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ABSTRACT 

Drowsy driving is a significant contributor 
to death and injury crashes on our nation’s 
highways accounting for more than 80000 
crashes and 850 fatalities per year.  Recent 
research using data from the 100-car study 
found that drowsy driving contributed to 
22% to 24% of crashes and near-crashes 
observed.  This paper describes an approach 
that detects impairment from drowsiness in 
real time using inexpensive vehicle-based 
sensors to detect drowsiness-related changes 
in drivers’ behavior. 
 
Data were collected on the National 

Advanced Driving Simulator from 72 
volunteer drivers.  Three age groups (21-34, 
38-51, and 55-68 years of age) drove 
through representative situations on three 
types of roadways (urban, freeway, and 
rural) at three times of day (9 am-1 pm, 10 
pm-2 am, and 2 am – 4 am) representing 
different levels of drowsiness. 
 
Driving data indicated that a complex 
relationship exists wherein driving 
performance improves with low levels of 
drowsiness in the early night session before 
degrading in the late night session.  This 
study demonstrates the feasibility of 
detecting drowsiness with vehicle-based 



sensors.  Results show that alcohol and 
drowsiness impairment do not allow for a 
single algorithm to detect both types of 
impairment; however a single algorithm 
approach with different training data for the 
different types of impairment may be 
successful.  To detect impairment due to 
either alcohol or drowsiness, a more 
complex approach is necessary where 
separate algorithms are combined to work 
with each other.  These results suggest 
promise in a vehicle-based approach to 
detecting and differentiating multiple types 
of impairment. 
 
INTRODUCTION 

Exact counts of the number of crashes 
caused by drowsiness are hard to obtain due 
to the use of varying methodologies.  The 
Gallup organization surveyed drivers and 
estimated that during the 5 years prior to 
2002 and found that 1.35 million drivers 
may have been involved in a drowsy driving 
related crash [1]. A National Highway 
Traffic Safety Administration (NHTSA) 
report, which contained crash report data 
between 2005 and 2009, attributed 83,000 
crashes per year and 886 fatal crashes per 
year to drowsy, fatigued, or sleeping drivers.  
Over the five-year period these causes 
resulted in 5,021 fatalities.  
 
Other research methods and driver 
populations lead to different estimates for 
the percentage of drowsy driving crashes.  
The 100-car naturalistic driving study found 
that drowsy driving contributed to 22% to 
24% of crashes and near-crashes observed 
[2]. In a report to congress, NHTSA stated 
that 3.2 % of crashes were related to actual 
sleep [3]. An estimated 1% of all large-truck 
crashes, 3–6 % of fatal heavy-truck crashes, 
and 15–33% of fatal-to-the-truck-occupant-
only crashes have been attributed to driver 
fatigue as a primary factor [4]. Although the 
methodologies result in different estimates, 

all point to a significant problem.   
 
According to the National Sleep 
Foundation’s 2009 annual Sleep in America 
survey, 28 percent of drivers had driven 
while drowsy at least once per month in the 
past year. Of those that drove while drowsy, 
28% have fallen asleep [5]. A survey 
conducted in 2003 found that 37% of drivers 
have fallen asleep for at least a moment 
(nodded off) while driving at least once in 
their driving career, while 8% of them had 
done it in the last six months.   
 
Of those encountering a sleeping episode, 
58% of drivers were on a multi-lane 
interstate highway, and 92% of them were 
startled awake and of those who were 
startled awake, 33% wandered into another 
lane or shoulder, 19% crossed the centerline 
and 10% ran off road [1]. Drowsy driving is 
not only common in the United States, it 
was found that one in five Canadian drivers 
have admitted to nodding off or falling 
asleep at least once while driving [6] and 
that driver fatigue contributes to at least 9% 
to 10% of crashes in the UK [7].  
 
Clearly, there is cause for concern about the 
rate of drowsy driving and the resultant 
crashes, injuries and fatalities.  This concern 
creates a need for research to facilitate the 
development of technological approaches 
that will reduce the number of lives lost due 
to drowsy driving.  The present aim is to 
extend Impairment Monitoring to Promote 
Avoidance of Crashes using Technology or 
IMPACT, a program of research into 
detecting alcohol-impaired driving based 
primarily upon vehicle-based measures to 
the domain of drowsy driving [8].  IMPACT 
has developed alcohol detection algorithms 
for all drivers (general algorithms) and 
algorithms that take into account individual 
driving differences (individualized 
algorithms). This work explores how well 



the previously developed algorithms that 
detect impairment from alcohol are able to 
detect drowsiness, and how best to modify 
those algorithms, if necessary, to detect 
both.  The algorithms that were previously 
developed to detect alcohol impairment 
were effective at levels comparable to the 
Standardized Field Sobriety Test in eight to 
twenty-five minutes.   
 
