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1 Introduction

Digital low-pass filters are designed to exclude higher frequencies from a one-dimensional
discrete-time signal. Standard filter designs do not specifically consider the effect of filtering
on the integrals and derivatives of a signal. Despite the fact that integration is a linear
process, experience shows that filtering a signal can cause significant distortion of its inte-
grals. This report explains the cause of such integral distortion and describes an approach
to filtering motion data, where the filtered motion is required to be a reasonable low-pass
representation in the acceleration, velocity, and displacement signal domains. Although this
document describes filtering of motion signals SimFil’s simultaneous filtering method is ap-
plicable to filtering any three “adjacent� domains of a time series signal and can be extended
to handle other simultaneous filtering requirements.

The motivation for developing this filtering approach comes from sensitive vehicle crash
modeling applications at the National Highway Traffic Safety Administration (NHTSA).
The modeling process is sensitive to small errors and inconsistencies in the acceleration,
velocity, and displacement signals. Standard time domain filters were found to introduce
unacceptable distortion in displacements computed from filtered accelerometer signals and
in the tail (time-zero and final time) values of all three signals.

The SimFil program was developed as a stand-alone filter and its algorithms have also been
incorporated into NHTSA crash modeling software. The key to the SimFil approach is
the observation that removing an appropriate baseline function and performing a simple
mirroring transformation leaves a residual motion for which frequency domain filtering in
all three signal domains is equivalent, and for which tail value control and an analytical
continuous-time motion are readily obtained.

This report presents the mathematical basis for SimFil and some of the key implementation
aspects. An attempt has been made to indicate where alternative, possibly more efficient,
algorithms can be used when less stringent performance criteria are acceptable.

SimFil v.2 is integrated into the NHTSA computing environment. In addition to filtering
linear motions, SimFil can handle the full range of NHTSA time series, such as force-impulse
and angular motion data. Linear motion terminology is used in this report for simplicity of
presentation.

SimFil v.2 extends the original SimFil v.1 program [2] with enhanced tail smoothing capabil-
ities and an updated user interface. The source code for SimFil is available from the NHTSA
Research & Development Office of Crashworthiness Research.
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1.1 Integral Distortion

Standard numerical integration formulas correspond to linear time-invariant (LTI) systems
thus they are equivalent to convolution filters in the unbounded time domain. If the measured
acceleration is an, then the trapezoid rule velocity is

vn = vn−1 +
∆

2
(an + an−1)

=
∆

2
an +∆

∞
∑

i=1

an−i

= htr(n) ∗ a(n)

where ∆ is the time step, htr(n) is the impulse response of the trapezoid rule, and ∗ is the
convolution operator. Since htrk = 0 for k < 0, htr0 = ∆/2, and htrk = ∆ for k ≥ 1, this recursive
first order integration process has an infinite impulse response (IIR).

The properties of LTI systems [4] reveal that convolution is commutative. This seems to
imply that filtering and integration can be applied in either order, yet in practice integration
is performed over a finite time period with initial conditions, so it is not a true convolution.
Performing trapezoid rule integration with an initial condition yields

vn = v0 +
∆

2
an +∆

n−1
∑

i=1

an−i +
∆

2
a0.

Let an arbitrary filter operation with impulse response h(n) be defined by

ỹn = h(n) ∗ y(n) =
∑

k

hk yn−k.

Then filtering the acceleration followed by integration yields the signal

v′n = v0 +
∆

2
ãn +∆

n−1
∑

i=1

ãn−i +
∆

2
ã0

= v0 +
∆

2

∑

k

hk an−k +∆
n−1
∑

i=1

∑

k

hk an−i−k +
∆

2

∑

k

hk a−k

= v0 +
∑

k

hk (vn−k − v−k)

= v0 + ṽn − ṽ0.

Thus if the velocity at time-zero is changed by filtering, integration and filtering do not
commute. If this “biased� velocity is integrated to obtain a displacement, the same type of
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analysis shows that

d′n = d0 +
∆

2
v′n +∆

n−1
∑

i=1

v′n−i +
∆

2
v′0

= d0 +
∆

2
ṽn +∆

n−1
∑

i=1

ṽn−i +
∆

2
ṽ0 + n∆(v0 − ṽ0)

= d0 + d̃n − d̃0 + n∆(v0 − ṽ0) .

