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ABSTRACT 

The risk of drivers engaging in distracting 
activies is increasing as in-vehicle 
technology and carried-in devices become 
increasingly common and complicated.  
Consequently, distraction and inattention 
contribute to crash risk and are likely to 
have an increasing influence on driving 
safety. Analysis of police-reported crash 
data from 2008 showed that distractions 
contributed to an estimated 5,870 fatalities 
and 515,000 injuries. This paper assesses the 
extent to which vision-based algorithms can 

detect different types of driver distraction 
under different driving conditions.   
 
Data were collected on the National 
Advanced Driving Simulator from 32 
volunteer drivers between the ages of 25 and 
50.  Participants drove through 
representative situations on three types of 
roadways (urban, freeway, and rural) twice: 
once with and once without distraction 
tasks.  The order of the drives was 
counterbalanced.  The three distraction tasks 
included a reaching task, a visual-manual 
task and a cognitive task which were 



repeated eight times throughout the drive. 
 
Four different vision-based algorithms were 
evaluated.  All of them performed 
significantly better than chance (random) 
performance .  There was little difference 
between the approaches for the visual-manual 
bug task which required the most eyes-off-
road time.  The algorithm that estimated level 
of distraction by combining percent of glances 
to the road and long glances away from the 
road performed best for the arrows task, and 
was also the only algorithm that detected 
cognitive impairment. Differences across road 
types were also observed.  Trade-offs exist 
between ensuring distraction detection and 
avoiding false alarms that complicate 
determining the most promising algorithm 
for detecting distraction.  The differences in 
the algorithms’ abilities across evaluation 
criteria, road type, and distraction task type 
demonstrate critical trade-offs in capabilities 
that need to be considered.  Depending on 
how feedback is presented to drivers, high 
false alarm rates may undermine drivers’ 
acceptance of the system.  The study shows 
the importance of designing and testing 
algorithms with a variety of challenges to 
assess performance across a range of 
representative road and task types. 
 
INTRODUCTION 

Driver distraction is occurring with greater 
frequency as in-vehicle technology and 
carried-in devices become increasingly 
common and complicated [1]–[3]. 
Consequently, distraction and inattention 
contribute to crash risk and are likely to 
have an increasing influence on driving 
safety. Analysis of police-reported crash 
data from 2008 shows that distractions 
account for 5,870 fatalities and an estimated 
515,000 injuries [3]. It should be noted that 
the challenges of detecting distractions at the 
crash site and reluctance of drivers to admit 
to being distracted are a limitation for this 

method of estimating the linkage between 
distraction and injuries and fataliites. A 
naturalistic driving study found that 
distraction and inattention contribute to 
approximately 80% of crashes or near 
crashes [4].  The extent to which this 
generalizes from the small number of 
crashes that were observed in this study to 
the overall population of crashes remains 
unclear, but there is cause for concern even 
if the contribution is a fraction of that 
observed in this study.  

 

Rapid advances in wireless, computer, and 
sensor technology present drivers with a 
range of new distractions. Not only are 
drivers managing their use of cell phones, 
CD players and navigation systems, they are 
increasingly engaged in long text message 
“conversations” and searches through MP3 
music catalogs that can extend beyond 30 
seconds [5] and involve more than 15 
glances [6]. In the coming years, drivers will 
have the ability to retrieve a broad variety of 
information not only from the Internet via 
hand-held phones but also through dedicated 
connections in the vehicle itself. Rapid 
changes in vehicle design illustrate this 
trend: 90% of all new vehicles are 
compatible with MP3 players [7], all 2009 
Chrysler vehicles have a wireless connection 
to the Internet [7], and several 
manufacturers introduced sophisticated 
Internet-enabled computers in vehicle 
consoles in 2010 [8]. Although these devices 
may have the potential to make driving more 
enjoyable, efficient, and potentially even 
mitigate drowsiness; they also have the 
potential to distract drivers. Helping drivers 
benefit from these devices and avoid 
distraction-affected crashes represents an 
important challenge. 

 

Although efforts are afoot at state and 
federal levels in the US to regulate the use 



of certain devices, such as hand-held cell 
phones, or distracting behaviors, such as the 
federal ban on texting by commercial truck 
and bus drivers [9], such regulation will 
likely lag behind the fast pace of 
technological change that is responsible for 
many distractions. A complementary 
approach that uses technology to detect and 
mitigate dangerous episodes of distraction, 
such as warnings based on long and/or 
frequent glances to an in-vehicle device, 
also has great promise in reducing the 
frequency and severity of distraction-
affected crashes [10]. Such technological 
mitigations have been hampered by 
limitations of sensors and algorithms, but 
the increasing availability of improved 
sensor and computing technology have 
made more sophisticated systems possible.  