Although there were many objectives to this 
research, this paper will focus on the 
following: 

• Can existing algorithms for detecting 
impairment be used to detect 
drowsiness? 

• Can real-time algorithms reliably 
detect drowsiness in advance of a 
drowsiness-related mishap? 

 
METHOD 

Participants 
 
Data were collected from 72 volunteer 
drivers from three age groups (21-34, 38-51, 
and 55-68 years of age) driving through 
representative situations on three types of 
roadways (urban, freeway, and rural).  
Participants drove at three times of day (9 
am-1 pm, 10 pm-2 am, and 2 am – 4 am) to 
induce different levels of drowsiness.    
 
To be eligible, participants were required to:  
• Possess a valid US driver’s license 
• Have been licensed driver for two or 

more years 
• Drive at least 10,000 miles per year 
• Have no restrictions on driver’s license 

except for vision 
• Not require the use of any special 

equipment to drive. 
 
 
 

Procedure 
 
An initial telephone interview was 
conducted to determine eligibility for the 
study. Applicants were screened in terms of 
health history, current health status, 
medication and drug usage, 
morning/evening tendencies [9], and sleep 
apnea history [10].  Pregnancy, disease, or 
evidence of sleep apnea or being a night 
person  were excluded from the study as 
were those taking prescription medications 
that cause drowsiness.  
 
Each participant participated in four sessions 
over three visits.  The two overnight drives 
occurred on a single night.  The daytime and 
nighttime data collection visits were 
separated by three days and the order of 
these visits and scenario event sequence 
were counterbalanced 
 
On study Visit 1 (screening), each 
participant informed consent was obtained. 
They then provided a urine sample for the 
drug screen and, for females, the pregnancy 
screen. During a five-minute period 
following these activities, the participant sat 
alone in the room where subsequent 
measurements of blood pressure, heart rate, 
height, and weight were made.  
 
Cardiovascular measures were taken and 
compared to acceptable ranges (systolic 
blood pressure = 120 ± 30 mmHg, diastolic 
blood pressure = 80 ± 20 mmHg, heart rate 
= 70 ± 20) to assess eligibility for the study. 
If participants met study criteria, they 
completed demographic surveys. These 
surveys included questions related to 
crashes, moving violations, driver behavior, 
sleeping, and driving history. Participants 
viewed an orientation and training 
presentation that provided an overview of 
the simulator cab and the secondary task 
they were asked to complete while driving. 



The task consisted of the participant turning 
on the CD player and sequentially advancing 
the CD player to two tracks provided in an 
auditory cue and then turning off the CD 
player. 
 
Participants then completed the practice 
drive and completed surveys after their drive 
about how they felt and about the realism of 
the simulator.  The practice drive included 
making a left hand turn, driving on two- and 
four-lane roads, and changing CDs.  If the 
participant remained eligible, baseline EEG 
measurements were recorded.  Prior to their 
study visits, participants were provided with 
activity monitors and activity logs to verify 
sleep preceding the visits. 
 
During the daytime-alert visit, participants 
were asked to not ingest any caffeine. Logs 
were reviewed to verify a normal night’s 
sleep (at least six hours) the preceding night. 
Their BAC was checked to ensure that they 
were not under the influence of alcohol.  
Participants were then fitted with the 
wireless B-Alert X-10 EEG cap [11], [12] 
and electrodes to record their EEG and heart 
rate.  The participants then entered the 
simulator and eye tracking calibrations were 
completed.  
 
Prior to beginning the drive, the participants 
also completed a questionnaire about their 
current sleepiness level, the Stanford 
Sleepiness Scale [13], and a version of the 
Psychomotor Vigilance Task or PVT 
(Cognitive Media Iowa City, IA) based on 
the Psychomotor Vigilance Task [14], [15].  
The participants drove through the 
simulation scenario.  
 
Following the drive, participants were again 
administered the Stanford Sleepiness Scale, 
the wellness survey, PVT, a Retrospective 
Sleepiness Scale, and a simulator realism 
survey.  The Retrospective Sleepiness Scale 

required subjective judgments of drowsiness 
at specified scenario locations. The B-Alert 
cap was then removed.   
 