The velocity bias has become a linear displacement drift over time, and integrating the
filtered velocity contributes a bias to the displacement, just as occurred in the velocity
above.

These results suggest a simple solution to the integral distortion problem for time domain
filters. Namely, use the filtered initial conditions, ṽ0 and d̃0, for the integration constants
v0 and d0. (This only requires values of the integrals that are used in the convolution sum
for the time-zero filtered value, which depends on the nonzero elements of h(n).) Note that
the time domain filter also requires some signal values beyond the time range desired for the
output, and consistent values must be used when filtering its integrals.

It is worth noting that all standard numerical differentiation formulas correspond to true
finite impulse response (FIR) operations, and thus differentiation and filtering commute.
This suggests that the integration distortion problem could alternatively be avoided by first
integrating to the highest order signal of interest, and then generating any filtered signals
needed by filtering and differentiating (in any order) this signal. Unfortunately, numerical
differentiation introduces roundoff noise so this is not an ideal alternative.

Although these techniques are recommended for eliminating integral distortion in otherwise
satisfactory time domain filters, the criteria for motion filtering in sensitive modeling appli-
cations can not be met by filters of this class. They do not maintain the signal tail values
at low cutoff frequencies, and they can not provide an analytical representation for highly
accurate, consistent interpolation of the filtered motion in all three domains.

1.2 Motion Representation and Tail Values

A frequency domain approach to motion filtering can provide a continuous-time, analytical
motion representation from which filtered acceleration, velocity, and displacement signals
can be generated without the errors associated with numerical integration, differentiation,
or interpolation. By applying careful transformations to the motion the time-zero and final
time tail values can also be preserved. For these reasons, SimFil is based on a discrete
Fourier transform (DFT) representation. The only drawback to this approach is its greater
computational cost.
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The transformations used in SimFil can be motivated by first considering the problem of
using a DFT representation to filter a single time series signal. A DFT implicitly treats the
signal as periodic, so any difference between the time-zero and final tail values appears as
a discontinuity causing Gibb’s oscillations in the filtered result. Because of this effect it is
common to remove a line through the tails of a signal before applying a DFT-based filter to
the residual signal, and finally add the line back to obtain the filtered result. The periodic
version of the residual signal may still have a slope discontinuity (which can also cause
noticeable oscillations). As described later in this report, a transformation that extends the
residual signal by adding a mirrored, inverted copy of itself can be used to eliminate the
slope discontinuity.

While these transformations suffice for filtering one signal, more complex methods are needed
for the motion filtering application. In general the separately computed DFT representations
of the acceleration, velocity, and displacement signals will not be analytically related as
integrals/derivatives. In the next section a baseline motion (having more than the two
parameters of a tail line) is developed. Separating out this baseline motion before applying
the mirroring transformation is shown to leave a residual motion for which frequency domain
filtering is essentially equivalent in all three signal domains. These transformations also
facilitate a method of maintaining the motion signal tail values in the filtered result.

The complete filtering process is described in detail in the sections that follow.
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2 Signal Transformations

As the cutoff frequency of a standard low-pass filter approaches zero the filtered signal
approaches the average value of the signal. For some applications the initial and final values
of the signal are considered accurate or have defined values. In the case of motion filtering,
the initial velocity and displacement values corresponding to an acceleration signal may be
specified, and the initial acceleration in crash test data is generally near zero.

The approach in SimFil is to maintain all six tail values of the acceleration, velocity, and
displacement while providing a good low-pass approximation in each of the three signal
domains. SimFil achieves this by removing a low frequency baseline function from the motion,
filtering the residual motion without changing the zeroed tail values, and finally restoring
the baseline function. The baseline function is a low frequency representation of the motion
that matches all six tail values. As the filtering cutoff frequency approaches zero the filtered
motion approaches the baseline motion.

Let the raw motion, after any necessary integration or differentiation, be given by

dn, vn, an, n = 0, . . . , N

with the six tail values {d0, dN , v0, vN , a0, aN}.