The focus of this study is on the recent trend 
of using vehicle-based technology to combat 
distraction.  It developed and assessed real-
time distraction detection and mitigation 
systems to (1) guide technology 
development to enhance driver safety, and 
(2) identify potential evaluation techniques 
to characterize and assess this emerging 
technology.  This paper will focus on 
evaluation of different algorithms for 
detecting driver distraction. 

 

The overall objectives were to apply this 
evaluation to compare algorithm 
performance: 

• Across road types 

• Across different forms of distraction 

 

METHOD 

Participants 
 
Data were collected on the National 
Advanced Driving Simulator from 32 
volunteer drivers between the ages of 25 and 

50.  Participants drove through 
representative situations on three types of 
roadways (urban, freeway, and rural) twice: 
once with and once without distraction 
tasks.  Additionally, 14 participants enrolled 
in the study but did not complete for various 
reasons.   
 
To be eligible, participants were required to:  
• Possess a valid US driver’s license 
• Have been licensed driver for one or 
more years 
• Drive at least 3,000 miles per year 
• Have no restrictions on driver’s license 
except for vision 
• Not have participated in simulator study 
in the preceding 12 months 
• Have experience engaging in distracting 
activities while driving, such as talking on a 
cell phone, sending or receiving text 
messages, sending or receiving emails, 
eating, or changing compact discs 
 
Procedure 
 
After providing informed consent, each 
participant completed a demographic 
questionnaire that assessed their driving 
history, habits of interaction with distracting 
devices, and beliefs in their own capability 
as safe drivers.  They then watched a 
presentation that described the simulator cab 
and the tasks they were to perform during 
their drives. Participants then completed 
three drives: an eight-minute practice drive, 
an experimental drive performing distracting 
tasks, and another experimental drive with 
no distractions (the latter two in a 
counterbalanced order) each with a duration 
of approximately 35-40 minutes. The 
practice drive acclimated the participant to 
the simulator and provided practice 
performing the distraction tasks.  
 
After driving the urban, interstate, and rural 
segments, participants completed a visual-



analog scale assessing their subjective 
workload and performance (lateral and 
longitudinal control) for each distraction 
type. Standard simulator realism and 
wellness surveys were also administered 
after the drives, as was a post-drive survey 
about potential distraction mitigation 
strategies. A debriefing statement requesting 
that participants not discuss their 
participation with others until the end date 
for the data collection was provided to 
encourage participants to not share strategies 
they may have developed to perform the 
tasks while driving with other potential 
participants. 
 
An incentive system (score) was used to 
encourage the participants to engage in the 
distracting tasks. The incentive was a 
function of overall task performance, 
including the time to initiate the distraction 
task, continuous attention to the task, and 
response accuracy. The experimenter 
provided scores out of 100 points to 
participants at the end of the three road 
segments in the drive with distraction tasks. 
Participants were told the tasks were urgent 
and instructed to complete as many tasks as 
possible while driving as they normally 
would.  
 
Apparatus 
 
The National Advanced Driving Simulator 
(NADS), shown in Figure 1, made it 
possible to collect representative driving 
behavior data from distracted drivers in a 
safe and controlled manner. The highest 
fidelity simulator in the United States, the 
NADS allowed for precise characterization 
of drivers’ control inputs, vehicle state, 
driving context, and driver state during 
representative driving situations (see Figure 
2).  Eye and head tracking data is collected 
using a faceLAB 5™  eye tracking system. 
    

 
 

Figure 1.  The NADS-1 high-fidelity driving 
simulator 

 
Figure 2.  An urban driving scene from the 
NADS-1 simulator. 

 
Distraction Tasks 
 
Three secondary tasks were chosen to reflect 
distracting activities in which drivers 
currently engage, like reaching toward the 
backseat or adjusting the radio, as well as 
future distractions that a distraction 
detection algorithm should detect. Based on 
the current trajectory of innovations for in-
vehicle internet-based technologies and the 
proliferation of wireless “carried-in” devices 
that drivers use in vehicles, the specific 
activities drivers might engage in are likely 
to change quickly in the coming years. For 
this reason, generic tasks were prioritized 
over specific tasks that are linked to a 



particular technology so that the results are 
more likely to accommodate the rapidly 
changing array of distractions that will 
confront drivers.   
 
