 3.  Displacement, velocity and acceleration 
time histories for the subject example. 
 
Figure 4 depicts the parametric in time force-
deflection response for both collision partners. 
 

 
 
Figure 4.  Collision force magnitude as a function of 
structural deflection for each collision partner. 
 
We consider this problem, again, but with the 
following externally applied forces acting on each 
collision partner throughout the collision duration 
(with μ1 = -0.9 and μ2 = 0.3): 
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The loading phase displacement response for the 
collision partners and the common collision interface 
are: 
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The velocity and acceleration solutions are obtained, 
as before, by the simple first and second time 
derivatives.  Closure terminates at 0.116 sec with a 
resultant peak displacement of 1.45 m, 0.663 m and 
1.24 m, respectively for the collision partners and the 
common collision interface.  The common velocity at 
closure is 8.59 msec-1.  The structural deflection 
experienced by each collision partner, during closure, 
is: 
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The peak deflection for each collision partner is 
0.217 m and 0.572m, respectively.  The peak 
collision force is 1.09 ⋅ 106 N.  The time at which 
separation occurs is t* = 3.49⋅10-2 sec.  The unload 
displacement response of the collision partners and 
the common collision interface are: 
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The displacements at separation for the collision 
partners and the common collision interface are 1.72 
m, 0.994 m and 1.54 m, respectively.  The residual 
deflections for each collision partner are 0.174 m and 
0.546 m with the corresponding deflection-time 
histories being: 
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The kinematic response is shown in Figure 5. 
 

 
Figure 5.  Kinematic response for the subject 
example with net unbalanced externally applied 
loads. 
 
The force-deflection response follows that shown in 
Figure 4, but with the terminus of closure occurring 
at a lower peak collision force magnitude and with 
correspondingly lower magnitude peak and residual 
deflection magnitudes. 
 
DISCUSSION 
 
Net unbalanced externally applied loads, with respect 
to the system comprised of collision partners, are 
generally neglected when considering a collision 
phase analysis.  This approach is generally apt in that 
the collision force magnitude and its impulse are 
generally the dominant factors in most collisions 
except for those that are classifiable as exceedingly 
minor severity collisions.  Higher severity collisions 
involving a substantively disabled collision partner or 
collisions in which significant snagging is present 
during the collision phase represent exceptions to this 
generality.  The typical case, however, involves 
collisions in which the net unbalanced externally 
applied loads, consisting of tire forces acting upon 
the collision partners during the impact, are of 
sufficient magnitude as to warrant their effects.  The 
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approach taken in the subject study, in regards to the 
inclusion of such forces, was through the use of the 
Laplace transform of the second order coupled 
differential equations of motion.  In this regard, two 
fundamental limitations are present.  The first is that 
the collision partner structural modeling approach, 
for both closure and separation, is predicated on the 
linear elastic model.  This approach, while allowing 
for the relatively simple decomposition of the 
undamped equations of motion, would require further 
modification in cases in which proportional damping 
is included in the structural response model.  The 
linear load-linear unload model, while limited, can be 
utilized in certain appropriate cases [11].  The second 
limitation is that the set of externally applied loads 
must have a determinate Laplace transform and must 
not alter the dynamic stiffness matrix, D(s).  
Correspondingly, the framework developed herein 
can readily handle the temporally diminishing, 
operator-mediated, brake force that arises from the 
occupant kinematic response for a vehicle impacted 
in the rear and with the foot of the operator initially 
depressing the brake pedal if such force is defined on 
a purely temporal basis.  However, if such an 
unbalanced load is defined in terms of struck vehicle 
forward displacement, the dynamic stiffness matrix 
will be altered.  The worked example, while limited 
to the first two terms of a polynomial representation 
of the net externally applied force model, readily 
shows the utility of the subject modeling 
methodology.  Future work will focus on expanding 
the subject model for modeling chain-reaction 
collinear collisions and upon including the effects of 
proportional damping with respect to the structural 
response model. 
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