The baseline function used in SimFil (shown in all three domains) is

ā(t) = a0 + ast+ β1 sin
(

πt

T

)

+ β2 sin
(

2πt

T

)

v̄(t) = v0 + a0t+ as
t2

2
− T

π
β1 cos

(

πt

T

)

− T

2π
β2 cos

(

2πt

T

)

+
T

π

(

β1 +
β2
2

)

(2.1)

d̄(t) = d0 + v0t+ a0
t2

2
+ as

t3

6
−
(

T

π

)2

β1 sin
(

πt

T

)

−
(

T

2π

)2

β2 sin
(

2πt

T

)

+
T

π

(

β1 +
β2
2

)

t

where T = N∆ is the time span of the motion data, and where

as =
1

T
(aN − a0)

β1 =
π

2T
(vN − v0)− π

4
(aN + a0)

β2 =
2π

T 2 (dN − d0)− π

T
(vN + v0) +

π

6
(aN − a0).

This baseline function depends on the six parameters {d0, v0, a0, as, β1, β2} and passes through
the six tail values. The sinusoidal terms correspond to the lowest two frequencies that will
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be used in the DFT representation. Other well-behaved six parameter functions could serve
equally well. (A quintic polynomial would probably be a poor choice because of the tendency
of higher degree polynomials to oscillate.) Generally, removing the baseline function will not
significantly alter other than the lowest frequencies in the motion spectrum.

After subtracting the baseline function the zeroed signals (having zero tail values) are defined
by


an = an − ān, 
vn = vn − v̄n, and 
dn = dn − d̄n
where the subscript n corresponds to time n∆ for the continuous baseline function. The
zeroed signals have no tail discontinuities when considered as circularly wrapped, periodic
functions (as occurs implicitly when taking the DFT). Nevertheless, there are some derivative
discontinuities and asymmetries at the tails that would allow the tail values to change as a
result of directly filtering the zeroed motion.

Campbell’s transformation [6] can be applied before filtering to help achieve the desired
tail behavior. This involves appending an inverted, mirrored copy of a signal onto itself.
Transforming the acceleration corresponds to transforming the displacement in the same
manner, and to appending a mirrored (but not inverted) copy of the velocity, as shown in
Figure 2.1.

a

v

d

T 2T t

T 2T t

T 2T t

..........................................................................................................................
..........................
............................
..............................
...........................
..........................
..........................................................................................................................................................................................................................................................................

............................
...........................
..............................
...................................
....................................................................................................................................................................................................................................................

.........................
...........................
..............................
............................
...........................
.................................................................................................................

...................................................................................................................................................................................
..........................
.........................
..............................
.........................
.........................
................................
.......................................................................................................................................................................................................

.....................................
.................................
...............................................................................................................................................................................................................................................................................................

................................
.......................................
........................

............................................ ........... ..................................................................................................................... .......... .......... ...........................................
....................................
...................................... ...........
.......................................................................................... ........... ..................

..................................
.........................................
........................ .......... .......... ..................................................................................................................... ........... ...........................................

Figure 2.1: Campbell’s transformation of zeroed motion.
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Formally, the definitions of the zeroed signals are extended to include


a2N−n = −
an, 
v2N−n = 
vn, and 
d2N−n = − 
dn, n = 0, . . . , N−1.

This zeroed, extended motion will be called the residual motion.

The periodic version of the residual motion has at least first derivative continuity in all three
signal domains. Also note that the acceleration and displacement are odd functions and the
velocity is an even function. If a time domain filter with a symmetric impulse response is
applied to an odd periodic function the tail values remain unchanged. So Campbell’s trans-
formation has made it possible to retain four of the six tail values for any cutoff frequency,
and produces signals with a high degree of tail continuity. The filtering process in SimFil is
applied to this periodic, residual motion.