Three levels of distraction were chosen: a 
reaching task (bug), a visual/manual task 
(arrows), and a cognitive task (menu). The 
reaching task required drivers to reach to the 
back of the passenger side seat and follow a 
moving display with their finger similar to 
that used in the Crash Warning Interface 
Metrics program [11]. The visual/manual 
task was based on the arrow task used in the 
HASTE project [12], and presented drivers 
with a series of matrices of arrows on a 
three-inch diameter LCD touch screen 
located to the right of the steerig wheel. 
Participants had to review and discern 
whether or not a target arrow pointed in a 
particular direction was present in a field of 
distracter arrows.  In the cognitive task, 
drivers traversed an interactive voice 
response menu that required them to respond 
to prompts from the system based upon 
information they were given concerning a 
fictional flight to determine if the flight was 
on time.  
 
A self-paced radio task was also included 
but did not contribute to the protocol 
sensitivity analysis or algorithm evaluation 
except to indicate task engagement 
throughout the drive 
 
Simulator Scenario 
 
Each drive was composed of three nighttime 
driving segments previously used in other 
impairment research being conducted at 
NADS. The drives started with an urban 
segment composed of a two-lane roadway 
through a city with posted speed limits of 25 
to 45 mph (see Figure 3 and Figure 4) with 
signal-controlled and uncontrolled 
intersections. An interstate segment 

followed that consisted of a four-lane 
divided expressway with a posted speed 
limit of 70 mph. After following a lead 
vehicle, drivers encountered several slower-
moving trucks (see Figure 5) that prompted 
frequent lane changes.  The drives 
concluded with a rural segment composed of 
a two-lane undivided road with curves (see 
Figure 6). A portion of the rural segment 
was gravel.  
 
Distraction tasks occurred in 
counterbalanced blocks of three at eight 
points during the drive: thrice in the urban 
portion of the drive, twice on the interstate, 
and thrice in the rural portion.  
 

 
Figure 3.  Approach to curve in urban drive 

 

 
Figure 4.  Straight roadway segment in urban drive 



 
Figure 5.  Passing truck on Interstate. 

 
Figure 6.  Approach to rural curve 

 
The Algorithms 
 
The four algorithms evaluated in this study 
were chosen for their ability to distinguish 
between distracted and non-distracted states 
using eye-tracking data. The algorithms 
increase in complexity, and only one is 
designed to detect cognitive distraction. 
 
• Eyes off forward roadway  (EOFR) 
estimates distraction based on the 
cumulative glances away from the road 
within a 6-second window.( Dingus, Neale, 
Sudweeks, & Ramsey, 2006). 
 
• Risky visual scanning patterns (RVSP) 
estimates distraction by combining the 

current glance and the cumulative glance 
durations [10]. 
 
• AttenD estimates distraction associated 
with three categories of glances (glances to 
the forward roadway, glances necessary for 
safe driving (i.e., at the speedometer or 
mirrors), and glances not related to driving), 
and uses a buffer to represent the amount of 
road information the driver possesses [13], 
[14]. 
 
• Multi distraction detection (MDD) 
estimates visual distraction using the percent 
of glances to the road center (PRC) and long 
glances away from the road, and estimates 
cognitive distraction by gaze concentration 
focused on the center of the road.  The 
implemented algorithm was modified from 
Victor [15] to include additional sensor 
inputs (head and seat sensors) and adjust the 
thresholds for the algorithm’s variables to 
improve robustness with potential loss of 
tracking. 
 
RESULTS 

Performance of the algorithms was 
determined using receiver operator 
characteristic (ROC) approach.  Plots of the 
ROC show the true positive rate and false 
positive rate for algorithms across a range of 
detection thresholds.  The best algorithms 
would be represented by points in the upper 
left and the worst by points along the 
diagonal.  The area under the curve (AUC) 
measures algorithm performance and is 0.5 
for the diagonal and 1.0 for a perfect 
algorithm. 
 