During the nighttime-drowsy visit, 
participants were instructed to restrict 
beverage consumption to water after 12:00 
pm on the day of their overnight visit, to 
minimize caffeine intake. Participants were 
picked up at their homes after having eaten 
dinner, and transported to the simulation 
facility to arrive around 7pm.  Logs were 
reviewed to verify a normal night’s sleep (at 
least six hours) the preceding night and that 
they did not take any naps during the day. 
Caffeine intake was reviewed and if caffeine 
was consumed after noon on the day of the 
overnight drive, the participant was either 
rescheduled or dropped from the study.  
Participants were then fitted with the B-
Alert monitoring device.  
 
A variety of activities were provided to keep 
participants awake including activities on an 
iPad, reading, playing computer games, etc. 
They were monitored to ensure they did not 
fall asleep or converse with other 
participants.  If participants began to fall 
asleep, they were engaged by a researcher to 
keep them awake.  The participants 
completed the Stanford Sleepiness Scale 
every 30 minutes until they drove.  One hour 
prior to their drive, they were taken to a 
private room to wait. They completed a PVT 
at this time, and also at 30 minutes prior to 
the drive. Participants were escorted to the 
simulator between 22:00 and 01:00 for their 
first drives. Once in the simulator, eye 
tracking calibration procedures were 
performed, and the B-Alert electrode 
connection was verified. Before starting the 
drive, the participants completed a PVT and 
Stanford Sleepiness Scale.  After the drive, 
participants completed the Stanford 
Sleepiness Scale, a Wellness Survey, a PVT, 
and a Retrospective Sleepiness Scale. 



 
Participants were then escorted back to a 
separate waiting area where TV, movies, 
reading, computer games, etc. were 
available. A Stanford Sleepiness scale was 
administered every 30 minutes until their 
next drive.  One hour prior to their second 
drive times, participants were again taken to 
a private room to wait. They completed a 
PVT one hour prior to the drive and also at 
30 minutes prior to the drive. Participants 
were escorted to the simulator between 
02:00 and 05:00 for their second drives. 
Once in the simulator, eye tracking 
calibration procedures were performed, and 
the B-Alert connection was verified. Before 
starting the drive, the participants completed 
a PVT and Stanford Sleepiness Scale. After 
the drive, participants completed Stanford 
Sleepiness Scale, a Wellness Survey, a PVT, 
a retrospective sleepiness scale, and a 
realism survey. The B-Alert system was 
then removed and they were transported 
home   
 
Apparatus 
 
The National Advanced Driving Simulator 
(NADS), shown in Figure 1, made it 
possible to collect representative driving 
behavior data from drowsy drivers in a safe 
and controlled manner. This is the highest 
fidelity simulator in the United States and 
allowed for precise characterization of 
driver response.  Drivers’ control inputs, 
vehicle state, driving context, and driver 
state were captured in representative driving 
situations (see Figure 2). 
 
Simulator Scenario 
 
Each drive was composed of three nighttime 
driving segments. The drives started with an 
urban segment composed of a two-lane 
roadway through a city with posted speed 
limits of 25 to 45 mph (see Figure 3 and 

Figure 4) with signal-controlled and 
uncontrolled intersections. An interstate 
segment followed that consisted of a four-
lane divided expressway with a posted speed 
limit of 70 mph. Following a period in 
which drivers followed the vehicle ahead, 
they encountered infrequent lane changes 
associated with the need to pass several 
slower-moving trucks (see Figure 5). The 
drives concluded with a rural segment that 
was composed of a two-lane undivided road 
with curves (see Figure 6); followed by a 
gravel road segment; and then a 10-minute 
section of straight rural driving.   
 

 
 

Figure 1.  The NADS-1 high-fidelity driving 
simulator. 

 
Figure 2.  An urban driving scene from the 
NADS-1 simulator. 

 
 



 
Figure 3.  Approach to curve in urban drive 

 

 
Figure 4.  Straight roadway segment in urban drive 

 
Figure 5.  Passing truck on Interstate. 

 
Figure 6.  Approach to rural curve 

 
RESULTS 

Sensitivity of Scenarios to Drowsiness 
 
An analysis of common driving metrics of 
variability in speed and lane keeping 
demonstrates the sensitivity of the NADS-1 
to drowsiness.  Driving data indicated that a 
complex relationship exists wherein driving 
performance improves with low levels of 
drowsiness in the early night session before 
degrading in the late night session (see 
Figure 7).  Session time of day did not 
interact with age, gender, or roadway 
situation. 
 