If the numerical errors of a time domain representation are acceptable, a symmetric FIR
filter could be applied to the residual signal along with the methods of Section 1.1 to prevent
integral distortion instead of the frequency domain filter developed in the remainder of this
report. In this case, filtering the acceleration requires only updating the initial velocity since
the filtered initial displacement will be unchanged. The velocity tail values would not be
preserved in this approach.
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3 DFT-Based Filter

Given the residual motion, a frequency domain representation is used for the filtering process.
The periodic, residual acceleration and displacement are odd functions, so they have pure
imaginary sine series as their discrete Fourier transforms (DFT’s). Similarly, the velocity is
an even function, so it has a pure real cosine transform. The tails of all three residual signals
are also zero. These observations suggest that the following windowed sine and cosine series
would be appropriate representations for the filtered residual signals

ã(t) =
K
∑

k=1

Àk sin
(

πkt

T

)

ṽ(t) =
K
∑

k=1

V̀k cos
(

πkt

T

)

(3.1)

d̃(t) =
K
∑

k=1

D̀k sin
(

πkt

T

)

where the windowed coefficients Àk, V̀k, and D̀k are assumed to be zero for k > K.

These representations have the correct even and odd senses and the zero acceleration and
displacement tails. Zero velocity tails are not automatically assured by this representation,
but, as shown below, they can be achieved by constraining the choice of coefficients. No À0 or
D̀0 coefficient is included because the corresponding sine term is identically zero. A nonzero
V̀0 term in the velocity would introduce an undesired linear term of V̀0 t in displacement.

For the filtered signals of (3.1) to represent the same motion they must be analytically related
as continuous-time integrals and derivatives, which requires

V̀k = −
(

T

π

)

Àk
k
, and D̀k =

(

T

π

)

V̀k
k
= −

(

T

π

)2
Àk
k2
. (3.2)

Coefficients that meet these criteria will be called consistent.

The remaining task is to select a set of consistent coefficients that provide an acceptable
filtered representation of the motion. The DFT’s of the residual motion signals are a natural
choice for the coefficients. Taking DFT’s of each residual signal independently provides these
three candidate sets of unwindowed coefficients
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Ak =
(

2

N

)
N−1
∑

n=0


an sin
(

πkn

N

)

Vk =
(

2

N

)
N−1
∑

n=0


vn cos
(

πkn

N

)

(3.3)

Dk =
(

2

N

)
N−1
∑

n=0


dn sin
(

πkn

N

)

for 1 ≤ k ≤ N − 1. (The sums can actually start at n = 1 since the initial values are all
zero.) Note that Campbell’s transformation implicitly determines the form of the DFT’s.

Any one of these sets of coefficients could be then be windowed by multiplying by windowing
factors, such as in Àk = HkAk, and then the consistency requirements of (3.2) applied to
determine the coefficients for the other two signal domains. (Actually these two steps can be
done in either order since windowing preserves consistency.) The question remains to decide
which of these three choices provides the best filter.

In fact, it is not difficult to show that, for a given continuous-time motion, these three sets
of coefficients are asymptotically consistent as N goes to infinity for residual motion signals
generated with any convergent integration and/or differentiation formulas (with infinite pre-
cision real arithmetic). Moreover, choosing one set of coefficients is equivalent to using its
DFT representation as the integration and/or differentiation tool, which is certainly a valid,
if not fast, method.

Since in practice only one of the three signals is actually measured, it seems that a good
filtered representation of the residual motion can be obtained by taking the independent DFT
of the residual measured signal, windowing, and applying the consistency requirements. This
avoids dependence on the numerically computed residual signals in the other two domains
(although the tail values in the other two domains are still used to compute the baseline
function). This approach does indeed provide a good motion filter, but maintaining the zero
tails of the residual velocity will require a more involved approach as described below.

3.1 Simultaneous DFT

A more general approach to choosing the DFT representation will facilitate the inclusion of
velocity tail constraints. A consistent simultaneous DFT representation can be explicitly
formed as a weighted least squares approximation to all three signals simultaneously. (A
standard DFT representation with any subset of the frequency terms is a least squares
approximation of one signal.)