Capabilities by Road Type 
 
Figure 7 - Figure 9 show ROC plots 
comparing the performance of the 
algorithms across the three road types.  The 
MDD and the EOFR algorithms performed 
better than the RVSP and AttenD algorithms 



across all road types. The EOFR and RVSP 
algorithms generally performed best in the 
urban environment, whereas the AttenD 
algorithm always performed best in the rural 
environment. None of the algorithms 
performed best on all metrics in the freeway 
environment.  
 
For visual distraction, the MDD algorithm 
showed the best performance across all 
evaluation metrics (accuracy, precision, 
AUC). Although the EOFR algorithm had 
promising AUC values, the AttenD 
algorithm often yielded better accuracy and 
precision. The RVSP algorithm consistently 
yielded the lowest values for both accuracy 
and precision, but yielded a slightly higher 
AUC value than AttenD. All of the 
algorithms succeeded in detecting 
distraction well above chance detection 
(AUC = 0.5). 
 

 
Figure 7.  ROC plot in the Urban Environment for each 
algorithm for Visual distraction. 

 

 
Figure 8.  ROC plot in the Freeway Environment for each 
algorithm for Visual distraction 

 

 
Figure 9.  ROC plot in the Rural Environment for each 
algorithm for Visual distraction 

 
Capabilities by Distraction Task Type 
 
The performance of the algorithms varied by 
task, with little difference in performance 
for the looking and reaching task (bug) but 
more stark differences for the looking and 
touching (arrows) and cognitive tasks 
(menu).  The AUC for each task for each 
algorithm is provided in Table 1.   
 
Table 1.  AUC comparisons by algorithm across tasks 

  Algorithms 
  

R
V

SP
 

E
O

FR
 

A
tte

nD
 

M
D

D
 

T
as

ks
 Arrows 0.67 0.75 0.71 0.87 

Bug 0.78 0.87 0.80 0.86 
Menu n/a n/a n/a 0.68 

 
 
The looking and reaching task which 
required the participants to turn to the 
backseat and follow an animated bug shown 
on a touch-screen display produced similar 
results across all four algorithms (see Figure 
10).  This is likely because performing the 
bug task sent a clear signal that the drivers’ 
eyes were not on the road. All four 
algorithms performed the best during the 
bug task. 
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Figure 10.  ROC plot for the looking and reaching task. 

The looking and touching task required 
participants to scan a matrix of arrows 
located to the right of the steering wheel and 
identify a target.  The MDD distinctly 
outperformed the other algorithms (see 
Figure 11). The AttenD algorithm yielded 
high true positive rates, but at the expense of 
high false alarm rates—the lowest false 
positive rate was 0.4. The two less complex 
algorithms (Eyes off forward roadway and 
Risky visual scanning patterns) performed 
similarly. 
 

 
Figure 11.  ROC plot for the looking and touching task. 

 
The cognitive task required participants to 
access airline flight information and then to 
recall several pieces of flight information to 
determine whether a flight was on time 
without requiring visual attention. The MDD 
algorithm was the only algorithm designed 
to detect cognitive distraction and it did so 

imprecisely, but at a rate substantially 
greater than chance (see Figure 12). 
 
 

 
Figure 12.  ROC plot for the cognitive task. 

 
CONCLUSIONS 

 
Considering the results of the ROC curves, 
AUC values, accuracy and precision, it is 
apparent that a trade-off exists between 
ensuring distraction detection and avoiding 
false alarms that complicates determining 
the most promising algorithm for detecting 
distraction.  Depending on how feedback is 
presented to drivers, high false alarm rates 
could undermine drivers’ acceptance of the 
system.  For example, the AttenD algorithm 
consistently yielded high true positive rates, 
AUC values, accuracy, and precision, yet 
the lowest false positive rate exceeded 0.4. 
Choosing this algorithm for distraction 
detection would ensure detection of 
distraction, but it would also generate many 
false alarms. Depending on how this 
information is presented to drivers, such a 
high false alarm rate would likely undermine 
drivers’ acceptance of the system.  
 
This study demonstrates the ability for 
distraction detection algorithms to identify 
distraction with success rates much greater 
than chance. However, the differences in the 
algorithms’ abilities across evaluation 



criteria, road type, and distraction task type 
demonstrate critical trade-offs in capabilities 
that need to be considered. The study shows 
the importance of designing and testing 
algorithms with a variety of challenges to 
assess performance across a range of 
representative road and task types.   
 
Further, the study shows that more complex 
algorithms can perform better, suggesting 
that additional driving metrics should be 
incorporated into future distraction 
algorithms. 
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