 
Figure 7.  Lane deviation scores by Drowsiness Condition 

 
Detecting Impairment from Drowsiness 
 

The primary objectives for algorithm 
development and evaluation include: 



• Evaluate existing algorithms for 
detecting impairment for detection of 
drowsiness 

• Determine if real-time algorithms 
can reliably detect drowsiness in 
advance of a drowsiness-related 
mishap 

 
An initial set of algorithms was selected for 
evaluation based on prior studies in this line 
of research and a review of the literature.  
For those selected from the open literature, 
only those algorithms with enough detail for 
real-time implantation were considered.  The 
algorithms used in the evaluation are 
documented in Table 1. 
 
Table 1.  Summary of Algorithms 

Label Algorithm Inputs Outputs 

PC PERCLOS [16] Eye closure Continuous 
percentage 
Drowsy 
binary 

PC+ PERCLOS+ [17] Eye closure, 
lane departure 

Drowsy 
categorical 
(low, 
moderate, 
severe) 

SB Steering-based [18] Steering 
angle, 
steering rate 

Drowsy 
binary 

EEG EEG [19] Scalp 
electrical 
activity 

Continuous 
probability 
Drowsy 
binary 

DT Decision Tree[8]  Multiple 
measures of 
driver 
performance 

Intoxicated 
binary 

MDD Multi-Distraction 
Detection  [20] 

Eye gaze 
location 

Continuous 
PRC 
Visual 
binary 
Cognitive 
binary 

TLC Time-to-lane-
crossing[19] 

Lane position, 
lane heading 
angle 

Drowsy 
binary 

SRF Steering random forest 
[19] 

Steering 
wheel angle 

Drowsy 
binary 

BN Bayes Net [19] Multiple 
measures of 
driver 
performance, 
eye closure, 
eye closure 
rate 

Intoxicated 
categorical 
(none, 
moderate, 
severe) 

 
Table 2 shows algorithm performance in 
detecting drowsiness, as defined by drivers’ 
ratings of sleepiness using the SSS after they 
completed the drive.  Drowsiness was 
indicated by post SSS of five or greater and 
alertness by post SSS of three or less. In this 
table, the algorithms were assessed 
according to how well they differentiated 
between drivers with a rated sleepiness score 
of three or less and those with a score of five 
or greater.   
 

Three standard criteria were used to assess 
algorithm performance in detecting and 
distinguishing impairments:  accuracy, 
positive predictive performance (PPP), and 
area under curve (AUC). Accuracy measures 
the percent of cases that were correctly 
classified, while PPP measures the degree to 
which those drivers that were judged to be 
drowsy were actually drowsy. An algorithm 
can correctly identify all instances of 
impairment simply by setting a very low 
decision criterion, but such an algorithm 
would misclassify all cases where there was 
no impairment. The relationship between the 
true positive detection rate (sensitivity) and 
false positive detection rate (1-specificity) is 
represented by the receiver operator 
characteristic (ROC) curve.  AUC represents 
the area under the receiver operator curve, 
which provides a robust and simple 
performance measure. Perfect classification 
performance is indicated by an AUC of 1.0, 
and chance performance is indicated by .50. 
AUC is an unbiased measure of algorithm 
performance, but accuracy and PPP are 
more easily interpreted, so all three are used 
in describing the algorithms. 

 
Surprisingly, all algorithms performed 
poorly with only the PERCLOS algorithm 
having a confidence interval that did not 
include.50.  The mean AUC for the 
PERCLOS algorithm was only.61, meaning 



that if the driver was drowsy the algorithm 
would only have a 61% chance of correctly 
detecting the drowsiness. 

Table 2 Impairment detection algorithm performance 
based on post-drive sleepiness ratings with 95% 
confidence intervals 

Label Algorithm AUC PPP Accuracy 

MDD Multi-
Distraction 
Detection 

.51 (.45-

.61) 
.59 (.55-
.62) 

.55 (.53-.55) 

EEG EEG .58 (.48-
.65) 

.54 (.53-

.55) 
.59 (.56-.61) 

PC Perclos .63 (.53-
.70) 

.60 (.59-

.60) 
.59 (.55-.61) 

PC+ Perclos+ .53 (.43-
.60) 

.59 (.58-

.60) 
.54 (.53-.59) 

SB Steering-
based 

.55 (.48-

.62) 
.59 (.58-
.59) 

.56 (.54-.59) 

BN Bayes 
Network 

.45 (.38-

.57) 
.48 (.45-
.51) 

.49 (.47-.51) 

 
The algorithm developed to detect 
distraction (MDD) performed very poorly, 
comparable to a random classifier.  
Similarly, the Bayes Network trained to 
detect alcohol impairment also performed 
very poorly, and algorithms developed to 
detect drowsiness performed almost as 
poorly.  Overall, these results show that 
algorithms developed to detect other 
impairments will not necessarily detect 
overall drowsiness as determined by SSS 
rating. 
 