With errors in the three domains weighted by wa, wv, and wd, respectively, the simultane-
ous DFT (without velocity tail constraints), expressed in terms of the acceleration domain
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coefficients, is

Ak =

(

2

N

)

∑N−1
n=0

[

wa
an sin
(

πkn

N

)

− wv
(

T

πk

)


vn cos
(

πkn

N

)

− wd
(

T

πk

)2

dn sin

(

πkn

N

)

]

wa + wv

(

T

πk

)2

+ wd

(

T

πk

)4 (3.4)

The corresponding Vk and Dk coefficients are readily computed by using the consistency
requirements (3.2).

This is a generalization of the independent DFT’s since they can be reproduced by simply
setting two of the weights to zero. The asymptotic consistency of the independent DFT’s im-
plies that the unconstrained simultaneous DFT is asymptotically independent of the weights.
The real value of the simultaneous DFT comes when the velocity tail constraints are added
and this weight independence is lost. In that case the weighting can be used to assure that
the filtered motion is still a good smoothed approximation in all three signal domains.

3.2 Velocity Tail Constraints

Although any of the DFT representations given above can be expected to approximately
match the zero tail values of the residual velocity, it is reasonable to explicitly constrain the
velocity tails. In practice the DFT coefficients are windowed to achieve a given frequency
response, so it is this windowed representation that must be constrained.

If the windowed, constrained velocity coefficients are V̀k, the velocity representation of (3.1)
and the requirements ṽ(0) = 
v0 = 0 and ṽ(T ) = 
vN = 0 can readily be shown to yield the
constraints

K
∑

k=1
k odd

V̀k = 0 and
K
∑

k=1
k even

V̀k = 0
(3.2)
=⇒

K
∑

k=1
k odd

Àk
k

= 0 and
K
∑

k=1
k even

Àk
k

= 0.

Solving for the constrained DFT is then a least squares problem with two equality con-
straints. Standard Lagrange multiplier techniques [1] give the solution for the constrained
simultaneous DFT as

Àk = HkAk − λk
(

H2
k

kWk

)

(3.5)

where Hk is the filter windowing factor, Ak is the unconstrained simultaneous DFT (3.4),

Wk = wa + wv

(

T

πk

)2

+ wd

(

T

πk

)4

,
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and

λk =



























∑K
j=1
j odd

HjAj
j

/

∑K
j=1
j odd

H2
j

j2Wj
, k odd

∑K
j=1
j even

HjAj
j

/

∑K
j=1
j even

H2
j

j2Wj
, k even.

The effort of computing the Àk is almost entirely in computing the unconstrained coefficients,
Ak. So Ak can be stored, independent of the choice of filtering window, and Àk computed
quickly for a specified window (as long as all the needed coefficients were saved).

Although the first term in (3.5), HkAk, is asymptotically independent of the weights, the
second term is not. Thus the weights can be selected to balance the emphasis on closeness of
fit among the three signal domains. The choice of weights also determines how the changes
to the DFT are distributed over the frequency range.

In practice, these two constraints rarely cause a large absolute change from the unconstrained
filtered representation, so the choice of weights is generally not critical. It is important to
note that the changes to the DFT are additive, not multiplicative, thus the effect on the
overall frequency response can be significant at small magnitude coefficients even though the
absolute change to the DFT is small.

3.3 Filtered Signals

Once a consistent set of windowed coefficients Àk, V̀k, and D̀k has been selected, the overall
filtered motion signals are given by

à(t) =
K
∑

k=1

Àk sin
(

πkt

T

)

+ ā(t)

v̀(t) =
K
∑

k=1

V̀k cos
(

πkt

T

)

+ v̄(t) (3.6)

d̀(t) =
K
∑

k=1

D̀k sin
(

πkt

T

)

+ d̄(t)

where ā(t), v̄(t), and d̄(t) are the baseline functions (see Section 2).

Because of the signal transformations and velocity tail constraints, the overall frequency
response depends somewhat on the motion. The only general classification that applies to
this filtering process is linearity.
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4 SimFil Implementation

A number of algorithmic details are important to the SimFil implementation of the simul-
taneous DFT filter presented above. These include the integration and differentiation algo-
rithms, tail smoothing, the choice of DFT computation domain, and techniques to enhance
the efficiency of the DFT computations.

4.1 Signal Data Types

SimFil supports the full range of NHTSA time series signal data types, including linear and
angular motion and force/impulse signals. Input signals can be from all of the common
domains: acceleration, velocity, displacement, force, impulse, and so forth.

When working with angular motion signals it is important to understand that when more
than one rotational motion axis is present the angular position, or orientation, is not a
vector and cannot be represented by the integral of the angular velocity. A number of 3D
rotational position representations are in common use including Euler or Cardan/Bryant
angles, rotation matrices, and unit quaternions. It is possible to apply SimFil-based filtering
to 3D rotational motion (this has been done in SISAME-3D [3]) but SimFil only considers
signals on one axis at a time and so rotations are treated as simple integrals of angular
velocity.

4.2 Integration and Differentiation

SimFil accepts an acceleration, velocity, or displacement signal to define a motion. The tail
values in all three signal domains are needed for the baseline function and these are obtained
by numerical time domain methods. These numerically derived signals are also used in the
tail smoothing process (see below) and if the user requests the subsampling or “No Filtering�
modes (using SimFil as a numerical integration/differentiation tool and/or to subsample the
motion signals). As described below, the frequency domain computations are based only on
the residual measured (input) signal to minimize the effects of numerical errors.

The numerical integration and differentiation methods used are given below. A combination
of standard low order and cubic spline based methods are used to minimize sensitivity to



4.2 Integration and Differentiation 13

noisy test data while using integration and differentiation formulas that are true inverses
wherever possible.

The sampling time step is ∆. The initial velocity, v0, is assumed specified with measured
acceleration and displacement signals, and the initial displacement, d0, is assumed specified
with measured acceleration and velocity signals (SimFil uses d0 = 0 by convention in the
NHTSA environment). Although SimFil only produces filtered output from time-zero to a
user-specified final time, portions of the signals outside this range are used in performing tail
smoothing (see below), so they are computed over the full time span of the measured signal
(integration formulas for negative indices are not shown explicitly but are readily derived).
Conversion factors between the units used in the different signal domains are ignored here,
as they are throughout this report. The subscripts l and r are used below for the left and
right signal endpoints, respectively, when these values require special treatment.

Acceleration Input

vn = vn−1 +
∆

2
(an + an−1) = v0 +

∆

2
[an + 2an−1 + · · ·+ 2a1 + a0]

dn = dn−1 +∆vn−1+
∆2

6
(an+ 2an−1) = d0 + n∆v0 +

∆2

6

[

an + 6
n−1
∑

i=1

ian−i + (3n− 1)a0

]

Velocity Input

an =
1

2∆
(vn+1 − vn−1)

al =
1

6∆
(−7vl + 6vl+1 + 3vl+2 − 2vl+3)

ar =
1

6∆
(7vr − 6vr−1 − 3vr−2 + 2vr−3)

dn = dn−2 +
∆

3
(vn + 4vn−1 + vn−2)

Displacement Input

vn =
1

2∆
(dn+1 − dn−1)

vl =
1

6∆
(−7dl + 6dl+1 + 3dl+2 − 2dl+3)

vr =
1

6∆
(7dr − 6dr−1 − 3dr−2 + 2dr−3)

an =
1

2∆
(vn+1 − vn−1)
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al =
1

6∆
(−7vl + 6vl+1 + 3vl+2 − 2vl+3)

ar =
1

6∆
(7vr − 6vr−1 − 3vr−2 + 2vr−3)
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4.3 Tail Smoothing

The simultaneous DFT filter used by SimFil maintains the tail values in all three signal
domains. Measured and differentiated signals may exhibit significant noise so that the raw
tail values are not appropriate at lower cutoff frequencies. SimFil provides optional tail
smoothing to obtain more reasonable tail values.