In switching to the second objective, it is not 
surprising that algorithms detecting 
impairment defined by the drowsiness 
condition performed poorly when the 
variability of drowsiness across conditions, 
drivers, and the drive are considered.  The 
transient nature of drowsiness suggests that 
algorithms that detect impairment associated 
with driving mishaps, such as lane 

departures, might be substantially more 
sensitive. 
 
To assess this possibility, real-time 
algorithms were developed using data from 
a small time window, with a focus on data 
surrounding lane departures. The continuous 
data consists of driver and vehicle data 
recorded at 60 Hz for the entire drive. Each 
record of these datasets was coded as alert or 
drowsy according to three definitions: the 
drowsiness condition (Day, Early Night, 
Late Night), a linear combination of PVT, 
pre-post and retrospective SSS, and the 
presence or absence of a lane departure. 
 
Ten-fold cross validation was used to assess 
each algorithm, producing a measure of 
accuracy, PPP, AUC, timeliness and 
corresponding confidence interval for each 
algorithm. Timeliness is defined by the 
AUC of the ROC curve measured at six 
seconds before the lane departure.  ROC 
curves summarize the performance 
graphically. 
 
Data mining algorithms (Bayesian Networks 
and Random Forest), designed to detect and 
classify drowsiness in real time, successfully 
detected drowsiness six seconds before it 
resulted in a lane departure (see Figure 8and 
Figure 9.  These algorithms were based on 
time-to-lane-crossing (TLC) and steering 
behavior using sensor data already available 
in cars.  They performed better than 
PERcentage of CLOSure of the eyelid 
(PERCLOS), see Figure 10, which uses eye-
tracking cameras that are not currently 
available in the vehicle fleet.  We have 
demonstrated that inexpensive vehicle-based 
sensors can be used to successfully detect 
driver impairment 
 



 
Figure 8.  Receiver operator characteristic of steering 

 

 
Figure 9.  Receiver operator characteristic of TLC 

algorithm 

 

 
Figure 10.  Receiver operator characteristic of PERCLOS 
algorithm 

 
It was found that such algorithms could be 
generalized to detect both alcohol 
impairment and drowsiness with additional 

training or by combining multiple 
algorithms.  However, algorithms that were 
trained to detect alcohol impairment did not 
perform well when simply applied to 
drowsiness and vice versa. 
 
Drowsiness has a strong transient 
component, as compared with intoxication 
which is longer-lasting.  In fact a Bayes Net 
was able to differentiate intoxication from 
the combination of intoxication and 
drowsiness, showing that the symptoms of 
the former do not necessarily mask those of 
drowsiness. 
 
 
CONCLUSIONS 

This study demonstrates the feasibility of 
detecting drowsiness with vehicle-based 
sensors.  Results show that the differences in 
alcohol and drowsiness impairment do not 
allow for a single algorithm to detect both 
types of impairment; however similar 
algorithms trained independently may be 
successful.  To detect impairment due to 
either alcohol or drowsiness, a more 
complex approach is necessary where 
separate algorithms are combined to work 
with each other.  These results suggest 
promise in a vehicle-based approach to 
impairment detection including multiple 
types of impairment. 
 
Future research should focus on examining 
distraction related impairment to evaluate 
the extent to which distraction can be 
detected when drivers are impaired from 
alcohol or drowsiness, and the extent to 
which impairment from alcohol, drowsiness 
and distraction can be distinguished.  Then 
other types of impairments may also be 
considered, such as drugs and age-related 
cognitive decline. 
 
Additional research should evaluate the 
extent to which existing impairment 



detection algorithms are capable of detecting 
impairment from medications or illicit 
drugs.  Many over the counter medications 
are known to produce drowsiness; however, 
because these medications produce a more 
uniform level of drowsiness compared to the 
transient nature of the natural onset of 
drowsiness, this type of impairment should 
be tested to determine if the algorithms 
developed to detect drowsiness as part of 
this research would detect driving impaired 
by medications or illicit drugs.   
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