Tail smoothing is optionally performed for each tail in a two phase process based on the
selected tail smoothing frequency. First, the desired smoothed tail values are determined
by a weighted average corresponding to an ideal low-pass time domain filter windowed by a
raised cosine function. The ideal low-pass impulse response is

hIn =
sin(ωsn)

πn

where ωs = 2πfs∆ and fs is set to twice the user-specified smoothing frequency. The cosine
(Hanning) window is given by

wn =
1

2

(

1 + cos
(

ωsn

ρ

))

, −Nw ≤ n ≤ Nw , Nw =
πρ

ωs

where ρ determines the length of the windowed filter (ρ = 2 is used in SimFil), and wn = 0
outside the range −Nw ≤ n ≤ Nw. The windowed filter impulse response is then

hn =
1

σ
wnh

I
n =

1

2σ

(

1 + cos
(

ωsn

ρ

))

sin(ωsn)

πn

for −Nw ≤ n ≤ Nw, where σ =
∑Nw

k=−Nw wkh
I
k normalizes the response to a total weight of

one.

If the full range of tail data is available the smoothed tail values are computed as

à0 =
Nw
∑

k=−Nw

hkak and àN =
Nw
∑

k=−Nw

hkaN−k

and similarly for smoothed velocity and displacement tails. This process generates tail values
that approximate those obtained by filtering the extended acceleration with a well-behaved
filter to a cutoff frequency equal to the specified smoothing frequency.

If the full range of data on both sides of a tail is not available SimFil corrects the truncated
impulse response such that tail values of straight line signals would be preserved (the full
symmetric impulse response has this property). This improves the smoothed tail value
selection. For a tail data range of NL ≤ n ≤ NR the corrected impulse response used by
SimFil is of the form hn + γ0 + γ1|n|. The parameters are determined by normalization to a
total weight of one

NR
∑

n=NL

(hn + γ0 + γ1|n|) = 1
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and by the straight line (zero moment) condition

NR
∑

n=NL

(hn + γ0 + γ1|n|)n = 0 .

The second phase of the tail smoothing process is to adjust the motion to pass through the
selected tails without introducing discontinuities and without altering the central portion of
the signals. This is accomplished by finding an appropriate smoothing function at each tail
and, linearly in time, blending the smoothing function into the actual tail. Looking at the
time-zero tail, let à0, v̀0, and d̀0 be the selected (smoothed or raw) tail values, and let s(t) be
the smoothing function in the displacement domain. The smoothed time-zero tail has the
representation

d̆(t) =
1

p

[

td(t) + (p− t)s(t)
]

v̆(t) =
1

p

[

d(t) + tv(t)− s(t) + (p− t)s′(t)
]

ă(t) =
1

p

[

2v(t) + ta(t)− 2s′(t) + (p− t)s′′(t)
]

ă′(t) =
1

p

[

3a(t) + ta′(t)− 3s′′(t) + (p− t)s′′′(t)
]

for 0 ≤ t ≤ p, where p is the smoothing time span, chosen in SimFil to equal 3Nw∆.

The time-zero tail smoothing function is determined by the six conditions

d̆(0) = d̀0, v̆(0) = v̀0, ă(0) = à0, v̆(p) = v(p), ă(p) = a(p), ă′(p) = a′(p)

where the additional continuity condition d̆(p) = d(p) is assured by the definition of d̆(t).
These conditions require

s(0) = d̀0, s′(0) = v̀0 −
d(0)− d̀0

p
, s′′(0) = à0 −

2(v(0)− s′(0))
p

s(p) = d(p), s′(p) = v(p), s′′(p) = a(p)

which says that s(t) much match the six tail values of the signals over the smoothing time
span. The baseline function presented in Section 2 provides a well-behaved function of this
type, so SimFil uses this same functional form for s(t). The corresponding function for the
end tail can be derived directly, or the above results can be applied in a time reversed fashion
to the end tail with all velocities negated.

The smoothing process provides a gradual smoothing towards the tails over the smoothing
time span without affecting the central portion of the motion. Velocity and displacement
tail smoothing can introduce some sinusoidal tail baseline function content to meet this
requirement, but this is usually eliminated if the filtering frequency is no greater than the
the tail smoothing frequency. There is some loss of frequency content in the tail regions and
the approach taken here is an admittedly heuristic solution to a practical problem. The best
choice of smoothing frequency depends on the specific application.
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4.4 DFT Signal Domain

The constrained, windowed DFT coefficients Àk are computed from the unconstrained, un-
windowed coefficients Ak. Since the unconstrained simultaneous DFT is asymptotically
independent of the weights (and nearly so in practice), SimFil uses the residual measured
signal to determine the Ak. This significantly reduces the computational burden.

Regardless of the measured signal domain, the velocity tail constraints are implemented
to minimize error in the velocity domain, which is equivalent to setting Wk = 1/k2. If the
acceleration domain were used, the lowest frequency components would be altered most by
the constraints, which would be beneficial in reducing the impact on the frequency response
but could cause significant change to the displacements. If the displacement domain were
used the constraints would introduce more high frequency content. Of course a weighted
combination of the three domain errors could be the best choice for a particular application.

4.5 Filter Window

The frequency window applied to the DFT coefficients is a modified cosine function designed
to achieve −3 dB at the cutoff frequency. The window coefficients, Hk, are sampled from
this function, but the response at interpolated frequencies varies with the number of points
in the measured signal. Although the overall frequency response of SimFil depends to some
degree on the input data, the response is typically close to that of the window (with zero
phase response) except at the lowest frequencies.

For a cutoff frequency of fc, the filter window response is given by

H(f) =



















1 , f ≤ 1

2
fc

1

2

[

1 + cos
((

f

2fc
− 1

4

)α

π
)]

,
1

2
fc < f <

5

2
fc

0 , f ≥ 5

2
fc

where

α =
log(π)− log (arccos (2 · 10−.15 − 1))

log(4)
.

The correspondence with the sampled window coefficients is Hk = H(k/2T). As shown in
Figure 4.1, the SimFil frequency window falls within the envelope specified in the Society of
Automotive Engineers’ J211 recommended practice [5].
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SimFil Frequency Window
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Figure 4.1: SimFil frequency window.
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4.6 DFT Computation

SimFil is implemented with an efficient direct DFT algorithm using a single time fold that
takes O(NK) time for K coefficients. This algorithm is sufficiently fast for typical low
frequency SimFil applications. An FFT algorithm could be substituted, but if padding is
required then either the initial or end tails become interior points and they are no longer pre-
cisely preserved during filtering. (An FFT can be implemented that takes only O(N logK)
time for K coefficients by performing only logK of the FFT time or frequency folds and
completing the computation with the direct method.)

The SimFil DFT computation exploits the redundancy that is present for any N by perform-
ing a single time fold (or decimation in frequency). If a suitable filter time step is used then
a time fold is also used for the inverse DFT. These folds reduce the effort by roughly a factor
of two.

Pre-tabulated sine and cosine arrays and an efficient indexing scheme are also used in the
DFT and, if the filtered time step allows, the inverse DFT to avoid the expense of computing
the same trigonometric values many times. SimFil allows any combination of the acceleration,
velocity, and displacement filtered outputs, and the reconstruction routine used is tailored
to the combination selected for efficiency.

When multiple filtered outputs are requested for the same input signal, DFT time span, and
tail smoothing, the unconstrained DFT from a previous SimFil operation is reused as long
as the maximum frequency required is no greater than that contained in the DFT. Thus a
non-increasing sequence of frequencies assures that only one DFT needs to be computed.

4.7 SimFil Computation Overview

The actual filtering process used by SimFil is summarized below.

1. Numerically integrate and/or differentiate the measured motion signal provided to
obtain the tail values in all three signal domains.

2. Perform any user-specified tail smoothing.

3. Compute the baseline function (2.1) from the tail values.

4. Remove the baseline function from the measured signal and (implicitly) apply Camp-
bell’s transformation to obtain the residual measured signal.

5. Compute the unwindowed, unconstrained independent DFT of the residual measure
signal (3.3).
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6. If necessary, compute the corresponding consistent acceleration DFT coefficients, Ak
(3.2).

7. Compute the windowed, constrained coefficients Àk using velocity domain error weight-
ing Wk = 1/k2 (3.5).

8. Compute the consistent windowed, constrained velocity and displacement coefficients
V̀k and D̀k (3.2).

9. Compute the desired filtered motion signals (3.6).
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